Particle laden flows INTO Nature:

Sediment transport in unconventional reservoir stimulation

Brendon Hall, ION Geophysical

Wednesday, December 18, 2013

Outline

- Background the shale boom
- Technology overview hydraulic fracturing
- Modeling fracturing and proppant transport

November 12, 2013...

Tight oil will drive liquid supply growth...

Growth of gas supply driven by US shale...

Gas production by type and region

Shale gas production

Where does shale gas/oil come from?

Marcellus deposition

R. C. Blakey (http://www2.nau.edu/rcb7/nam.html)

What makes it unconventional?

Fracturing fluids

Fluid	Viscosity	Proppant Size
Water @ 20C	IcP	
Slickwater	2-3 cP	40/70 mesh 212 - 420 μm
Linear gel	10-30 cP	30/50 mesh 300 - 600 μm
Crosslinked gel	100-1000 cP	20/40 and 16/30 420 - 1180 μm

http://momentivefracline.com/fracturing-fluids-101

© 2012 Momentive

Gel vs. slickwater fractures

Comparison of XL Gel frac and Water-Frac Re-frac, horizontal Barnett well

Source: Cipolla, et. al., SPE 124843 modified from Warpinski, et. al., SPE 95568.

A typical treatment schedule

Example Middle Bakken slickwater fracture treatment plot. Pearson (2013)

Environmental concerns

By the numbers

(based on the Bakken)

- length of laterals: 10,000 ft (3 km)
- depth of wells: 10,000 ft
- •# of stages: 30
- length of fractures: up to 1000 ft
- amount of water/well: 250,000 bbls (40 Mliters)
- amount of proppant/well: 3,000,000 lbs
- average well cost: \$8 million

The need for modeling

Solid mechanics...

State of Stress in the Earth

Crack propagation modes

Typical shale strength: 60-125 MPa (compression) 9-13 MPa (tension)

...and fluid mechanics

Semi-infinite fluid driven crack with lag zone adjacent to the tip. Detournay (2004)

Detournay and Garagash 2003, The near-tip region of a fluid-drive fracture propagating in a permeable elastic solid. *J. Fluid Mech*, vol. 494, pp. 1-32.

Analytic fracture models

Radial model

Sneddon (1946)

PKN model

Perkins & Kern (1961) Nordren (1969)

KGD model

$$L_{frac}(t) = 1.078 \left(\frac{E'q_0^3}{\mu_f}\right)^{1/6} t^{2/3}$$

$$w_o^h(t) = 2.36 \left(\frac{\mu_f q_0^3}{E'}\right) t^{1/3}$$

Khristianovich & Zheltov (1955) Geertsma & de Klerk (1969)

Fracture modeling software

StrataGen FracPro software

NSI Technologies StimPlan software

But there is more going on...

Crack Propagation

Joint Model

Dynamic Stress

Viscous Fluid Flow in Fracture

LLNL GEOS

Fu et al. 2012

LLNL GEOS

Recent work has focused on 3D simulations. The simulation results shown are based on the following initial and boundary conditions:

- 100 m formation thickness
- Single stage with 9 perforations with 20 m spacing
- Fluid injection rate of 75 bbl/min (water)
- Stress ratio of $\sigma_h/\sigma_H=0.85$

THE WALL STREET JOURNAL. ■ BUSINESS

BUSINESS

In Fracking, Sand Is the New Gold

Energy Boom Fuels Demand for Key Ingredient Used in Drilling Wells; 100 Sand Mines in Wisconsin

Why proppant?

Proppant bed arrangements, from Palisch (2008)

Fracture faces as described during lab testing by Fredd et al (2008)

Proppant transport

- What is the effective (propped) fracture length?
- What type (size, density, strength) of proppant should be used?
- What quantity, concentration of proppant should be used?
- What fluid viscosity & injection rate should be used?

Proppant settling speed

Stoke's Law

$$V_s = \frac{(\rho_p - \rho_f) g d_p^2}{18\mu}$$

Assumptions

- unbounded, laminar flow
- smooth, spherical particles
- no particle/particle interactions

Proppant settling speed

Novotny, 1977

Influence of walls Zhu (1999)

Hindered settling Zhu (1999)

Proppant settling speed

Effective viscosity Zhu (1999)

Inertial effects Gadde (2004)

Modeling settling

Gadde (2004)

Mass conservation (slurry)

$$\frac{\partial \left(\rho w\right)}{\partial t} + \nabla \cdot \left(\rho \vec{q}\right) = -\rho_f q_l$$

Mass conservation (particles)

$$\frac{\partial \left(c\rho_p w\right)}{\partial t} + \nabla \cdot \left(c\rho_p \vec{q_p}\right) = 0$$

Particle velocity

$$\vec{q}_p = \vec{q} + \hat{k}V_s$$

FEM solver for w(x, y, t)

Modeling settling

Gadde (2004)

Proppant concentration for I cp fluid with corrected settling

Proppant concentration for 100 cp fluid with corrected settling

Proppant settling experiments

Proppant transport

FIG. 3-BUILD-UP OF SETTLED SAND BED.

Fig. 5—Final Position of Sand Injected Late.
IN TREATMENT.

The formation of proppant beds. Kern et al. (1957)

Engineering the perfect proppant...

Nanotechnology Research Contributes to Fracking Proppant Development

by Karen Boman | Rigzone Staff | Friday, July 29, 2011

Conventional slickwater bed load proppant transport

Trican's FlowRider solution causes microscopic air bubbles to adhere to sand, making it as transportable as ultra-lightweight proppant. Slickwater with proppant transportation modifier

CARBOHYDROPROP®

Lightweight ceramic proppant for slickwater fracturing

Reference conductivity comparison between 40/80 CARBOHYDROPROP and other products

Settling Rate in 2% KCI Fluid

CARBOHYDROPROP 40/80

Physical and Chemical Properties

Typical Sieve Analysis [weight % retained]

U.S. Mesh [mesh]	Microns	40/80
+40 mesh	+425	2
-40+50 mesh	-425+300	68
-50+80 mesh	-300+180	30
Median Particle Diameter [microns]		325
API Crush Test		
% by weight fines generated	@5000psi	0.5%
	@7500 psi	2.0%

Sizing Requirements: A minimum of 90% of the tested sample should fall between the designated sieve sizes. These specifications meet the recommended practices as detailed in ISO 13503-2.

Typical Additional Properties

7,	
Apparent Specific Gravity	2.55
Roundness	0.8
Sphericity	0.9
Bulk Density [lb/ft³] [g/cm³]	87 1.40
Absolute Volume [gal/lb]	0.047
Solubility in 12/3 HCI/HF Acid [% weight loss]	4.8

Summary

- There is a real need for improved proppant transport models and experiments
- Transport models need to account for all sediment transport modes
- Transport models need to be coupled with hydraulic fracture models
- For a collection of references, email me at

brendon.hall@gmail.com