The decay of turbulence and particles in turbulence

Gregory P. Bewley Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany

http://en.wikipedia.org/wiki/File:Flow_separation.jpg

$$y \quad u_x(\mathbf{x}, t_0) = U_0 \sin\left(\frac{y}{\lambda_y}\right)$$
$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u}$$
$$\partial_t u_x = -\frac{\nu}{\lambda_y^2} u_x$$
$$u_x = U_0 \frac{e^{-\nu t/\lambda_y^2}}{e^{-\nu t/\lambda_y^2}} \sin\left(\frac{y}{\lambda_y}\right)$$

Von Kármán and Howarth, Kolmogorov, Dryden, Batchelor, Saffman, etc...

http://captainkimo.com/wp-content/uploads/ 2012/01/Smoke-Stack-from-Sugar-Factory-in-Belle-Glade-Florida.jpg

http://ict-aeolus.eu/images/horns_rev.jpg

Objectives

http://www.stanford.edu/group/cits/images/ integration/stage35wake_bg.jpg

Provide inspiration for models.

Make the next generation of design tools possible.

Statistical analysis of idealized flows (e.g. Kolmogorov)

Dynamical mechanisms

Find useful parameterizations.

The Reynolds number:

its influence on the decay rate its influence on scaling

Anisotropy:

systematics in the large-scale measures of turbulence

Unsteadiness: its influence on scaling coefficients

Understand specific mechanisms.

Reconnection:

arises from collisions between vortices and enables dissipation

The sling effect:

produces collisions cloud droplets that enable rain

RATE OF DECAY

GRID TURBULENCE

http://fdrc.iit.edu/research/images/GridTurbulenceRe2.jpg

1. $r,t \Rightarrow r/L(t)$

2. Re = const

 $K \sim t^{-1}$

Dryden (1941) *Q. Appl. Maths* Speziale and Bernard (1992) *J. Fluid Mech.*

Bewley et al. (2007) Phys. Fluids

$$\begin{split} f(r,t) &= \frac{\langle \, u(\vec{x},t) \, u(\vec{x}+\vec{r},t) \, \rangle}{u'^2} \\ f(r,t) &\sim r^{-2} \quad \Leftrightarrow \quad K \sim t^{-6/5} \qquad \text{(Saffman)} \\ f(r,t) &\sim r^{-6} \quad \Leftrightarrow \quad K \sim t^{-10/7} \qquad \text{(Kolmogorov)} \end{split}$$

e.g. Davidson (2011) Phys. Fluids

Is it possible to imprint desired long-range correlations?

e.g. Speziale and Bernard (1992) J. Fluid Mech.

THE VARIABLE DENSITY TURBULENCE TUNNEL (VDTT)

Bewley, Nobach, Sinhuber, Xu, Bodenschatz (2013) in prep.

$$Re = \frac{\rho UL}{\mu}$$

Air and **Sulfur Hexafluoride** gas (SF₆)

$$U \le 5 \, m/s \qquad \begin{array}{l} \eta \ge 20 \, \mu m \\ \tau_{\eta} \ge 2 \, ms \end{array}$$

LOOKING UPSTREAM

~18 meters

THE NSTAP

30 – 60 micron HOT WIRE PROBES ON TRAVERSE Vallikivi et al. (2011) *Expt. Fluids*

Princeton University

assuming a low Reynolds number exponent of -1.2

CONTROL OF LARGE-SCALE STRUCTURE

-for high Reynolds numbers

e.g. Makita (1991) Fluid. Dyn. Res.

-for control

e.g. Poorte and Biesheuvel (2002) *JFM* Cekli, Tipton and van de Water (2010) *PRL*

We (*uniquely*) have: -independent paddles -feedback-control of angle

Mechanisms

rain formation

Onsager, L. Proc. Intern. Conf. Theor. Phys., Kyoto and Tokyo, Science Council of Japan, Tokyo, 877-880 (1953).

In normal liquid helium, $T > T_{\lambda}$

In superfluid liquid helium, T < T_{λ}

Bewley, Lathrop, Sreenivasan (2006) Nature

RECONNECTION

1 mm

Bewley et al. (2007) *PNAS*

Bewley (2009) Cryogenics

DROPLET DYNAMICS

...what happens when droplet inertia first starts to become important?

particle in a turbulent flow:

$$St = \frac{\tau_p}{\tau_\eta}$$

 au_p droplet response time au_η turbulence time scale

 $St \gg 1$

 $St \ll 1$

For intermediate St...

PARTICLE FIELD IS "SOFT"

Maxey (1987) JFM

BUT ALSO INTERPENETRATING...

