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Fundamental changes of granular flow dynamics, deposition and

erosion processes at high slope angles: insights from laboratory

experiments

Maxime Farin,1 Anne Mangeney1,3 and Olivier Roche2

Abstract. Entrainment of underlying debris by geophysical flows can significantly in-
crease the flow deposit extent. To study this phenomenon, analog laboratory experiments
have been conducted on granular column collapse over an inclined channel with and with-
out an erodible bed made of similar granular material. Results show that for slope an-
gles below a critical value θc, between 10◦ and 16◦, the runout distance rf depends only
on the initial column height h0 and is unaffected by the presence of an erodible bed. On
steeper slopes, the flow dynamics change fundamentally, with a slow propagation phase
developing after flow front deceleration, significantly extending the flow duration. This
phase has characteristics similar to those of steady uniform flows. Its duration increases
with increasing slope angle, column volume, column inclination with respect to the slope
and channel width, decreasing column aspect ratio (height over length) and in the pres-
ence of an erodible bed. It is independent, however, of the maximum front velocity. The
increase in the duration of the slow propagation phase has a crucial effect on flows dy-
namics and deposition. Over a rigid bed, the development of this phase leads to runout
distances rf that depend on both the initial column height h0 and length r0. Over an
erodible bed, as the duration of the slow propagation phase increases, the duration of
bed excavation increases, leading to a greater increase in the runout distance compared
with that over a rigid bed (up to 50%). This effect is even more pronounced as bed com-
paction decreases.

1. Introduction

Landslides, debris flows, pyroclastic flows and snow or
rock avalanches are examples of geophysical granular flows
that commonly occur on steep terrain where they repre-
sent significant natural hazards to life and property. Af-
ter destabilization, a granular mass tends to accelerate as
gravity pulls it downslope before decelerating on gentler
slopes where interaction forces dissipating energy overcome
the driving force. Despite the increasing number of experi-
mental, field and numerical studies of landslide and granular
flow dynamics, the quantification of the physical processes
involved and the corresponding rheological behavior of both
experimental and natural flows are still open questions.

A major issue is to understand and quantify the entrain-
ment of material on the landslide path. Indeed, material
entrainment (i.e. erosion) can significantly change both de-
posit extent and flow dynamics, with strong implications
for hazard assessment [e.g. Sovilla et al., 2006; Mangeney et
al., 2007a, 2010; Iverson et al., 2011]. Geophysical granular
flows interact with their substrate in various ways depend-
ing on flow characteristics and the mechanical properties of
the underlying material. Granular substrates, resulting from
deposition of earlier flows or various geological events, are
commonly eroded by granular avalanches [Hungr and Evans,
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2004]. The properties of these substrates (compaction, co-
hesion, etc.) vary significantly depending on the materials
involved and their degree of cementation after weathering.
The substrate can be faulted, folded or strongly distorted,
which suggests strong shear coupling at the flow base (e.g.
Figure 1 of Dufresne [2012] and references therein). Ero-
sion occurs preferentially on steep slopes [e.g. Conway et
al., 2010] but is observed as well along sub-horizontal sub-
strates. Evidence includes entrained blocks and erosional
features such as striae, furrows and impact marks [Roche
et al., 2013]. Particles from the substrate can also be en-
trained by the flow and are typically found mingled within
its deposit [Bernard and van Wyk de Vries, 2011]. However,
direct measurement of material entrainment in nature and
of its link with flow dynamics is very difficult [Sovilla et al.,
2006; Berger et al., 2011; Schürch et al., 2011; McCoy et al.,
2013].

Attempts have been made to incorporate entrainment
processes in numerical models to simulate the propagation
of granular flows over erodible beds [e.g., Mangeney et al.,
2007a; Bouchut et al., 2008; Crosta et al., 2009a; 2009b;
Iverson 2012; Moretti et al., 2012]. However, given the very
few observations available to constrain the models, a theo-
retical understanding of the entrainment processes in gran-
ular flows remains a major challenge.

In this context, laboratory experiments of granular flows
are a unique way to gain insight into the erosion processes
and their link with flow dynamics. Essentially, two types
of analog laboratory experiments have been performed ex-
tensively over the last 15 years to investigate the behavior
of geophysical granular flows. They involve: (i) the col-
lapse of granular columns over horizontal rigid beds and
(ii) steady uniform flows of granular material over inclined
rigid beds generated by a constant supply upslope. By vary-
ing systematically the nature, volume, dimension and shape
of the initially released mass and the substrate character-
istics, granular collapse experiments over horizontal beds
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have made it possible to establish robust scaling laws re-
lating the characteristics of the deposit to the initial di-
mensions of the granular column (initial height, radius and
aspect ratio, i.e. height over width) [Balmforth and Ker-
swell 2005; Lajeunesse et al. 2004, 2005; Lube et al. 2004,
2005; Siavoshi and Kudrolli, 2005; Lacaze et al. 2008]. Nu-
merical and analytical modeling of granular collapse, using
thin layer models based on empirical friction laws involving
a constant friction coefficient, has been able to reproduce
the deposits with their associated thin front as well as the
scaling laws observed experimentally. Analytical solutions
have provided insight into the empirical parameters involved
in these scaling laws and have made it possible to extend
them to granular collapse over inclined beds [Kerswell 2005;
Mangeney-Castelnau et al., 2005; Mangeney et al., 2010].
Several granular collapse experiments have also been per-
formed over inclined beds without trying to reproduce the
scaling laws obtained on horizontal planes [Hogg 2007; Man-
geney et al., 2010; Lube et al., 2011]. Furthermore, the pio-
neering experiments of Pouliquen [1999a] followed by many
others have shown the existence of slow, thin, steady uni-
form flows with steep fronts over a range of slope inclina-
tion angles (about 20◦ to 28◦ for glass beads). Simulation of
these experiments is only possible when using a friction law
whose friction coefficient depends both on flow velocity and
thickness [Pouliquen, 1999a; Pouliquen and Forterre, 2002;
Mangeney et al., 2007b]. Reconciling these two end-member
types of experiments ((i) and (ii)) remains a challenge.

Experiments on granular collapse over horizontal and in-
clined erodible beds have been performed recently to in-
vestigate and quantify erosion processes [Mangeney et al.,
2007b; 2010; Iverson et al., 2011; Dufresne, 2012; Roche et
al., 2013]. Mangeney et al. [2010] have shown that erosion
processes affect the flow behavior above a critical slope an-
gle θc that is about half the repose angle θr of the granular
material (θc ≃ 12◦ ≃ θr

2
). At a given slope angle θ > θc,

the runout distance in their experiments increased linearly
as a function of the bed thickness, up to about 40% for
inclinations close to the repose angle of the granular ma-
terial involved. Three phases of flow propagation were ob-
served: (i) an initial acceleration phase, (ii) a rapid deceler-
ation phase and (iii) a final phase of slow propagation that
appeared only at sufficiently high slope angles and/or bed
thicknesses and for which the duration increased with the
slope angle. The presence of an erodible bed did not affect
the acceleration phase and the maximum front velocity, but
it significantly increased the front velocity during the decel-
eration and slow propagation phases, thereby increasing the
flow duration and the runout distance compared to that of
collapse over a rigid bed. The experiments also showed that
the penetration depth of the interface separating the flowing
and static grains in the erodible bed first increased rapidly
behind the flow front, reached a maximum value and finally
decreased to a value that depended on the slope angle. At
the interface between the erodible bed and the flow, waves
of grains from the erodible bed, traveling downstream, were
observed behind the flow front. How these waves affect the
efficiency of erosion processes is still unclear.

Because the experiments of Mangeney et al. [2010] were
conducted only for a rectangular granular column of aspect
ratio a = 0.7 and volume V = 2800 cm3, a channel of width
W = 10 cm and loosely-packed beds of thickness hi up to
only 6 mm, several questions remain unresolved. Does the
value of the critical angle θc depend on the characteristics
of the released mass, the channel width and the nature of
the erodible bed? Does the runout distance still increase
linearly with the thickness of the erodible bed whatever the
nature and thickness of the substrate and the characteristics
of the released mass? What controls the increase in runout
distance due to material entrainment (maximum penetra-
tion depth and/or duration of excavation, amplitude and/or
duration of the waves, etc.)? Is this increase in runout dis-
tance only due to the addition of mass, i.e. would it also be

obtained simply by adding this eroded mass to the initial
column mass? How do the properties of the released mass
(volume, aspect ratio, shape) impact on the efficiency of ero-
sion processes and the appearance and duration of the slow
propagation phase? Whatever the origin of this slow prop-
agation phase, its strong impact on flow dynamics suggests
that it represents a flow regime substantially different from
the spreading regime observed for granular collapse on slopes
θ < θc. As a result, an important question is whether the
well established scaling laws observed for granular collapse
over horizontal planes are still valid for flows that include a
slow propagation phase. Furthermore, how does this phase
compare with steady uniform flows observed over inclined
planes?

To address these questions, we here investigate exper-
imentally how, when varying initial and boundary condi-
tions, the granular flow dynamics and erosion and deposition
processes are affected by the: (i) initial aspect ratio, volume
and shape of the granular column released, (ii) slope angle
of the channel, (iii) channel width and (iv) thickness and
degree of compaction of the erodible bed. More specifically,
we investigate how runout distance, flow front velocity, du-
ration of the slow propagation phase, deposit shape, critical
slope angle θc, depth and duration of excavation within a
flow and amplitude and duration of erosion waves vary as a
function of these experimental combinations.

Section 2 describes the experimental design. After briefly
presenting theoretical concepts in section 3, we test general
scaling laws for granular flow runout distances in section 4
and we show the effects of various parameters on flow dy-
namics and deposition processes over a rigid (non-erodible)
inclined bed. Section 5 deals with flows over an erodible
bed and provides insights into the influence of the control
parameters on flow dynamics, runout distance and erosion
efficiency. Results are discussed in section 6.

2. Experimental Design

The experimental setup consisted of a 3-m-long channel
bordered by smooth Plexiglas walls (Figure 1). A granular
column of glass beads was released from rest at the upper
end of the channel with an inclination that could be varied
from 0◦ to about 35◦ (Figure 1b). The reservoir length r0
could be varied from 10 cm to 30 cm, making it possible to
release columns with different aspect ratios a = h0/r0 and
volumes V = h0r0W , where h0 is the height of the granular
column (up to 30 cm) and W is the channel width (W = 10
or 20 cm).

Once released, the granular material flowed down the
channel. In some experiments, the channel base was cov-
ered with a thin bed of glass beads of thickness hi (Figure
1b). The control parameters in the apparatus were the slope
angle θ, granular column aspect ratio a and volume V , as
well as the thickness hi and degree of compaction of the
erodible bed. The glass beads in both the flow and erodi-
ble bed were subspherical, cohesionless and highly rigid (see
Table 1 for characteristics).

