

Avalanche dynamics on an inclined plane

Thomas C. Halsey
Particle-Laden Flows in Nature
Kavli Institute for Theoretical Physics, December 16, 2013

Granular Flows and Avalanches

Statistical Mechanics Approach

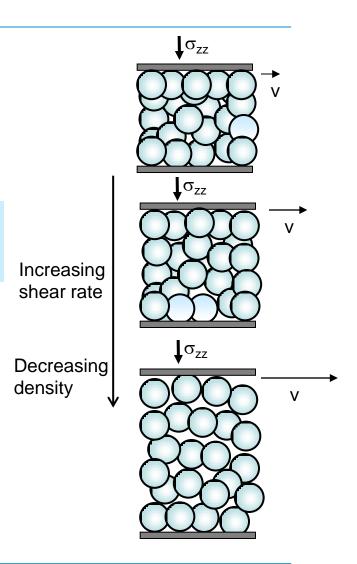
- Based on grain-scale theories of grain interaction and instability of avalanches.
- Focus on statistical distributions of avalanche sizes and pattern formation
- Most developed for highly intermittent flows
- Now mostly used for problems besides granular flow

Fluid Mechanics Approach

- Based on approximations to rheology and conservation laws
- Rapid progress since seminal work of Pouliquen (1999)
- Weak connection to underlying particle mechanics, esp. for dense flows
- Most developed for steady and close-to-steady flows

Dense Granular Flows

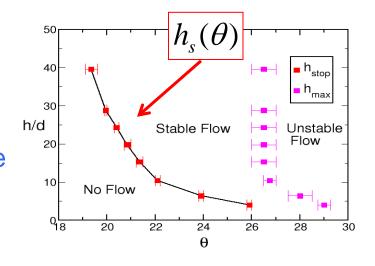
- Quasistatic Flow: Rate independent stressstrain constitutive relations (Critical State Soil Mechanics)
- Dense Granular Flow: dynamic contact network with multi-particle interactions
- Collisional Flow: Constitutive relations based on collision statistics (Kinetic Theory)
- Fluid-dominated flows
 - Wet dense granular flows
 - Turbidity currents



Rheology of Dense Granular Flows

- Well-established phenomenology for dry dense granular flows
 - Campbell, Pouliquen, Silbert et al.
- Pouliquen flow rule on inclined plane

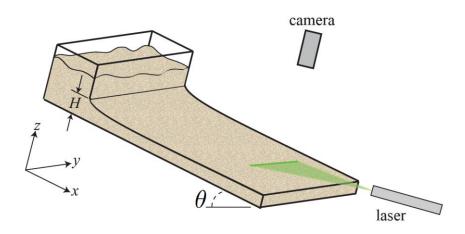
$$\frac{u}{\sqrt{gh}} \equiv Fr = \beta \frac{h}{h_s(\theta)} - \gamma$$

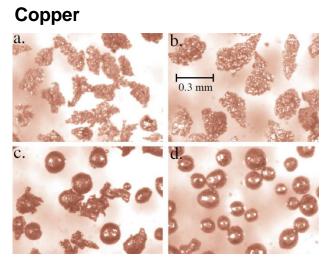


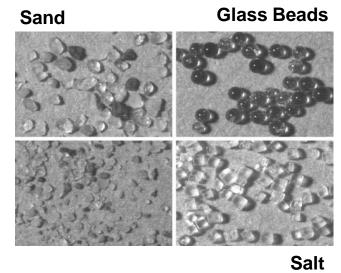
- Rheology is established for steady-state, near steady-state conditions
 - Usually for spherical grains

Can steady-state rheology be used to understand intermittent avalanche regime?

