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Granular Flows and Avalanches 

Statistical Mechanics  

Approach 

 

• Based on grain-scale 

theories of grain interaction 

and instability of avalanches.   

• Focus on statistical 

distributions of avalanche 

sizes and pattern formation 

• Most developed for highly 

intermittent flows 

• Now mostly used for 

problems besides granular 

flow 

 

 

Fluid Mechanics  

Approach 

 

• Based on approximations to 

rheology and conservation 

laws   

• Rapid progress since seminal 

work of Pouliquen (1999) 

• Weak connection to 

underlying particle mechanics, 

esp. for dense flows 

• Most developed for steady 

and close-to-steady flows 
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Dense Granular Flows 

• Quasistatic Flow: Rate independent stress-

strain constitutive relations (Critical State Soil 

Mechanics)  

 

• Dense Granular Flow: dynamic contact 

network with multi-particle interactions 

 

• Collisional Flow: Constitutive relations based 

on collision statistics (Kinetic Theory) 

 

• Fluid-dominated flows 

– Wet dense granular flows 

– Turbidity currents 
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Rheology of Dense Granular Flows 

• Pouliquen flow rule on inclined plane 

 

 

 

• Rheology is established for steady-state, near steady-state 

conditions 

– Usually for spherical grains 

 

• Well-established phenomenology for 

dry dense granular flows 

– Campbell, Pouliquen, Silbert et al. 

Can steady-state rheology be used to understand 

intermittent avalanche regime? 
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Experimental Approach (Börsönyi, Ecke) 

Sand Copper Glass Beads 

Salt 
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Overall Flow Character 

• Qualitatively simple “phase 

diagram” for all materials 

• Critical height as function of θ 

can be modeled as 

 

 

 

 

• Pouliquen flow rule (or modified 

Jenkins form) satisfied for sand, 

glass beads, less robust for 

copper particles 

– β for sand larger than for glass 

beads 
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Avalanches 

• Particles are added at top of incline 

• Avalanches return slope to its critical value 

• Avalanches structure and velocity are approximately constant 

Sand Avalanches 
Θ = 33.6º 

Θ = 38.1º 
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Weak and Strong Avalanches 

• Differing character of avalanches seen 

– Sand avalanches are larger and faster than glass bead avalanches, have 

a much more dramatic forward profile 

Sand Avalanches 

Glass Bead 

Avalanches 
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Avalanche Structure 

• For sand avalanches, 

front arrives suddenly, 

with particle velocity at 

front (at least at 

surface) exceeding 

front velocity 

• For glass bead 

avalanches, particles 

are gradually 

accelerated as front 

arrives 
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Depth-Averaged Theory 
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Solution Structure 

• Second order hyperbolic (wave) equation with characteristic 

velocities 

 

 

 

 

• But, for Fr << 1, equations of motion can be directly simplified 

to give kinematic waves 

 

 

 

 

• Note that it is not automatic that  
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Wave Hierarchy 

x 

t 

Characteristics Kinetic Wave 
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ac 

• Kinematic wave cannot move faster than characteristic 

(maximum velocity of information transport).  When a ≥ c+, the 

kinematic wave merges with the forward shock 
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Weak Avalanche 

• Kinematic waves have a first-order wave, with a diffusive term on the 

right hand-side (like Burger’s equation) 

• Suggests that avalanche should broaden with time—not observed 

– May be too slow to observe in course of experiment 

• For glass beads, pure first order theory predicts 

 

 

• Acceptable (but not impeccable) agreement 

fu

sh

Propagating 

Burger’s 

Pulse 

smf hhau 6)(6.0  

mh




14 

Strong Avalanche: Shock Solution 

• For the shock solution, there will be a jump criterion connecting 

particle and front velocities with the height of the shock 

 

 

• Equivalently 

 

 

• So that we must have up > uf at the shock! 
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Results for Various Particles 

• Note strong correlation between super-critical vs. sub-critical avalanche 

height (corresponding to which side of the blue or black curves the 

points occupy) and the particle to front velocity ratio (shown on right) 
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Instabilities 

• This is analogous to result for 

instabilities in steady flow, analyzed 

by Forterre and Pouliquen 

• Glass beads 

– Flows near critical height were 

stable 

–  Flows away from critical height 

were unstable 

• Sand: the reverse 

• Roll waves vs. flood waves 

• Criterion for stability of flows: 

 ca
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Reservations 

• Both strong and weak avalanches are propagating into static 

materials; for both types of avalanches the zone behind the avalanche 

front is settling back into a static state.   

– No modeling of zone of “passive Rankine failure” ahead of front 

• Have not addressed lateral structure of avalanches 

– Could be done with straightforward extension of depth-averaged 

equations 

• In practice, α should vary with height  

– linear velocity profile seen near threshold 

– Bagnold velocity profile seen for deeper flows 
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Outlook 

• Semi-quantitative theory accounts well for transition from weak to 

strong avalanches 

– Notwithstanding granular complexities, simple depth-averaged fluid 

mechanical approach is quite successful 

• Alas, dry granular flows are limited in their geophysical importance 

• “Wet granular flows” (Debris flows)—more complex rheology 

(although note Marseille group proposal) 

• Turbidity currents—simple conceptually (Parker model and its 

descendants) but large phase space, mathematically more complex 

 

Can steady-state rheology be used to understand 

intermittent avalanche regime? 

Yes!  But statistical mechanics may still be needed 

to underpin fundamental rheology! 
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Backup 
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Avalanche Size and Speed 
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Front and Particle Velocities vs. Angle 

Glass beads 

Sand 