The channel base was roughened by gluing a layer of the
same beads on its surface. The erodible bed above that
base was built using three different methods that led to an
increasing degree of compaction, as described below:

1. Like Mangeney et al. [2010], we used the method pro-
posed by Pouliquen [1999a] for the study of steady uniform
flows propagating from a reservoir down a rough plane at
different slope angles. By suddenly cutting the mass sup-
ply from the reservoir, a uniform thin deposit of thickness
hs(θ) was left on the rough base, forming an erodible bed
(Figure 1a). In our case, for a channel width W = 20
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cm, such deposits were observed for θ from 24.4◦ to 31◦

(Figure 2). Below 24.4◦, the thickness of the deposit de-
creased in the downstream direction. On the other hand,
for θ > 31◦, the flows did not form deposits, but instead left
the channel. Therefore, for slope angles between 24.4◦ and
31◦, this method generated loosely-packed beds of thickness
hi = 1 to 6 mm (Figure 2) with a measured volume fraction
νPouliquen = 0.47 ± 0.08 (see below). Note that a channel
width W = 10 cm leads to thicker deposits, i.e. up to 8 mm
(Figure 2). As a result, a layer of same thickness hi is more
stable on the narrow channel than on the wider channel.

2. A second method used to generate an erodible bed
consisted of using a sliding board to level a layer of beads
initially poured on a horizontal rough plane, then slowly in-
creasing the slope angle. This process compacted only the
free surface of the layer with a thickness of ∼ 8 to 12 grain
diameters (i.e. ∼ 5 to 8 mm) whereas the lower layer re-
mained relatively uncompacted, thereby leading to beds of
mean volume fraction νboard = 0.65± 0.08, which decreased
with increasing bed thickness.

3. A third method used to create erodible beds generated
the highest degree of compaction (νvib = 0.74± 0.03). After
the bed was leveled with a board as in the second method,
it was vibrated by gently tapping each side of the channel
10 times to compact the beads.

The solid volume fraction ν of each erodible bed was mea-
sured by removing and weighing a section of length l and
thickness hi from each bed. The volume hilW of this bed
slice was compared to the volume of grains m/ρb, where m
and ρb are respectively the mass of material and density of
the individual beads in the slice. The solid volume fraction
is then given by ν = m/(hilWρb).

We performed a series of experiments in which the length
of the deposit rf from the gate at x = 0 (the runout dis-
tance), the final thickness of the deposit at the upper wall
hf and the time tf at which the front stopped (Figure 1b)
were measured systematically, except for cases in which the
granular flow did not stop on the plane and left the chan-
nel. Runout distances of flows over erodible beds were re-
producible to within 3 cm, corresponding to a variation of
at most 8% of the runout distance. The thickness h(x, t)
and front velocity Vf (t) of the flow were determined from
high-speed videos. In all experiments, the gate was removed
rapidly (at ∼ 2 m s−1) over a time scale much shorter than
the flow duration. Thus, our experiments were equivalent
to an instantaneous dam-break process.

Experiments were first carried out on a rigid, rough chan-
nel for slope angles ranging from θ = 0◦ to 24◦ and volumes
from V = 1400 cm3 to 12600 cm3. Aspect ratios a ranged
from a = 0.3 to 1.24, consistent with many geophysical flows
[e.g. Mangeney et al., 2012]. Most experiments were per-
formed in a 20-cm-wide channel but some experiments were
also conducted in a 10-cm-wide channel to quantify the in-
fluence of the channel width on our results (Experiments
E’ in Table 2). Experiments were then repeated with the
same initial and boundary conditions, but with the channel
covered by a thin erodible bed of variable thickness hi =
1 to 25 mm (Table 2). In natural cases, the initial shape
of a destabilized mass is generally not rectangular. There-
fore, trapezoidal reservoirs, with the gate inclined at 70◦

with respect to the horizontal (Figure 1b), were considered
in addition to rectangular reservoirs with the gate perpen-
dicular to the channel base. For the same volume V , the
initial column height h0 and the initial column length r0
were both greater for a trapezoidal reservoir than for the
rectangular reservoir. However, to compare results between
reservoir shapes, we also defined the aspect ratio a of the
trapezoidal column as the ratio of h0 to r0 (Figure 1b). The
trapezoidal reservoirs allowed us to release columns of vol-
ume V = 12600 cm3 and aspect ratio a = 0.7 onto slopes
having angles between 0◦ and 24◦ with respect to the hori-
zontal (Experiments Et in Table 2).

In order to observe velocity profiles on one side of the
flow (through the transparent channel wall) and estimate
the evolving interface separating flowing and static grains,
we used black beads as tracers at a volume fraction of
about 50%. Black beads had a slightly higher repose an-
gle (θrb ≃ 25◦) than the regular beads (θr ≃ 23◦), possibly
due to slight cohesion effects caused by the ink used to color
the beads. To investigate how the amplitude and duration
of erosion waves varied as a function of the aspect ratio a
and volume V , we performed experiments with an erodible
bed made of colored black beads. To obtain sufficient accu-
racy, it was necessary to work at high slope angles close to
the friction angle of the glass beads, typically θ ≥ 19◦. At
such angles, the wave amplitude and the excavation depth
in the erodible bed were expected to be maximized.

3. Theoretical Model for Granular Flow
Dynamics

To provide a basis for interpreting our experimental re-
sults, we review a theoretical framework describing the be-
havior of dry granular flows. The dynamics of granular
flow result from a complex balance between inertia, gravity,
friction and pressure gradients. Savage and Hutter [1989]
described granular flows using a hydrodynamic approxima-
tion by averaging the 3D equations of mass and momentum
conservation throughout the flow depth, assuming that the
flow has a length much greater than its thickness. This
is the case for most geophysical flows that are a few me-
ters thick and travel distances of several hundred meters to
several kilometers. The flow is also assumed to be incom-
pressible and of constant density ρ. In this so-called shal-
low layer approximation, the flow is described by its local
thickness h(x, y, t) and its depth-averaged downslope veloc-
ity u(x, y, t) = uex + vey , where x and y are the downslope
coordinates in the reference frame of the slope (Figure 1b)
and t is time. Assuming 2D flow, the equations of conserva-
tion of mass and momentum are:

∂h

∂t
+

∂hu

∂x
= 0, (1)

ρ(
∂hu

∂t
+

∂hu2

∂x
) = ρgh cos θ(tan θ − µ(h, u)−K∇ · h),(2)

where g is gravitational acceleration, θ the slope angle and
K the ratio of vertical to horizontal normal stress [Savage
and Hutter, 1989]. In equation (2), acceleration (left hand
term) is balanced by three forces (right hand terms): (i)
gravity, which is the driving force for the flow, (ii) friction,
which opposes the motion and is proportional to the fric-
tion coefficient µ and to the vertical normal stress ρgh cos θ;
and (iii) the force related to the pressure gradient, which
involves the thickness gradient ∇ · h.

Assuming a Coulomb friction law, i.e. a constant fric-
tion coefficient µ = tan δ, with δ the friction angle of the
granular material, we introduce dimensionless variables by
scaling the downslope distance x and flow depth h(x, t) us-
ing the initial column length r0 and height h0 [Roche et al.,
2008; 2011; Mangeney et al., 2010]. Downslope velocity u is
scaled by

√
Kgcosθh0 and time t is scaled by r0/

√
Kgcosθh0

[e.g. Kerswell, 2005; Mangeney-Castelnau et al., 2005; Hogg,
2007]. The resulting dimensionless equations are:

∂h̃

∂t̃
+

∂h̃ũ

∂x̃
= 0, (3)

∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+∇ · h̃ = − ǫ

K
. (4)

where ǫ is a dimensionless parameter defined by

ǫ =
tan δ − tan θ

a
, (5)



X - 4 FARIN ET AL.: GRANULAR FLOW DYNAMICS, DEPOSITION AND EROSION PROCESSES

with a = h0/r0, the column aspect ratio. This model
describes dry granular flows over a simple, linear inclined
plane. More complex models have been developed to sim-
ulate dense granular flows over realistic 3D topographies
[e.g. Denlinger and Iverson, 2001; Bouchut et al., 2003;
Bouchut and Westdickenberg, 2004; Denlinger and Iverson,
2004; Mangeney et al., 2007b].

4. Granular Flow over an Inclined Rigid
Bed

4.1. Scaling Laws for Runout Distance

In the literature, the runout distance rf is typically scaled
by dividing it by the initial column length r0 or height h0.
Experimental results of rectangular [Balmforth and Ker-
swell, 2005; Lajeunesse, 2005; Lube, 2005] and axisymmetric
[Lajeunesse, 2004; Lube, 2004] column collapse on a hori-
zontal plane reveal that the ratio rf/r0 increases linearly
with the column aspect ratio a and is independent of the
volume V , for small aspect ratios (a < 0.7 to 3, depending
on the configuration). Hence, the runout distance rf is pro-
portional to the initial column height h0. Using numerical
and analytical solutions of equations (3) and (4), Kerswell
[2005] and Mangeney-Castelnau et al. [2005] also predict
that the ratio rf/r0 is proportional to a (regardless of a and
for a < 1, respectively). Mangeney et al. [2000, 2010] de-
veloped an analytical expression for granular flow over an
inclined plane:

rf
h0

=
2k

tan δ − tan θ
(6)

where the value of the coefficient k was empirically set to 0.5
[Mangeney et al., 2010] and δ is an empirical friction angle.
Equation (6) shows that the runout distance rf , normalized
by the initial column height h0, is inversely proportional to
the difference between the tangent of the slope angle θ and
the tangent of the friction angle δ of the material.

We report flow runout distances in our experiments at
various slope angles and examine whether they satisfy the
scaling laws established in the literature for horizontal beds
and if the results can be successfully fitted by equation (6)
when the slope angle θ increases.

For slope angles θ ≤ 16◦, runout distances rf satisfy the
same scaling laws as those obtained for the horizontal case;
rf is proportional to h0 (Figure 3a) and normalized runout
distances rf/r0 are independent of V and increase linearly
with a (Figures 3b and 3c). The best fit of equation (6) to
our data is obtained using δ = 27◦, slightly higher than
the angle of repose measured experimentally (θr ∼ 23◦)
[e.g. Mangeney-Castelnau et al., 2005; Kerswell, 2005; Hogg,
2007]. For θ ≤ 16◦ (i.e. 1/(tan δ − tan θ) ≤ 4.5), equation
(6) provides a good prediction of the runout distance rf of
granular flows: for a given slope angle θ, all the values of
rf/h0 collapse, regardless of the aspect ratio a (Figure 4a)
and the volume V (Figure 4b).