Experimental Approach (Börsönyi, Ecke)





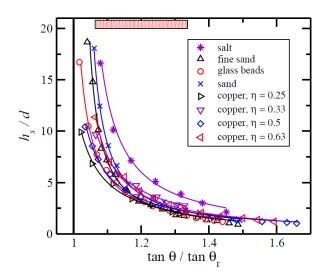


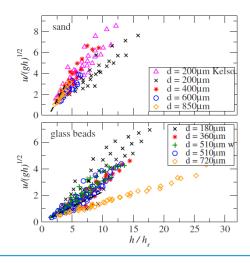
Overall Flow Character

- Qualitatively simple "phase diagram" for all materials
- Critical height as function of θ can be modeled as

$$\frac{h_s}{d} = \frac{a_1}{\tan \theta - \tan \theta_1}$$

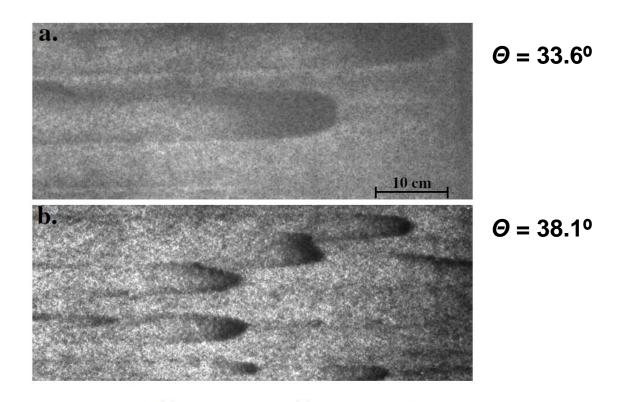
- Pouliquen flow rule (or modified Jenkins form) satisfied for sand, glass beads, less robust for copper particles
 - β for sand larger than for glass beads





Avalanches

Sand Avalanches



- Particles are added at top of incline
- Avalanches return slope to its critical value
- Avalanches structure and velocity are approximately constant

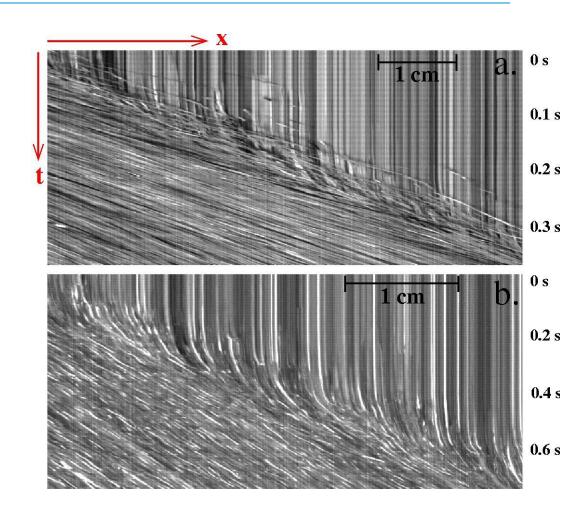
Weak and Strong Avalanches

Sand Avalanches Glass Bead Avalanches

- Differing character of avalanches seen
 - Sand avalanches are larger and faster than glass bead avalanches, have a much more dramatic forward profile

Avalanche Structure

- For sand avalanches, front arrives suddenly, with particle velocity at front (at least at surface) exceeding front velocity
- For glass bead avalanches, particles are gradually accelerated as front arrives



Depth-Averaged Theory

Pouliquen flow rule

$$\frac{u(h,\theta)}{\sqrt{gh}} = \beta \frac{h}{h_s(\theta)} - \gamma$$

Conservation of mass

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = 0$$

Conservation of momentum

$$\frac{\partial(hu)}{\partial t} + \alpha \frac{\partial(hu^2)}{\partial x} = \left(\tan \theta - \mu(u,h) - K \frac{\partial h}{\partial x}\right) gh \cos \theta$$
Velocity profile