Monchaux, Bourgoin, Cartellier (2012) Int. J. Multiphase Flow

PARTICLE FIELD IS INTERPENETRATING

Falkovich, Fouxon and Stepanov (2002) *Nature*

Wilkinson and Mehlig (2005) EPL

CAUSTICS

Berry (1980) Les Houches, Session XXXV gradient of (simplified) droplet-momentum equation:

droplet velocity

 \mathbf{V}

can dominate when

causes unbounded growth when

Falkovich, Fouxon and Stepanov (2002) Nature

Salazar and Collins (2012) JFM

$$\frac{d\mathbf{v}}{dt} = \frac{1}{\tau_p}(\mathbf{u} - \mathbf{v}) + \mathbf{g} + \text{history} + \text{Basset} + \text{added mass} + \dots$$

Maxey and Riley (1983) Phys. Fluids

History suppresses caustics:

Daitche and Tél (2011) PRL

CRYSTAL (SOCCER) BALL

1 m Acrylic ball32 Independent, randomamplitude jets

 $R_{\lambda} \approx 200$

Chang, Bewley and Bodenschatz (2012) *J. Fluid Mech.*

isotropic turbulence

 $R_{\lambda} \approx 200$

Hwang and Eaton (2004) Exp. Fluids

Control of anisotropy

Bewley, Chang and Bodenschatz (2012) Phys. Fluids

Spinning Disk Droplet Generator.

60,000 rpm spinning disk.

Droplets ejected from disk edge

40% ethanol – 60% water

two classes of particles: Class 1: 9μm mean diameter Class 2: 18μm mean diameter

15 KHz > 30 / τ_n frame rate

2 mm³ view volume

3D droplet tracking

DROPLET IMAGES

St = 0.5

$$\delta \mathbf{v}(\mathbf{r}, t) = \mathbf{v}(\mathbf{x} + \mathbf{r}, t) - \mathbf{v}(\mathbf{x}, t)$$
$$\mathbf{r} = (r, 0, 0)$$

How do the gradients evolve?

$$\frac{d\sigma}{dt} = \frac{1}{\tau_p}(s-\sigma) - \sigma^2$$

measure:

$$Q(t) \equiv \frac{\delta \mathbf{v}(\mathbf{r}, t) \cdot \mathbf{\hat{r}}(t_1)}{\mathbf{r}(t) \cdot \mathbf{\hat{r}}(t_1)} \approx \sigma_{11} \qquad \text{for small t-t}_1, \text{ small r}$$

$$\frac{d\sigma_{11}}{dt} = \frac{dQ}{dt} - \sigma_{12}\sigma_{21} - \sigma_{13}\sigma_{31} \approx \frac{dQ}{dt} \approx \frac{Q(t_2) - Q(t_1)}{t_2 - t_1}$$

conditional average:

$$\tau_p^2 \frac{d\sigma_0}{dt} = \tau_p \langle s_{11} | \sigma_0 \rangle - \tau_p \sigma_0 - \tau_p^2 \sigma_0^2 - 2\tau_p^2 \langle \sigma_{12} \sigma_{21} | \sigma_0 \rangle$$

check cross terms later...

IN THIS FRAMEWORK:

NUMBER OF COLLISIONS WITHIN POCKETS

CHARACTERISTIC VOLUME OF A POCKET

A MORE STANDARD APPROACH:

NUMBER OF COLLISIONS

$n_c \ [\#/m^3 s] \sim g(d) \int \delta v \ P(\delta v | d) \ d\delta v$ Radial distribution function

RELATIVE VELOCITY DISTRIBUTION

Sundaram and Collins (1997) JFM

(simplified) droplet-momentum equation:

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$$

 ${f u}$ fluid velocity

IS THIS MODEL ADEQUATE?

For the extreme events:

$$P(\delta v | r) = r^{\xi_{\infty}} \phi(\delta v)$$

Gustavsson, Mehlig (2011) Phys. Rev. E

Saw, Bewley, Bodenschatz, Ray, Homann, Bec in preparation

(simplified) droplet-momentum equation:

SETTLING VELOCITY MODIFICATION

Biased path: Enhances

Unbiased path: Can reduce

Wang, Maxey (1993) JFM

Nielsen (1993) J. Sediment. Petrol.

Parameter space

 W_0

 u_{η}

Still air settling velocity:

 $W_0 = \tau_p g$

+ DNS- Experiments

Particles

- $d \approx 15 150 \mu m$, sub-Kolmogorov-scale water droplets
- at different Reynolds numbers
- Volume fraction $\phi_V \approx 10^{-6}$

Single-camera 2D Particle tracking

Ultrasonic droplet generator

Davila, Hunt (2001) JFM; Ghosh et al. (2005) Proc. Roy. Soc. A

Good, Ireland, Bewley, Bodenschatz, Collins, Warhaft in preparation

Good, Ireland, Bewley, Bodenschatz, Collins, Warhaft in preparation

REVIEW OF PARTICLE-TURBULENCE WORK

The sling effect happens!

Can we model the onset of rain through the sling effect?

Linear drag alone does not quantitatively predict extreme events.

Turbulence both *enhances* and *retards* gravitational settling!

Acknowledgements

U. Schminke *et al.*

E. Bodenschatz	Soccer balls I&II
<i>Active grid</i> E. Cekli F. Köhler	K. Chang EW. Saw PY. Lim
J. Kassel F. Lachaussée	D. Ivanov
H. Grajewski Wind tunnel	H. Nobach T. Schneider
M. Sinhuber H. Eckelmann	J. Volimer H. Xu
	А. Корр
Funding	A. Kubitzek
Max Planck Gesellschaft	O. Kurre
Volkswagen Stiftung	A. Renner