On the other hand, these scaling laws are not applica-
ble for flows on slope angles θ > 16◦. At such angles, rf
does not depend on h0 only, but instead clearly depends on
the volume V (i.e. r0) (Figure 3a). This result has never
before been reported. For a = 0.7, rf/r0 increases with
the volume V and even more so when the slope angle θ in-
creases (Figure 3b). For example, for θ = 23◦ and a = 0.7,
rf/r0 varies from 5.6 to 7.7 for volumes V ranging from
1400 cm3 to 12600 cm3. For a given slope angle θ > 16◦

(i.e. 1/(tan δ − tan θ) > 4.5), values of rf/h0 diverge from
the theoretical trend when varying the aspect ratio a and
the volume V (Figures 4a and 4b). As a result, the analyt-
ical expression (6) is no longer appropriate to describe the

dependence of the runout distance on volume and aspect
ratio for slope angles higher than 16◦.

The runout distance is also sensitive to channel width W
and to column initial shape (i.e. rectangular or trapezoidal),
even for small slope angles θ. Normalized runout distances
rf/h0 are systematically greater when the channel is wider
and are slightly smaller for the trapezoidal column than for
a rectangular column of the same volume V = 12600 cm3

and equivalent aspect ratio a = h0/r0 = 0.7 (Figure 4c).
Hogg [2007] carried out column collapse experiments on a

rigid, 30-cm-wide inclined channel and used different types
of material that included Ballotini beads (diameter d = 100
µm and 350 µm) and PVC powder (d = 140 µm) (Figures
3d, 3e and 4d). Since Hogg [2007] used different control
parameters (θ, a, V , W , type of material) than ours, we
cannot quantitatively compare the runout distances rf be-
tween the two studies. However, if we use friction angles
of 2◦ higher than the angles of repose he measured experi-
mentally for the different materials, the data of Hogg [2007]
support our qualitative observations. In these experiments,
the normalized runout distances rf/h0 match the empirical
equation (6) well only until 1/(tan δ−tan θ) ≃ 6 (Figure 4d),
in agreement with our results. The influence of the volume
V on rf/r0 for a given a = 0.5 or a = 1 clearly appears for
high slope angles θ ≥ 18◦ and is even more significant as θ
increases (Figures 3d and 3e).

4.2. Temporal Evolution

We investigate the influence of the initial aspect ratio, vol-
ume and shape of the column on flow dynamics and deposit
geometry of a mass released over an inclined rigid bed of
slope angle θ between 0◦ and 24◦. θ = 24◦ is the highest an-
gle of bed inclination for which a flow deposited on the plane;
for higher inclinations, the granular material flowed beyond
the experimental channel. Parameter values for these ex-
periments are given in Table 2.
4.2.1. Thickness Profiles

The flow thickness profile and deposit geometry depend
on the column aspect ratio a, volume V and initial shape
(Figure 5). For high slope angles, typically θ = 22◦, and
for a given volume V , the thickness profile over the first 60
cm of length is similar for every aspect ratio a. Thereafter
a steeper front is observed for smaller aspect ratios (Fig-
ures 5a to 5d). For a given a = 0.7, the front has a similar
shape for every volume V until about 0.3 s of propagation.
The profile then becomes more parallel to the slope and has
a steeper front as volume V increases (Figures 5e to 5g).
With a trapezoidal column, the flow front first propagates
more slowly than with a rectangular column. Ultimately,
the front from the trapezoidal column catches up with that
from the rectangular column (t ≃ 1s) and leads to a de-
posit that is longer, but with a less steep front (Figures 5g
and 5h). Note that the flow profile at t = 0.18 s in Figure
5d shows that some grains are entrained vertically by the
gate uplift, as already observed by Lube et al. [2007] and
Mangeney et al. [2010]. Although gate removal may affect
the first few tenths of seconds of collapse of high columns,
it does not seem to have a major influence on the overall
dynamics of the flow or on the runout distance.

The geometry of the flow deposit changes as the slope
angle θ increases. For flows along a horizontal channel, the
final thickness profiles scaled by deposit dimensions hf and
rf are independent of the volume V , for a given aspect ra-
tio a (Figure 6b), which agrees with the results of 2D and
3D experiments [Balmforth and Kerswell, 2005; Lajeunesse
et al., 2004; 2005]. In contrast, for a given volume V , the
final thickness profile depends on the aspect ratio a: at the
upstream confining wall, the profiles show an undisturbed
plateau of thickness h0 and decreasing downslope length for
increasing a (Figure 6a). There is no plateau for a = 1.24, a
result that is in good agreement with the theoretical results
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ofKerswell [2005]. The deposit profiles on a horizontal plane
also seem to depend slightly on the initial column shape:
with the trapezoidal column, the deposit profile does not
have an undisturbed plateau (Figure 6c). The front shape
is, however, similar to that of the deposit obtained with a
rectangular column of the same aspect ratio a and volume
V . In contrast, for greater slope angles, typically θ = 22◦

(Figures 6d to 6f), the fronts of the final normalized profiles
are steeper than for θ = 0◦ (Figures 6a to 6c), as observed
by Mangeney et al. [2010]. For a given V , the fronts of the
final profiles are steeper for smaller aspect ratios but are
flatter and more concave-upward for higher aspect ratios,
typically a = 1.24 (Figure 6d). For a given a, the profiles
are more curved and the fronts are steeper as V increases
(Figure 6e), as in the experiments of Hogg [2007] for a = 0.5
and different values of V . At θ = 22◦ with a trapezoidal
column (Figure 6f), the deposit front also exhibits a steep
shape. The deposit profile is more curved and the front less
steep than the one obtained with a rectangular column.
4.2.2. Flow Front Dynamics

The flow front dynamics change critically for slope an-
gles θ ≥ 16◦ compared to smaller slopes because a regime
of slow propagation develops at the end of the deceleration
phase, which significantly increases the duration of the front
propagation and the flow runout distance (Figures 7a to 7c).
For slope angles θ < 16◦, there is no slow propagation phase
(Figure 7c). After the front stops, some mass movement
from the upstream confining wall to the front is still ob-
served. This mass movement reshapes the deposit profile
but does not affect the flow extent (for example for θ = 0◦

in Figures 8a and 8b).
At θ > 16◦, the duration of the slow propagation phase

increases as the slope angle θ and volume V increase and
as the aspect ratio a decreases (Figures 7a to 7c, 8c and
8d). For flows at θ = 22◦ and V = 5600 cm3, the slow
propagation phase lasts approximately 1.9 s for a = 0.3 and
it is not observed for a = 1.24 (Figures 7a and 8c). As a
consequence, the total duration of propagation for θ = 22◦

is longer for small than for high aspect ratios, in contrast
to what is observed in the horizontal case for which there is
no final slow propagation regime (Figures 8a and 8c). The
slow propagation phase is still present but its duration is
shorter when the initial column shape is trapezoidal rather
than rectangular (Figure 7c). With the column dimensions
h0 = 14 cm and r0 = 20 cm, the slow propagation phase
lasts about 0.2 s longer in the 20-cm-wide channel than in
the 10-cm-wide channel of Mangeney et al. [2010]. For slope
angles θ > 16◦, the rear of the mass stops before the front
so that when the front stops, the whole mass is at rest.

In contrast to the slow propagation phase, the initial front
acceleration – that is the slope of the tangent to the veloc-
ity profile Vf (t) at t = 0 – is independent of slope angle
θ and does not depend on aspect ratio a or on volume V
(Figures 7a to 7c). It clearly depends, however, on the ini-
tial column shape because acceleration following release of
the trapezoidal column is only half that following release
of the rectangular column of the same dimensions (Figure
7c). Furthermore, the duration of the acceleration phase
increases slightly with θ, a and V but lasts twice as long
for the trapezoidal column collapse (Figures 7a to 7c). The
maximum front velocity Vfm is proportional to

√
gh0 cos θ

(Figure 7d) [e.g. Roche et al., 2008]. Several experiments
for θ = 22◦, at a constant column height h0 = 14 cm (i.e.√
gh0 cos θ ≃ 112 cm s−1) and different column lengths r0

from 10 cm to 30 cm, reveal that Vfm does not depend on
r0 (Figure 7d). Furthermore, the maximum front velocity
Vfm appears not to depend on the column initial shape (i.e.
trapezoidal or rectangular, Figure 7c).

5. Flow over an Inclined Erodible Bed

5.1. Critical Angle and Runout Distance

We now investigate flow runout over an inclined erodible
bed. Mangeney et al. [2010] showed that there is a criti-

cal angle θc ≃ θr
2

above which the runout distance over an
erodible bed increases compared to the runout distance over
a rigid bed. Our new data show that this critical angle θc
is between θ = 10◦ and 16◦ regardless of the column aspect
ratio a, volume V and shape (Figure 9). The lack of data
between θ = 10◦ and 16◦ does not allow us to determine
the critical angle more precisely. For θ ≤ 10◦, the normal-
ized runout distance rf/h0 does not change for flows over
an erodible bed (i.e. hi > 0 mm) with respect to a rigid
bed (i.e. hi = 0 mm). For θ ≥ 16◦, the runout distance
is affected by the presence of an erodible bed: as the bed
thickness hi increases, the normalized runout distance rf/h0

first increases and then stabilizes at a maximum value (for
θ = 16◦ - 19◦) or sometimes decreases slightly, for example
when θ ≥ 22◦ (Figures 9a and 9b).

The increase in runout distance over an erodible bed de-
pends on θ, a, V , column shape and channel width W (Fig-
ures 9a and 9b). The differences in runout distances over
an erodible compared to a rigid bed were calculated for the
experiments in Figures 9a and 9b. The maximum runout
distance difference ∆rfmax increases with the slope angle
θ up to about 50% for θ = 23◦ (Figures 9c to 9f). There
is an exception, however, for θ = 22◦, V = 5600 cm3 and
a = 1.24 (Figure 9c), where ∆rfmax is smaller than for
θ = 19◦. This value comes from a one-time experiment and
plots within the ±4% error bars. For this specific experi-
ment, the runout distance rf increases by at most 4% as
the bed thickness hi increases and even slightly decreases
for hi > 15d (Figure 9a). In contrast, rf can increase by up
to 32% for smaller aspect ratios a, at the same slope angle
θ = 22◦ (Figure 9e). For a = 0.7, the maximum runout dis-
tance difference ∆rfmax clearly increases with the column
volume V and even more so as the slope angle θ approaches
the repose angle θr of the granular material (Figure 9d).
For granular flows generated from a trapezoidal column or
in the 10-cm-wide channel, the runout distance increases less
in the presence of an erodible bed than for a rectangular col-
umn of similar dimensions or a wider channel (a = 0.7 and
V = 12600 cm3, Figure 9b).