Base friction

Normal stress difference

$$\alpha = \frac{5}{4}$$
 $\tan \theta = \mu(u(h, \theta), h)$ $K \approx 1$

Solution Structure

Second order hyperbolic (wave) equation with characteristic velocities

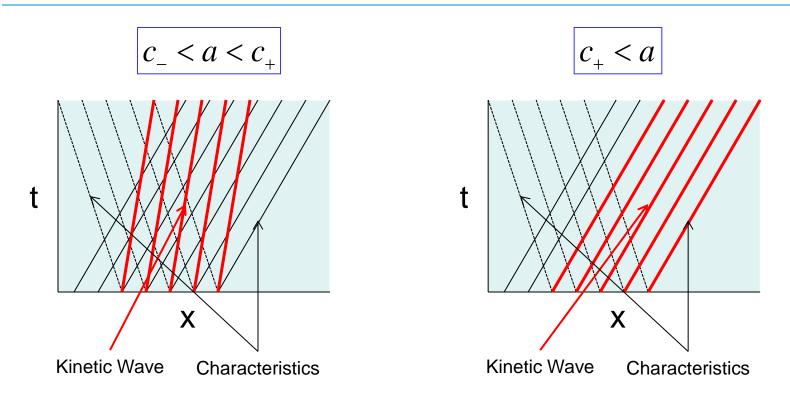
$$c_{\pm} = u \left(\alpha \pm \sqrt{\alpha(\alpha - 1) + \frac{K}{(Fr^2 \cos \theta)}} \right) \quad Fr = \frac{u}{\sqrt{gh}}$$

 But, for Fr << 1, equations of motion can be directly simplified to give kinematic waves

$$\frac{\partial h}{\partial t} + a(h)\frac{\partial h}{\partial x} = N\left(h, \frac{\partial h}{\partial x}\right) \quad a(h) = \sqrt{gh}\left(\frac{5}{2}\beta\frac{h}{h_s} - \frac{3}{2}\gamma\right)$$

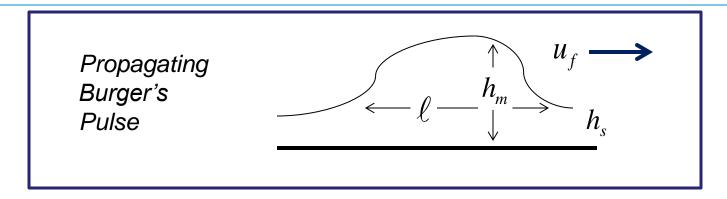
• Note that it is not automatic that $a < c_{\perp}$

Wave Hierarchy



 Kinematic wave cannot move faster than characteristic (maximum velocity of information transport). When a ≥ c₊, the kinematic wave merges with the forward shock

Weak Avalanche

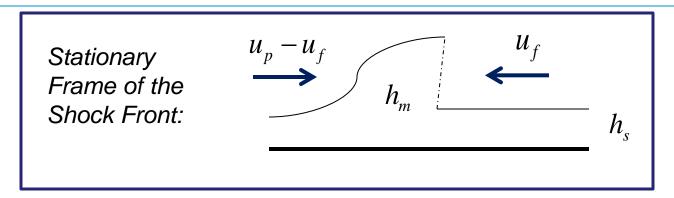


- Kinematic waves have a first-order wave, with a diffusive term on the right hand-side (like Burger's equation)
- Suggests that avalanche should broaden with time—not observed
 - May be too slow to observe in course of experiment
- For glass beads, pure first order theory predicts

$$u_f \approx 0.6a(h_m)$$
 $\ell \approx 6h_s$

Acceptable (but not impeccable) agreement

Strong Avalanche: Shock Solution



 For the shock solution, there will be a jump criterion connecting particle and front velocities with the height of the shock

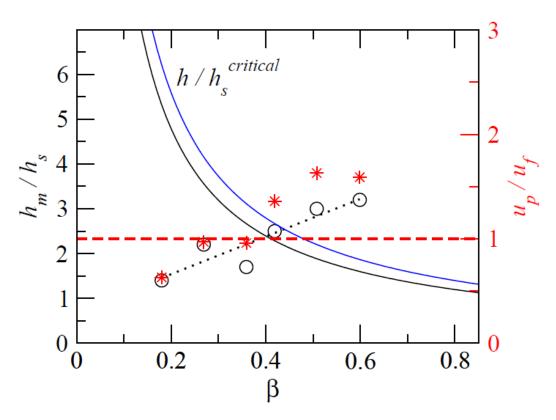
$$(u_p - u_f)h_m > u_f h_s$$

Equivalently

$$\left(\frac{u_p}{u_f} - 1\right) > \left(\frac{h_m}{h_s}\right)^{-1}$$

So that we must have u_p > u_f at the shock!