The degree of compaction of the erodible bed has a sub-
stantial impact on the flow runout distance, particularly in
steep channels (Figure 10). For a given slope angle, the nor-
malized runout distance rf/h0 is systematically greater on
a loosely-compacted bed than over more compacted beds.
For θ = 22◦, where erosion is clearly observed, the least
compacted, loose bed (Pouliquen method) leads roughly to
a linear increase of rf/h0 with the bed thickness hi, a re-
sult observed by Mangeney et al. [2010]. For more com-
pacted beds, when hi increases, rf/h0 first increases, tends
toward a maximum value for hi between 4d and 24d and
then decreases. The board method compacts mostly the
top of the bed while the grains underneath remain rela-
tively undisturbed. With the vibration method, the com-
paction is homogenous throughout the bed thickness. Fur-
thermore, the upper part of beds created with the board
may be more compact than the beds compacted by vibra-
tions. Thin beds (hi < 15d) may then be more compact
when using the board. In contrast, the mean solid volume
fraction of thicker beds becomes smaller when they are build
with the board than with the vibration method, since the
lower undisturbed layer of the bed is thicker, as opposed to
the highly compacted upper layer. Consequently, on thin
beds, values of rf/h0 are greater with the vibration method
than with the board method until hi ≃ 8d to 15d and then
decrease as the bed thickness increases (Figure 10).
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5.2. Entrainment vs Mass Addition

During collapse, the flow excavates the underlying granu-
lar bed from which some beads are extracted and entrained
(Figure 11) [see also Mangeney et al., 2010; Rowley et al.,
2011; Dufresne, 2012; Estep and Dufek, 2012]. At a given
distance x from the gate, the position hF/S of the interface
that separates the flowing and static grains within the erodi-
ble bed deepens rapidly after the passage of the flow front,
reaching a maximum depth hC , and then becomes shallower
towards hF/S = 0 (Figure 11). Entrainment of the upper
part of the erodible bed by the flow can increase the runout
distance on slopes θ larger than 10◦ to 16◦ (Figure 9). We
wanted to check whether it was possible to obtain the same
runout distance over a rigid bed simply by adding the en-
trained mass to the initial column.

In order to test this possibility, we estimated the volume
Vm of the initially static beads entrained by the flow. The
erodible bed was assumed to have been excavated over a
thickness equal to the maximum excavation depth hC along
the runout distance rf and across the channel width W .
Our estimation of the maximum entrained volume is there-
fore Vm = hCrfW . Note that this is an upper bound since
the excavation depth hC was not constant along the channel
(see section 5.4). We then conducted experiments in which
we added the volume Vm to the initial volume in the reser-
voir Vi and released this new volume V = Vi + Vm over the
rigid bed (Figure 12). The runout distance of avalanches
of larger volume V = Vi + Vm over a rigid bed was always
smaller than that of similar flows of volume Vi over erodible
beds (Table 3). For example, for θ = 22◦, a = 1, Vi = 2000
cm3 and hi = 8 mm, the erodible bed was excavated over
a depth hC = 3 mm along the runout distance (rf = 84
cm). The volume of erodible bed entrained was therefore
Vm = hCrfW = 0.3× 84× 20 = 504 cm3 (i.e. about 1/4 of
the total volume). In contrast, the runout distance of the
flow of volume V = Vi + Vm = 2000 + 504 = 2504 cm3 over
the rigid bed was about 7% smaller than that over the 8-
mm thick bed. Hence, these experiments demonstrate that
the increase in the runout distance caused by an erodible
bed is not solely due to a mass increase. The presence of an
erodible bed somehow fundamentally changes the dynamics
of the granular flow.

5.3. Effect of an Erodible Bed on the Flow Dynamics

and Deposit Characteristics

5.3.1. Thickness Profiles

The flow thickness profile over an erodible bed is similar
to that over the rigid bed during initial spreading (t < 0.3
s, Figure 13). However, as the flow spreads away from the
gate, the free surface of the profile becomes almost parallel
to the slope (t > 0.3 s, Figure 13). The deposit profiles over
an erodible bed are more concave upward than over a rigid
bed, except for V = 1400 cm3 (compare Figures 6d and 14a
and Figures 6e and 14b). The concavity is more pronounced
for greater aspect ratios a and volumes V (Figures 14a and
14b). In those thickness profiles, a transition from upwards
concavity to convexity can be clearly identified at the front
of the deposit, for x/rf ≃ 0.7 to 0.8.

For the horizontal case (θ = 0◦), the erodible bed has
an effect on the deposit geometry. The deposit profile does
not have a plateau at the upstream confining wall and has a
slightly steeper front than over a rigid bed, as if more mass
was transported from the rear towards the flow front (Figure
14c). With a trapezoidal column, the front is steeper than
with a rectangular column (Figure 14d), contrary to what
was observed over the rigid bed (Figure 6f).
5.3.2. Flow Front Dynamics

Mangeney et al. [2010] reported that most of the increase
in runout distance over an erodible bed is acquired during
the deceleration and slow propagation phases. The present

experiments show that this is true regardless of column as-
pect ratio a, volume V and shape, slope angle θ and bed
thickness hi (Figure 15). The amplitude and duration of
the front acceleration phase and the maximum front veloc-
ity Vfm of flows over an erodible bed do not change com-
pared to those over a rigid bed (Figures 7a, 7b, 15a, 15b
and 15e). The maximum front velocity Vfm is still scaled
by

√
gh0 cos θ (Figure 7d). In contrast, during the decelera-

tion phase, the flow front velocity is greater over an erodible
bed than over the rigid bed (Figure 15e). Furthermore, the
slow propagation phase of flows over an erodible bed lasts
globally longer than over the rigid bed (Figures 15f and 15g)
and its duration corresponds to a greater proportion of the
total duration of propagation (tspp/tf = 50 − 70%), partic-
ularly for high aspect ratios a (Figures 15h and 15i). As a
result, the difference in the front positions ∆xf with respect
to the rigid bed case starts to increase at the beginning of
the deceleration phase (except for a = 1.24, Figures 15c)
and then continues to increase, although more slowly, dur-
ing the slow propagation phase (Figures 15c and 15d). For
a = 0.7, up to 80% of the runout distance increase ∆rf
takes place during the slow propagation phase for the great-
est volumes V investigated (Figure 15d). For a given volume
V = 5600 cm3, the slow propagation phase corresponds to
∼ 35 to 42% of the runout distance increase ∆rf for small
aspect ratios a whereas it represents 100% of ∆rf for high
column aspect ratios such as a = 1.24 (Figure 15c). For this
specific experiment, the flow front traveled a longer distance
over the rigid bed than over the erodible bed at the end of
the deceleration phase (i.e. ∆xf < 0, Figure 15c). Because
a slow propagation phase is not present over the rigid bed
but develops over the erodible bed (Figures 7a and 15a), the
front reaches ultimately a longer runout distance than over
the rigid bed (Figure 15c).

Pouliquen [1999a] presented a scaling law relating front
velocity Vf to thickness h of steady uniform flows at a given
slope angle θ:

Vf√
gh

= β
h

hs(θ)
(7)

where hs(θ) is the deposit thickness at slope angle θ (see
section 2 and Figure 2) and β is an empirical parameter
equal to 0.136 for glass beads. We tested this scaling law
for our granular flows in the slow propagation phase using
Vfmean, the mean front velocity during the slow propagation
phase and hmean, the mean thickness of the flow behind the
front. When the slow propagation phase lasts sufficiently
long (> 1s), i.e. for small aspect ratios a ≤ 0.7 and great
volumes V ≥ 8750 cm3 over the rigid bed, and for all flows
over an erodible bed (Figures 15f and 15g), the flow charac-
teristics match the scaling law (7) well (Figure 16a). As a
result, the flow law (7) is more valid for flows over an erodi-
ble bed for which the slow propagation phase lasts longer
than over the rigid bed (Figures 15f, 15g and 16a).

The mean thickness hdmean of the portion of the deposit
that is quasi-parallel to the slope in the experiments pre-
sented in Figures 5 and 13 is shown to increase when the
duration of the slow propagation phase increases and seems
roughly to saturate for flows with a well developed slow
propagation phase (tspp > 1.2 s and tspp > 1.6 s for θ = 22◦

and θ = 23◦, respectively, Figures 16b and 16c). The max-
imum value of hdmean is smaller when the slope angle θ
increases. For example, it is 1.65±0.1 cm for θ = 22◦ (Fig-
ure 16b) and 1.35±0.1 cm for θ = 23◦ (Figure 16c). These
maximum values are reported in Figure 2.

5.4. Insight into Erosion Processes

The presence of an erodible bed has the most significant
influence on flow mobility at slope angles greater than 10◦ to
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16◦ (Figure 9) and during the deceleration and slow propa-
gation phase (Figure 15). We decided to investigate whether
bed erosion was deeper and longer during these phases and
how this can be related to the increase in the runout dis-
tance over an erodible bed. For this, we measured the posi-
tion of the flowing/static interface hF/S(t) (Figure 11) and
the velocity profile u(y) on one side of the flow (through
the transparent channel wall) at different positions x from
the gate to observe their variations during flow propaga-
tion, for the specific experiment where θ = 23◦, a = 0.3 and
V = 5600 cm3 (Figure 17). Furthermore, the maximum ex-
cavation depth hC and duration of bed excavation td were
measured at the position where the front velocity Vf was
maximum in order to be compared for different initial and
boundary conditions that influence the runout distance in-
crease (Figures 18 and 19). We considered that a particle
was mobilized when its downslope velocity exceeded 10 mm
s−1. Measurements were done on slope angles θ ≥ 19◦ for
which bed entrainment is expected to be high and the depth
and duration of excavation may be easily measured.

During the acceleration phase (for θ = 23◦, a = 0.3 and
V = 5600 cm3; Figures 17a and 17b), the bed is exca-
vated deeply (hC ≃ 5.1d) and with a high excavation ve-

locity (
dhF/S

dt
≃ 33 mm s−1), but only over a very short

time (td ≃ 0.4 s). As the front spreads away from the gate
(Figures 17c to 17f), the maximum depth of excavation hC

and excavation velocity decrease whereas the time td dur-
ing which the bed is excavated increases until a position x
between 100 cm and 160 cm during the slow propagation
phase when it finally decreases (Figures 17e and 17f). Re-
gardless of the measurement position x, the velocity within
the flow u(y) increases with the elevation y above the chan-
nel base (Figures 17g to 17k). This increase is first exponen-
tial above the flowing/static interface (i.e. u(y) = 0), then
becomes linear for higher y and, in some cases, is smaller
close to the free surface (Figures 17g, 17h and 17j). Such
profiles are often observed in granular flows [see e.g. GDR
Midi, 2004; Lajeunesse et al., 2005; Siavoshi and Kudrolli,
2005; Lube et al., 2007; Forterre and Pouliquen, 2008; Man-
geney et al., 2010]. The velocities within the flow and the
erodible bed increase with increasing front velocity Vf . The
surface of the erodible bed is entrained to the maximum ve-
locity of 118 mm s−1 when Vf is maximum (≃ 180 cm s−1,
Figures 17a and 17h). At the end of the slow propagation
phase (Vf < 50 cm s−1), there is almost no excavation at
the upper surface of the erodible bed (Figures 17a and 17k).

For all experimental combinations, the bed is generally
excavated deeper and for a longer time as the bed thickness
hi increases until hi ≃ 7d to 14d (Figures 18a to 18d). For
thicknesses hi greater than 21d, the maximum depth hC and
the duration td of excavation are generally both smaller than
for hi < 21d, except for θ = 22◦, a = 1.24 and V = 5600
cm3 (Figures 18a to 18d). The maximum depth hC and du-
ration td of excavation generally increase as the slope angle θ
increases and as bed compaction decreases (Figure 19) but
are systematically smaller for release from the trapezoidal
reservoir than for release from the rectangular reservoir and
when the channel is narrow (10-cm-wide) (Figures 18b and
18d). The maximum value of hC(hi) globally increases with
a (Figure 19a) and V (Figure 19b) and more generally with
the initial height h0, which controls the maximum front ve-
locity (Figure 7d). The maximum value of td(hi) increases
with the volume V (for a = 0.7) and even more so when the
slope angle θ increases (Figure 19d). We did not notice any
significant variation of the excavation duration with aspect
ratio a (Figure 19c). As a result, the increase in runout
distance over the erodible bed compared to that over the
rigid bed ∆rf increases with the duration of bed excavation
td (Figure 18e). In contrast, no relation between runout
distance and maximum excavation depth hC was observed.

5.5. Erosion Waves

Waves made of particles excavated from the erodible bed
at the flow head were observed for flows over erodible beds

[Mangeney et al., 2010; Rowley et al., 2011]. It is not how-
ever clear how the characteristics of these waves affect ero-
sion efficiency. These waves were studied mainly at slope an-
gles θ ≥ 22◦ where bed erosion is significant (Figure 20). At
lower slope angles, their amplitude was too small to be cap-
tured. The waves propagate downstream, develop to their
maximum amplitude A and then disappear rapidly (Fig-
ures 20b to 20h). For θ = 24.5◦, V = 12600 cm3 and
a = 0.7, when the front velocity is maximum, the waves
reached a maximum amplitude of 10 to 12 particle diam-
eters (i.e. 0.7 ± 0.2 cm to 0.8 ± 0.2 cm) and a maximum
velocity of 85 ± 10 cm s−1, about 3 times smaller than the
front velocity at the same position (Figures 20c to 20h; see
also the video in the auxiliary material). Upstream of the
flow front, the wavelength increases and the amplitude de-
creases [e.g. Mangeney et al., 2010; Rowley et al., 2011].
The erosion waves disappear as the front decelerates and
are not visible in the final deposit: the interface between
the flow and the bed is a relatively thin but uniform mix of
flow and substrate particles (Figure 20i).

Interestingly, the maximum amplitude A and duration
twaves of the waves varied similarly with a and V to the
maximum depth hC and duration td of excavation, respec-
tively (Figures 19, 20j and 20k). The maximum amplitude
of the erosion waves increased with a and V (Figure 20j).
For a = 0.7 and V = 1400 cm3, a wave barely emerged
behind the flow front and reached 3 particle diameters of
amplitude above the erodible bed. At the position from the
gate where waves reached their maximum amplitude, the
wave duration twaves increased with the volume V but did
not significantly increase with aspect ratio a (Figure 20k).
In all the experiments, twaves was less than 10% of the flow
duration.

At the free surface of the flow, other waves were also ob-
served above the subjacent ”black” waves (Figures 20b to
20h). Such instabilities also appeared at the free surface of
flows over a rigid bed (i.e. for hi = 0 mm), but were of lower
amplitude than those observed for flows on an erodible bed.
Such surface waves may be explained by small irregularities
in the roughness of the channel base.

6. Discussion

6.1. Critical Slope Angle and Different Flow Regimes

We have quantified the influence of several initial and
boundary conditions on the dynamics and deposition pro-
cesses of granular flows over slope angles smaller than the
friction angle of the material involved. The flow dynam-
ics change when the slope angle exceeds a critical value θc
between 10◦ to 16◦, both over rigid and erodible beds. Re-
gardless of the experimental combinations, this critical angle
is more or less the same, i.e. about half the repose angle of
the material.

When θ < θc, the flow front deceleration lasts as long as
the acceleration phase (Figures 7c, 8a and 8b). The deposit
front has a flat, low angle termination (Figures 6a to 6c).
The maximum velocity is scaled by

√
gh0 cos θ (Figure 7d)

and the well established scaling law (6) relating the runout
distance rf to the initial column height h0 is satisfied (Fig-
ures 4a and 4b). This is characteristic of the spreading phase
observed for granular collapse over horizontal beds. In this
regime (i.e. θ < θc), the runout distance is not affected by
the presence of an erodible bed (Figure 9). Only the profile
of the deposit changes slightly (Figure 14c).

On the other hand, when the slope angle θ exceeds the
critical angle θc, a final regime of slow propagation develops
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after the deceleration phase (Figures 7a to 7c). In that case,
the scaling laws (e.g. equation (6)) derived from granular
collapse experiments over horizontal planes are no longer
valid: the normalized runout distance rf/r0 depends both
on the aspect ratio a and on the volume V (Figures 3b and
3c). This has never before been reported. The character-
istics of the slow propagation phase are similar to those of
steady uniform flows [Pouliquen, 1999a]: a steep front (Fig-
ures 6d to 6f, 14a and 14b), a slow and quasi-uniform ve-
locity (Vf < 50 cm s−1, Figures 7a to 7c, 15a, 15b and 15e)
and a quasi-uniform thickness along the plane (h ≃ 1 to 2
cm, Figures 5 and 13). Furthermore, when the slow prop-
agation phase is well developed and lasts longer than 1 s,
the mean velocity of this slow phase and the mean thickness
of the flow behind the front roughly satisfy the Pouliquen
[1999a] flow law (7) (Figure 16a). This slow propagation
phase tending to steady uniform flow is observed at slope
angles smaller than the minimum angle for which steady
uniform flows are observed, θ1 = 24.4◦, when using the clas-
sical method for generating these flows (i.e. a constant sup-
ply upstream, Figures 1a and 2). The initial and bound-
ary conditions that lead to this slow propagation phase at
slope angles smaller than θ1 provide additional energy to
the system making it possible to compensate the energy lost
by friction. The deposit of these quasi-uniform flows is al-
most parallel to the plane (Figures 5 and 13) as observed
for steady-uniform flows when the supply is cut. Interest-
ingly, if we plot the maximum value of the thickness of this
deposit (Figures 16b and 16c), it follows a curve close to
that of hs(θ), obtained after steady uniform flows (Figure
2). This suggests that the initial and boundary conditions
can significantly expand the parameter space where steady
uniform flows can develop. Furthermore, it suggests that
the friction law proposed by Pouliquen [1999a]:

µ(u, h) = µ1 + (µ2 − µ1) exp(−
hs

Ld
) (8)

could be extended to smaller slopes where it would in-
volve smaller values of the friction coefficient µ1 because
µ1 = tan θ1. In equation (8), µ1 = tan θ1 and µ2 = tan θ2
are the friction coefficients that correspond respectively to
the minimum and maximum slope angles θ1 and θ2 for which
steady uniform flows are observed and L is a characteristic
dimensionless thickness [Pouliquen, 1999a]. This could have
a strong implication for natural flows where very large vol-
umes can be involved that may significantly decrease µ1.
Note that very small effective friction is observed in natural
flows, especially for large volumes [Pirulli and Mangeney,
2008; Lucas et al., 2011; Mangeney et al., 2012].

6.2. Crucial Role of the Duration of the Slow

Propagation Phase

Several initial and boundary conditions contribute to ini-
tiate or increase the duration of the slow propagation phase
(i.e. the quasi-uniform flows) by adding energy to the sys-
tem to overcome friction. This additional energy can come
from: (i) increasing the slope angle which increases the driv-
ing force due to gravity; (ii) increasing the volume at con-
stant aspect ratio or decreasing the aspect ratio at a con-
stant volume because the supply is maintained longer at a
roughly constant rate due to the relatively longer reservoir;
(iii) entrainment of material from the erodible bed that in-
creases the kinetic energy of the flowing mass [Mangeney et
al., 2007a]; (iv) enlarging the channel width which reduces
the effective friction due to the walls [Jop et al., 2005]; or (v)
increasing the angle of the gate inclination with respect to
the slope that gives a higher initial driving force due to the
pressure gradient [see equation (2) of Mangeney-Castelnau
et al., 2003]. Note that the influence of the aspect ratio is
less obvious than that of the volume (Figures 9c, 15f, 19a

and 19c). In our experiments, the range of aspect ratios
investigated may not be large enough to observe a signifi-
cant variation of the dynamics, as opposed to the volume
range. We however chose to use small values of aspect ratio
(a ≤ 1.24) to be consistent with many geophysical flows.

The increase in the runout distance over an erodible bed
compared to that over a rigid bed occurs during the deceler-
ation phase or during the slow propagation phase (Figures
15c and 15d). The percentage of the increase as a function
of the rigid bed runout distance varies depending on the
initial conditions (Figures 9e and 9f). As these two regimes
are fundamentally different, varying the experimental condi-
tions will affect their respective duration in a different way
over rigid and erodible beds. For example, increasing the
aspect ratio increases the duration of the deceleration phase
but the slow propagation phase lasts longer for smaller as-
pect ratios (e.g. Figure 7a). It is therefore difficult to in-
terpret the variation of the increase in the runout distance
in percentage of the runout distance over the rigid bed for
different initial conditions (Figures 9e and 9f). It is clear,
however, that the increase of runout distance increases with
the slow phase duration over an erodible bed (for θ = 22◦,
compare Figures 9c and 9d and Figures 15f and 15g). As a
result the duration of the slow propagation phase seems to
play a key role in the efficiency of erosion processes.

6.3. Erosion Processes and Runout Distance

The durations of excavation of the erodible bed and of
the erosion waves increase with the duration of the slow
propagation phase (compare Figures 15f and 15g and Fig-
ures 19c, 19d and 20k). On the other hand, the maximum
depth of excavation is not affected by the duration of the
slow propagation phase. Instead, the depth of excavation
appears to be controlled by the maximum front velocity be-
cause both increase with the initial column height and slope
angle (Figures 7d, 19a and 19b). Initial column shape has
a variable effect on excavation depth: although the maxi-
mum front velocity for a similar volume and slope angle is
the same for both the trapezoidal and rectangular column
shapes, the excavation depth is smaller for the trapezoidal
column (Figures 15e and 18b).

As a result, the capacity of a flow to increase its runout
distance over an erodible bed does not depend on the maxi-
mum excavation depth. For instance, the bed is more deeply
excavated during acceleration (Figure 17b) but this phase
does not contribute to the runout distance increase (Figures
15c and 15d). During flow initiation and the acceleration
phase, the granular flow is driven mainly by a longitudinal
thickness gradient that tends to push the mass down the
slope, as reported by Mangeney-Castelnau et al. [2003]. At
the beginning of the collapse, thickness gradients are only
slightly affected by the presence of an erodible bed, which
is much thinner than the flow. The acceleration phase and
maximum front velocity are consequently little affected ei-
ther (Figures 7, 15a, 15b and 15e), although a large amount
of bed erosion occurs during this phase.