Results for Various Particles

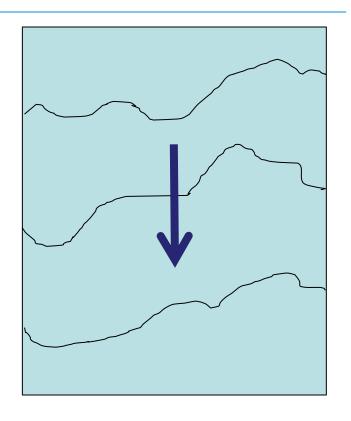


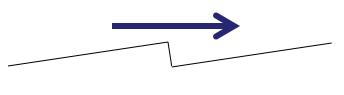
• Note strong correlation between super-critical vs. sub-critical avalanche height (corresponding to which side of the blue or black curves the points occupy) and the particle to front velocity ratio (shown on right)

Instabilities

- This is analogous to result for instabilities in steady flow, analyzed by Forterre and Pouliquen
- Glass beads
 - Flows near critical height were stable
 - Flows away from critical height were unstable
- Sand: the reverse
- Roll waves vs. flood waves
- Criterion for stability of flows:

$$a < c_+$$





Reservations

- Both strong and weak avalanches are propagating into static materials; for both types of avalanches the zone behind the avalanche front is settling back into a static state.
 - No modeling of zone of "passive Rankine failure" ahead of front
- Have not addressed lateral structure of avalanches
 - Could be done with straightforward extension of depth-averaged equations
- In practice, α should vary with height
 - linear velocity profile seen near threshold
 - Bagnold velocity profile seen for deeper flows

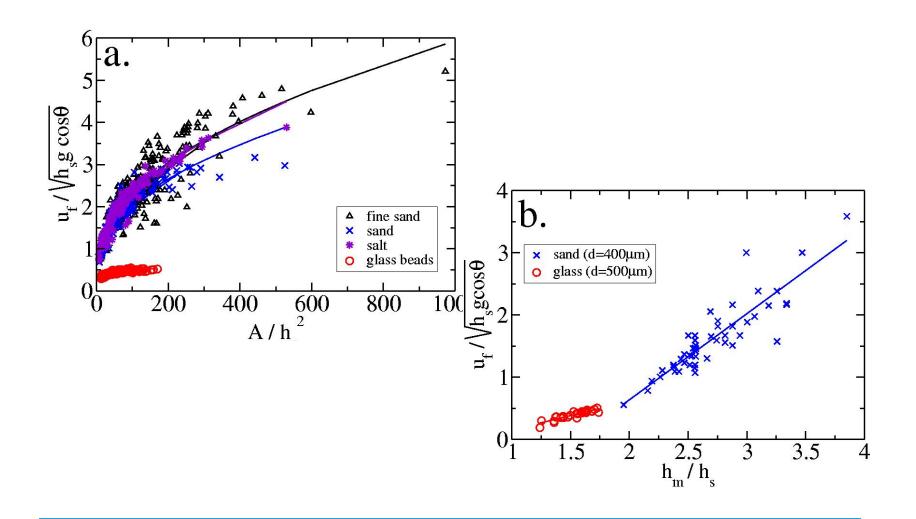
Outlook

Can steady-state rheology be used to understand intermittent avalanche regime?
Yes! But statistical mechanics may still be needed to underpin fundamental rheology!

- Semi-quantitative theory accounts well for transition from weak to strong avalanches
 - Notwithstanding granular complexities, simple depth-averaged fluid mechanical approach is quite successful
- Alas, dry granular flows are limited in their geophysical importance
- "Wet granular flows" (Debris flows)—more complex rheology (although note Marseille group proposal)
- Turbidity currents—simple conceptually (Parker model and its descendants) but large phase space, mathematically more complex

Backup

Avalanche Size and Speed



Front and Particle Velocities vs. Angle