An important feature of granular collapse dynamics is the
transition from vertical fall to slope-parallel movement. At
the beginning, a significant portion of the potential energy is
transformed into kinetic energy corresponding to motion in
a direction perpendicular to the slope while later on almost
all the kinetic energy is related to motion in the downslope
direction. For flows over an erodible bed, when the front
is accelerating, the kinetic energy of motion in the direc-
tion perpendicular to the slope is absorbed by the bed. The
erodible bed is therefore affected deeply but for a very short
time (Figure 17b). On the other hand, as the flow front de-
celerates, if most of the flow kinetic energy is related to mo-
tion in the downslope direction, the grains from the erodible
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bed that are put into motion will more easily join the flow.
Furthermore, during the deceleration and slow propagation
phases, even if the bed is excavated to a shallower depth, the
excavation occurs over a longer time (Figures 17c to 17e).
Therefore, the increase in the runout distance compared to
that over the rigid bed depends on the ability of the flow to
transfer its energy to the erodible bed through motion in the
direction of propagation over a long time and consequently
over a large distance.

Depending on the initial geometry and volume of the col-
umn, the energy in the system will be dissipated differently.
For example, for θ = 22◦ and a given volume V = 5600 cm3,
the runout distance of a flow of relatively high initial aspect
ratio (a = 1.24) is not considerably higher over an erodi-
ble bed than over a rigid bed and may even be smaller in
certain cases (Figure 10a). This lack of difference in runout
distance occurs because the flow loses the majority of its
vertical-motion kinetic energy by reworking the bed in the
direction perpendicular to the slope rather than in the prop-
agation direction. For this specific case, the resulting kinetic
energy of motion in the direction of propagation is signifi-
cantly reduced during the deceleration phase and the front
therefore moves slower over an erodible bed than over a rigid
bed (Figure 15c). In contrast, a flow with a small initial
aspect ratio excavates more of the bed in the propagation
direction than in the direction perpendicular to the slope
(when the aspect ratio decreases the excavation depth is
smaller but not the excavation duration, Figures 19a and
19c). For a given aspect ratio (a = 0.7), when the volume
increases, the flow loses more perpendicular-motion kinetic
energy to deeper bed excavation (Figure 19b). However, the
volume increase also promotes a longer duration of the slow
propagation phase owing to the increase in the mass supply
(Figure 15g). Hence, the increase in the runout distance is
greater for higher volumes (Figures 9d).

6.4. Influence of Bed Compaction and Channel

Width on Runout Distance and Erosion

The degree of bed compaction has an influence on the
dynamics of granular flows and on the efficiency of the ero-
sion processes, especially for slope angles close to the repose
angle of the granular material (typically θ = 22◦). In gen-
eral, more energy is needed to remove particles from a more
compact erodible bed than from a loosely-packed substrate.
As a consequence, the more compact bed is excavated over
a shallower depth and for a shorter time (Figure 19) and the
runout distance over it is smaller (Figure 10).

For granular flows in a channel, the horizontal velocity
profile perpendicular to the flow direction resembles a so-
called Couette profile since the side of the flow is slowed
by sidewall friction [GDR Midi, 2004; Jop et al., 2005]. Be-
cause the excavation depth appears to be related to the front
velocity, it is assumed to be greater in the middle of the
channel than along the sidewalls. Hence, when measuring
internal features and velocity profiles on one side of the flow
(through the transparent channel wall), one must be aware
that they may be not representative of those in the middle
of the channel. Observations by Rowley et al. [2011] sup-
port this assumption. In their experiments on granular flows
over an erodible bed, the waves preserved in the deposits are
developed to a far greater extent away from the sidewalls.

Over the rigid bed, runout distances are about 10%
smaller in a narrow (10-cm-wide) channel than in a wider
(20-cm-wide) channel for experiments with slope angles
θ = 0◦ and θ = 10◦ and about 20% smaller for θ = 22◦

(Figures 4c). For flows over an erodible bed, the increase
in the runout distance is smaller when the channel width
is narrow. At θ = 22◦, a 30% deviation is observed in the
runout distance and a 10% deviation is reported in maxi-
mum erosion depth between the narrow and wider channels
(Figures 9b and 18b). Indeed, as illustrated in Figure 2,

hs(θ) is larger for W = 10 cm than for W = 20 cm, so that
a layer of a given thickness hi is more stable for W = 10
cm than for W = 20 cm, making it harder to put the grains
in motion. As a consequence, our results are dependent on
channel width. In channelized experiments of column col-
lapse onto a horizontal plane, Balmforth and Kerswell [2005]
and Lacaze et al. [2008] also showed that runout distance
varies with channel width. Therefore, the channel width
should be considered in numerical models of confined 2D
flows [e.g. Lacaze et al., 2008].

6.5. Erosion Waves

The presence of waves in the flow head suggests that a
significant portion of the energy exchanges between the flow
and the underlying bed takes place within this zone (Figures
20b to 20h). However, the influence of these waves on the
erosion efficiency remains unclear.

The waves observed at the bed interface may be compared
to a Kelvin-Helmholtz instability, where two fluids of differ-
ent velocities and densities are superimposed. The erodible
bed is an initially static and compacted granular medium
whereas the avalanche is a relatively less dense moving mass.
Assuming that these two layers can be considered as two flu-
ids, the Kelvin-Helmholtz conditions are fulfilled. In fluids,
a small perturbation at the interface is amplified by the local
velocity difference and a corresponding local decrease of the
flow pressure. If the velocity of the superjacent fluid is suffi-
cient, the amplified perturbation transforms into a breaking
wave. Rowley et al. [2011] developed a criterion that gives
the minimum velocity difference v1 − v2 between the upper
(1) and lower (2) layers for a given wavelength λ and gran-
ular concentrations Φ1 and Φ2 for the growth of so-called
Kelvin-Helmholtz instabilities:

v1 − v2 ≥
√

gλ

2π
(
Φ2

Φ1

− Φ1

Φ2

) (9)

where g is acceleration due to gravity. In our specific case,
for θ = 22◦, V = 12600 cm3 and a = 0.7 (Figures 20a to 20i),
the wavelength λ is about 7 cm. In dense granular flows such
as those studied here, the flow bulk density does not change
significantly over the flow thickness [see e.g. GDR Midi,
2004]. Taking Φ1 ≃ 6400 grains per cm3 ≃ 0.8Φ2, we have

Φ2/Φ1 − Φ1/Φ2 < 1. Thus

√

gλ
2π

(Φ2/Φ1 − Φ1/Φ2) ≤ 0.4

m s−1. For a velocity difference equal to the maximum
front velocity, v1 − v2 ≃ 2 m s−1. Therefore, according
to the growth criterion (9), Kelvin-Helmholtz instabilities
may have developed in our experiments. The analogy with
Kelvin-Helmholtz, however, is not straightforward because
a well-developed instability requires a velocity difference to
be maintained between the two fluids. In our experiments,
the velocity difference is sufficiently high only at the flow
head. The waves are consequently observed only in the flow
head and only when the front velocity exceeds 0.4 m s−1

(Figures 20b to 20h). Note, however, that we observed an
increase in wave amplitude with front velocity as slope angle
and column aspect ratio and volume increased (Figure 20j).

In experiments on dense granular flows moving over an
erodible bed, Rowley et al. [2011] and Dufresne [2012] also
observed waves in the bed that were generated by entrain-
ment of the substrate. In both these studies, the waves were
preserved in the deposits unlike in our experiments where
the erosion waves disappeared as the flow front decelerated
(Figure 20i). As their experimental setup ends on a subhor-
izontal surface, the flow may stop rapidly which could freeze
the waves within the deposit. Thus, if such waves exist in
natural gravitational flows at the substrate interface, they
may or may not be visible in natural deposits.
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7. Conclusions

We carried out experiments on dry granular flows gener-
ated by column collapse onto an inclined channel, both over
a rigid and an erodible bed. For several slope angles ranging
from 0◦ to 24◦, we varied the initial conditions (column as-
pect ratio, volume and shape) and the boundary conditions
(presence of an erodible bed, bed thickness and degree of
compaction, channel width) systematically to quantify the
changes in granular flow dynamics and deposition processes
for increasing slope angles. A number of conclusions can be
drawn from our results.

1. For slope angles below a critical angle θc, runout dis-
tances of flows over a rigid bed match scaling laws previously
proposed in the literature: runout distance depends only on
the initial column height. In contrast, those scaling laws are
no longer valid when the slope angle is increased beyond θc.
This seems to be related to the development of a slow prop-
agation phase for θ > θc, tending to quasi-steady uniform
flows with characteristics similar to those observed at higher
slopes by Pouliquen [1999a].

2. For flows over an erodible bed, the runout distance in-
creases by up to about 50% compared to that over a rigid
bed when the slope angle is greater than θc. When the
bed thickness is increased, the runout distance increases lin-
early or first increases and tends towards a maximum be-
fore ultimately decreasing, depending on the degree of bed
compaction. Furthermore, the runout distance increase is
greater and the bed excavation is deeper and lasts longer as
bed compaction decreases.

3. Bed excavation is not uniform along the flow propaga-
tion and depends on flow front velocity. As the flow accel-
erates, the erodible bed is deeply excavated but only very
briefly. In contrast, as the flow decelerates, bed excavation
is shallower but lasts longer. The increase in runout dis-
tance over an erodible bed is greater when the duration of
bed excavation increases, but no relation was found with the
maximum excavation depth.

4. The increase in the runout distance caused by an erodi-
ble bed is not due only to an increase in the flowing mass by
bed entrainment. It is clearly also related to the develop-
ment of a slow propagation phase after front deceleration for
slope angles greater than θc. The duration of the slow prop-
agation phase has a crucial impact on flow dynamics and
deposition: as the duration of the slow propagation phase
increases, bed excavation lasts longer and the flow propa-
gates further.

5. The following parameters were shown to increase the
duration of the slow propagation phase: (i) increasing slope
angle, column volume, inclination of the column with re-
spect to the slope and channel width; (ii) diminishing col-
umn aspect ratio; and (iii) addition of an erodible bed. The
duration of the slow propagation phase is, however, inde-
pendent of the maximum flow front velocity and, for flows
over an erodible bed, of the maximum depth of excavation
within the bed.

Further work is required to investigate the link between
erosion/deposition efficiency and the properties of the gran-
ular material, including cohesion, shape, size of the grains,
etc. Although the configuration studied here is very sim-
ple, our experimental results provide a new and better un-
derstanding of the processes that control the dynamics and
deposition of geophysical granular flows. A major challenge
for numerical models is to take these parameters into ac-
count and reproduce the complex phenomena at the inter-
face between the flow and the substrate. Our results pro-
vide quantitative data that can be used to constrain such
models. Some of the data, such as runout distance and ex-
cavation depth, are, however, biased by the sidewall effects
in our experimental setup. Therefore, further investigations
and numerical simulations should focus on unconstrained 3D
granular flows.
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Figure 1. (a) Experimental design used to build an
erodible bed over an inclined rough channel base (based
on the Pouliquen [1999a] method for the study of steady
uniform flows). (b) Morphometric and control param-
eters measured in the experiments and characteristics
of a column with trapezoidal cross section. The initial
granular column is contained in a reservoir of dimensions
h0 and r0 (light gray). The erodible bed initially cov-
ering the rough channel base has a thickness hi (dark
gray). The deposit length rf and final maximum height
hf (gray) were measured after each experiment [adapted
from Mangeney et al., 2010].

Table 1. Characteristics of the glass beads used in the experiments.

diameter density repose angle avalanche angle
d (µm) ρb (kg m−3) θr (◦) θa (◦)

600-800 2500 23±0.5 25±0.5

steady uniform flows

h
s
 (

m
m

)

0
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θ  (°)

22 23 24 25 26 27 28 29 30

Figure 2. Thickness of the deposit hs left on the rough
base of inclination θ by a steady uniform flow after the
mass supply from the reservoir has been cut (crosses, for
θ > 24◦). The maximum values of the mean thickness
hdmean of the deposits by the quasi-uniform flows from
granular column collapses for θ = 22◦ and θ = 23◦ are
also shown (empty diamonds, see Figures 16b and 16c
and text in section 5.3.2). The red curve represents the
best fit to the data for steady uniform flows and the green
line is the best fit to all the data, using equation (1)
proposed by Mangeney et al. [2010] for both fits. The
black dashed line is the best fit to the data of Mangeney
et al. [2010] with the 10-cm-wide channel.
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Table 2. Characteristics of the different experimentsa.

Experiments E-W E’-W Et-W E22-K E24-K E-G

Angle θ (◦) 0 ≤ θ ≤ 24 0 ≤ θ ≤ 22 0 ≤ θ ≤ 24 22 24.5 0 ≤ θ ≤ 24
Aspect ratio a for V = 5600 cm3 0.3 ≤ a ≤ 1.24 0.7 0.7 0.45 ≤ a ≤ 1.24 0.7 0.3 ≤ a ≤ 1.24

Volume V (cm3) for a = 0.7 1400 ≤ V ≤ 12600 6300 12600 1400 ≤ V ≤ 12600 12600 1400 ≤ V ≤ 12600
Bed thickness hi (mm) 0 ≤ hi ≤ 25 0 ≤ hi ≤ 5 0 ≤ hi ≤ 5 7 4 0 ≤ hi ≤ 20
Compaction method P, B, V B B B B P, B, V

a Experiments E’ were carried out in a 10-cm-wide inclined channel. Experiments Et were conducted with a trapezoidal column. The letters W, K and G indicate the type of beads used

for the experiments: respectively white, black (colored) and gray (mixture of white and black beads). The last line shows the method used to create the erodible bed: Pouliquen [1999a]

(P), board (B) or vibrated deposit (V ) method.
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changes the volume V

changes the aspect ratio a

Figure 3. (a) Runout distance rf as a function of the
initial column height h0 for a = 0.7 and different volumes
V (circles), for V = 5600 cm3 and different aspect ratios a
(squares) and for different slope angles θ (colors) over the
20-cm-wide rigid bed. Normalized runout distance rf/r0
as a function of (b) the volume V for a = 0.7 and (c) the
aspect ratio a for V = 5600 cm3. (d) and (e) Results of
Hogg [2007] for columns of Ballotini beads of diameter
100 µm released over a 30-cm-wide inclined rigid bed for
various slope angles θ, a fixed aspect ratio a = 0.5 or
a = 1 and different volumes V ranging from 540 cm3 to
6750 cm3. Error bars (not represented) are ∆(rf ) = ±2
cm and ∆(rf/r0) = ±0.2.
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Figure 4. Normalized runout distance rf/h0 as a func-
tion of the slope angle θ and 1/(tan δ − tan θ) over the
rigid bed of a 20-cm-wide channel for: (a) V = 5600 cm3

and different aspect ratios a; (b) a = 0.7 and different
volumes V . (c) Trapezoidal column collapse (diamond,
a = 0.7 and V = 12600 cm3) and flows in a 10-cm-wide
channel (star, h0 = 21 cm, r0 = 30 cm, a = 0.7 and
V = 21 × 30 × 10 = 6300 cm3). Some results of Hogg
[2007] are presented in (d) for column collapses of vari-
ous volumes V ranging from 540 cm3 to 6750 cm3 and
aspect ratios a = 0.5 and a = 1, over a 30-cm-wide in-
clined rigid bed with Ballotini beads of diameter 100 µm
and 350 µm and PVC powder of diameter 140 µm. The
black dashed line represents the theoretical trend (equa-
tion (6) with k = 0.5). The vertical dotted line represents
an approximated position of the slope angle above which
the scaling law (6) is no longer valid (see text). Error
bars (not represented) are: ∆(1/(tan δ − tan θ)) = ±0.1
and ∆(rf/h0) = ±0.2.
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Figure 5. Different colored curves from top to bottom in
each graph are thickness profiles h(x, t) at different times
t of the granular mass as a function of the downslope
position x along the plane for flows over an inclined rigid
bed with θ = 22◦. (a)-(d) V = 5600 cm3 and different
aspect ratios a; (e)-(g) a = 0.7 and different volumes V
and (h) a trapezoidal column with V = 12600 cm3 and
a = 0.7.
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Figure 6. Final normalized thickness profile of the de-
posit h/hf as a function of the normalized downslope
position x/rf over a rigid bed. The slope angle is θ = 0◦

for (a)-(c) and θ = 22◦ for (d)-(f). (a) and (d) are for
V = 5600 cm3 and different aspect ratios a. (b) and (e)
are for a = 0.7 and different volumes V . (c) and (f) are
for a = 0.7, V = 12600 cm3 and the rectangular and
trapezoidal columns.



X - 18 FARIN ET AL.: GRANULAR FLOW DYNAMICS, DEPOSITION AND EROSION PROCESSES

 = 22° - V = 5600 cm3(a)

Slow propagation phaseV
f 
(c

m
 s

-1
)

0

50

100

150

200

Time (s)

0 0.5 1.0 1.5 2.0 2.5 3.0

a = 0.3

a = 0.45
a = 0.7

a = 1.24

h0 = 14 cm

V
fm

 (
c
m

 s
-1

)

170

180

r0 (cm) 

10 20 30

(b)
 = 22° - a = 0.7

V
f 
(c

m
 s

-1
)

0

50

100

150

200

250

Time (s)

0 0.5 1.0 1.5 2.0 2.5 3.0

V = 1400 cm3

V = 3150 cm3

V = 5600 cm3

V = 8750 cm3

V = 12600 cm3

Acceleration Deceleration Slow propagation

  = 0°

  = 10°
  = 16°

  = 19°

  = 22°

  = 22°, trapezoid

a = 0.7 - V = 12600 cm3(c)

V
f 
(c

m
 s

-1
)

0

50

100

150

200

250

Time (s)

0 0.5 1.0 1.5 2.0 2.5 3.0

 = 22°

(d) y = 7.2 + 1.5x

rigid bed

hi = 7d

V
fm

 (
c
m

 s
-1

)

150

200

gh0 cos  (cm s-1)

80 100 120 140

Figure 7. Flow front velocity Vf (t) as a function of time,
over the rigid bed, for (a) θ = 22◦, V = 5600 cm3 and
different column aspect ratios a; (b) θ = 22◦, a = 0.7 and
different column volumes V ; (c) a = 0.7, V = 12600 cm3

and different slope angles θ and for θ = 22◦ with a rect-
angular and a trapezoidal column. The line is dashed
during the slow propagation phase. In (c), the verti-
cal dash-dotted lines separate the different phases of flow
propagation for θ = 22◦. (d) shows the maximum front
velocity Vfm as a function of

√
gh0 cos θ for θ = 22◦ and

for h0 = 14 cm and different column initial lengths r0.
Some values of Vfm for flows over an erodible bed of thick-
ness hi = 7 bead diameters d, for θ = 22◦, are given for
comparison (red dots). Data in (d) are fitted by a linear
function (dashed line). Error bars (not represented) are
∆Vf (t) = 10 cm s−1 and ∆t = 0.06 s.
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Figure 8. Position of the flow front from the gate xf

as a function of time, over the rigid bed and for different
aspect ratios a and volumes V . (a) and (b) θ = 0◦; (c)
and (d) θ = 22◦. The line is dashed during the slow prop-
agation phase. Error bars (not represented) are ∆xf = 3
cm and ∆t = 0.06 s.
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Figure 9. Normalized runout distance rf/h0 as a func-
tion of the erodible bed thickness hi, scaled by the mean
bead diameter d = 700 µm, for different slope angles
(different colors). (a) V = 5600 cm3 and different as-
pect ratios a, (b) a = 0.7 and different volumes V , with
the trapezoidal column (empty diamond, a = 0.7 and
V = 12600 cm3) and for flows on the 10-cm-wide chan-
nel (green star, h0 = 21 cm, r0 = 30 cm, a = 0.7 and
V = 21 × 30 × 10 = 6300 cm3). The erodible beds in
these experiments were built with the board method (see
section 2). The differences of runout distances compared
to flow over the rigid bed were calculated for the ex-
periments in (a) and (b). ∆rfmax is the maximum of
these differences versus all bed thicknesses hi and is rep-
resented, for different slope angles θ, (c), (d) in absolute
value and (e), (f) in % of the runout distance over the
rigid bed rf (hi = 0) as a function of (c), (e) the aspect
ratio a for V = 5600 cm3 and (d), (f) the volume V for
a = 0.7.
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Figure 10. (a) and (b) are plots of the normalized
runout distance rf/h0 as a function of the erodible bed
thickness hi, scaled by the mean bead diameter d = 700
µm, for θ = 22◦. Different methods leading to an increas-
ing degree of compaction were used to build the erodible
bed: the Pouliquen, board and bed vibration methods
(see section 2). (a) is for V = 5600 cm3 and different as-
pect ratios a and (b) is for a = 0.7 and different volumes
V .
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Figure 11. Schematic portrayal of the interface (blue)
between the flowing (red cross-hatched) and static (dark
grey) parts in the erodible bed of thickness hi at the
head of the avalanche (light grey). The position hF/S

of the static/flowing interface is measured versus time at
a fixed distance x from the gate. hC is the maximum
depth of excavation, i.e. the deepest position reached by
the flowing/static interface hF/S.
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Figure 12. Illustration of the principle of the experi-
ments conducted to test the potential effect of the ad-
dition of mass to the flow caused by bed erosion. The
maximum volume Vm of the initially static bed put into
motion by the flow is estimated (1) and added to the ini-
tial volume Vi for an experiment over the rigid bed (2).
rf1 and rf2 are the runout distances obtained in the first
and second experiments, respectively.
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Table 3. Characteristics of the Experiments described in Figure 12 a.

θ a Vi hi hC Vm rf1 rf2
rf1−rf2

rf1

(◦) - (cm3) (mm) (mm) (cm3) (cm) (cm) (%)

22 0.7 1400 10 2 256 64 54 15.6
23 0.7 1400 10 3 492 82 70 14.6
22 0.7 5600 3 2 552 138 126 8.7
22 0.7 5600 5 3 852 142 136 4.2
22 0.7 12600 1 1 420 210 196 7.0
22 1 2000 8 3 504 84 78 7.1
22 1 2000 10 3 510 85 78 8.2

a The runout distance rf1 of flows of volume Vi over an erodible bed of thickness hi, with an estimated excavated volume Vm = hCr

with a greater volume V = Vi + Vm over the rigid bed, for different slope angles θ, aspect ratios a and volumes V .
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Figure 13. Different colored curves from top to bottom
in each graph are thickness profiles h(x, t) at different
times t of the granular mass as a function of the downs-
lope position x for flows over an erodible bed of thickness
hi = 7d with θ = 22◦. (a)-(d) V = 5600 cm3 and differ-
ent aspect ratios a; (f)-(g) a = 0.7 and different volumes
V and (h) trapezoidal column with V = 12600 cm3 and
a = 0.7.
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Figure 14. Final normalized thickness profiles of the
deposit h/hf as a function of the normalized downslope
position x/rf , over an erodible bed of thickness hi = 7d
for: (a) θ = 22◦, V = 5600 cm3 and different aspect
ratios a; (b) θ = 22◦, a = 0.7 and different volumes V ;
(c) θ = 0◦, a = 0.7 and V = 12600 cm3 with the deposit
over a rigid bed; (d) θ = 22◦, a = 0.7 and V = 12600
cm3 with both the rectangular and trapezoidal columns.
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Figure 15. Flow front velocity Vf (t) as a function of
time over an erodible bed of thickness hi = 7d with θ =
22◦ for: (a) V = 5600 cm3 and different aspect ratios a;
(b) a = 0.7 and different volumes V . (c) and (d) show
the difference of the flow front position with respect to
that over the rigid bed ∆xf normalized by the runout
distance difference ∆rf as a function of time, for the flows
in (a) and (b) respectively. (e) shows Vf (t) for θ = 22◦,
a = 0.7, V = 12600 cm3 and different bed thicknesses
hi, with a rectangular and a trapezoidal column. The
line is dashed during the slow propagation phase. (f)-(i)
Duration of the slow propagation phase tspp of flows over
the rigid bed (black line) and over the erodible bed (red
line), (f), (g) in absolute value and (h), (i) in % of the
total duration of propagation tf for (f), (h) V = 5600
cm3 and different aspect ratio a and (g), (i) a = 0.7 and
different volumes V and also for the trapezoidal column
with V = 12600 cm3 and a = 0.7 (diamonds). Error bars
(not represented) are ∆Vf (t) = 10 cm s−1, ∆t = 0.06 s
and ∆tspp = 0.1 s.
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Figure 16. (a) Froude number Fr = Vfmean/
√
ghmean

as a function of βhmean/hs(θ) for flows during their slow
propagation phase, for θ = 22◦, over the rigid bed (full
symbol) and over an erodible bed of thickness hi = 7d
(open symbol). Vfmean is the mean front velocity during
the slow propagation phase, hmean the mean flow thick-
ness behind the flow front, hs(θ) the thickness of the
deposit for θ = 22◦ and β = 0.136 an empirical parame-
ter. The black dashed line represents the scaling law (7).
(b) and (c) Mean thickness of the deposit hdmean where
the deposit is quasi-parallel to the slope as a function of
the duration of the slow propagation phase tspp for (b)
θ = 22◦ and (c) θ = 23◦. For experiments where the
slow propagation phase was not apparent (a) and when
the flow did not form a deposit and left the channel ((b)
and (c)), the corresponding data point is not shown. Er-
ror bars are ∆Vfmean = 10 cm s−1, ∆hmean = 0.2 cm,
∆hdmean = 0.2 cm and ∆tspp = 0.1 s.
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Figure 17. θ = 23◦, V = 5600 cm3 and a = 0.3 over an
erodible bed of thickness hi ≃ 7d, where d = 700 µm is
the mean bead diameter. (a) is a plot of the front velocity
Vf as a function of the distance x from the gate. (b)-(f)
show the vertical position of the flowing/static interface
hF/S within the erodible bed as a function of time t− tx.
tx is the instant when the flow front reaches the position
x (red arrows). (g)-(k) show the internal velocity profile
u(y) on one side of the flow as a function of the eleva-
tion y above the channel base, at the same distances x
from the gate, when hF/S reaches its maximum hC . The
dashed horizontal line represents the initial surface of the
erodible bed. Error bars are ∆Vf = 10 cm s−1, ∆x = 3
cm, ∆hF/S/d = 1, ∆t = 0.03 s, ∆y = d and ∆u(y) ≃ 100

mm s−1.
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Figure 18. (a), (b) Maximum depth of excavation hC

(scaled by the mean bead diameter d = 700 µm) and (c),
(d) duration of excavation td, as a function of the bed
thickness hi (board method), for θ = 19◦ (green) and
θ = 22◦ (blue). (a) and (c) are for V = 5600 cm3 and
different aspect ratios a. (b) and (d) are for a = 0.7 and
different volumes V . For θ = 22◦, data for flows obtained
with the trapezoidal column (black diamond, dashed line,
a = 0.7 and V = 12600 cm3) and on the 10-cm-wide
channel (green star, h0 = 21 cm, r0 = 30 cm, a = 0.7
and V = 21× 30× 10 = 6300 cm3) are also represented.
(e) Runout distance difference compared to that over the
rigid bed ∆rf as a function of the duration of excavation
td for different slopes angles θ (different colors) and for
the experiments in (a)-(d) (same symbols). Error bars
(not represented) for hC , hi are ±1d, ∆td = 0.1 s and
∆(∆rf ) = 4 cm.
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Figure 19. (a), (b) Maximum value of the maxi-
mum depth hC for every bed thicknesses hi investigated:
max(hC(hi))/d as a function of (a) the aspect ratio a for
V = 5600 cm3 and (b) the volume V for a = 0.7, for dif-
ferent slope angles θ (different colors) and for θ = 22◦ and
the different methods of bed compaction: board (blue),
Pouliquen (×) and vibration (+). (c), (d) Maximum
value of td over the thicknesses hi: max(td(hi)) for dif-
ferent slope angles θ and different compaction methods
(c) for V = 5600 cm3 and different aspect ratios a and
(d) for a = 0.7 and different volumes V . Error bars
(not represented) for max(hC(hi)) and hi are ±1d and ∆
max(td(hi)) = 0.1 s.
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Figure 20. (a)-(i) Snapshots for values of x between
70 cm and 95 cm from the gate used to spread a volume
V = 12600 cm3 of white beads over an erodible bed of
thickness hi = 5 mm made of black beads, for θ = 24.5◦

and a = 0.7. In (a), the top of the erodible bed is de-
limited by the white line. Vertical arrows indicate the
propagation of three successive waves appearing at the
interface between the erodible bed and the flow. (i) is
a snapshot of the final deposit in which white and black
beads are mixed within a thickness of 2.0 ± 0.5 mm at
the interface of the erodible bed (black) and the flow de-
posit (white). (j) shows the maximum amplitude A of
the erosion waves, scaled by the mean bead diameter d,
for θ = 22◦ (solid square) and for different aspect ratios
a and volumes V . (k) is a plot of the duration twaves of
waves passing at the position of measurement for different
values of a and V . The maximum amplitude and dura-
tion of waves for the experiment with θ = 24.5◦, a = 0.7
and V = 12600 cm3 is also represented (open squares).
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Table 4. Notations

A Maximum amplitude of the erosion waves
d Mean diameter of the glass beads d = 700 µm
g Gravitational acceleration

h0, r0, a, V Initial height, downslope length, aspect ratio (i.e. h0/r0) and volume
of the released granular column

hC Maximum value of hF/S(t)
hF/S(t) Position (perpendicular to the slope) of the interface between the flowing

and static grains
hi Thickness of the erodible bed

hmean, hdmean Mean flow thickness behind the flow front and mean thickness of the deposit
where the deposit is quasi-parallel to the slope

hs(θ) Thickness of the bed formed at slope angle θ (see section 2)
h(x, t), u(x, t) Thickness and velocity profiles of the flowing granular mass

in the downslope direction

h̃(x, t), ũ(x, t) Normalized thickness and velocity profiles of the flowing granular mass
in the downslope direction

K Ratio of vertical to horizontal stress
k Empirical parameter in scaling laws

l, m Length and mass of the slice of erodible bed removed
to measure its volume fraction (see section 2)

rf , hf Runout distance and final maximum thickness of the deposit
rf1, rf2 Runout distance obtained after the collapse of a granular column

of volume Vi over an erodible bed and of volume Vi + Vm over the rigid bed
td Duration of bed excavation
tf Time at which the front stops

tspp Duration of the slow propagation phase
twaves Duration of the erosion waves
u(y) Profile of downslope velocity measured on one side of the flow

v1, v2 Velocities of the upper (1) and lower (2) fluids
in the Kelvin-Helmholtz instabilities

Vf (t), Vfm Front velocity and maximum front velocity
Vfmean Mean front velocity for flows during their slow propagation phase

Vm Maximum volume entrained by a given flow over an erodible bed
W Width between channel sidewalls

x, y Coordinates in the downslope direction
and in the direction perpendicular to the slope

xf Front position in the downslope direction
β Empirical parameter equal to 0.136 for glass beads
δ Empirical friction angle in scaling laws

∆rf , ∆rfmax Runout distance difference obtained over an erodible bed
compared to the case over a rigid bed and maximum value of this difference over the bed thicknesses hi

∆xf (t) Difference of front position at instant t over an erodible bed
compared to that over the rigid bed

ǫ Dimensionless parameter defined by ǫ = (tan δ − tan θ)/a
θ Slope angle
θi Slope angle related to the friction coefficient µi = tan θi
θc Critical slope angle separating two different dynamic regimes

θr, θa, θrb Repose angle and avalanche angle of the glass beads
and repose angle of the colored glass beads

λ Erosion wave wavelength
µ Friction coefficient

µ1, µ2, L Parameters in equation (8)
ν, νPouliquen, νboard, νvib Solid volume fraction and mean solid volume fractions

of erodible beds built with the Pouliquen, board and vibration methods
ρ, ρb Density of the granular flow and of a glass bead

τc Characteristic time
Φ1, Φ2 Granular concentrations of the upper (1) and lower (2) fluids

in the Kelvin-Helmholtz instabilities


