
Simulations
and Optimal

Erosion

Birnir

Erosion

Numerical
Methods

Optimal
Transport

Entropy and
Weak
Solutions

Mountains
and Ridges

Statistical
Theory

Simulations of Fluvial Landscapes and
Optimal Transport

Björn Birnir1

Center for Complex and Nonlinear Science

and

Department of Mathematics

UC Santa Barbara

1Email: birnir@math.ucsb.edu



Simulations
and Optimal

Erosion

Birnir

Erosion

Numerical
Methods

Optimal
Transport

Entropy and
Weak
Solutions

Mountains
and Ridges

Statistical
Theory

Collaborators

Julie Rowlett
Hausdorff Center for Mathematics

Villa Maria Endenicher Allee 62
D-53115 Bonn Germany
Email: rowlett@math.uni-bonn.de
David Cattan

Dept. of Math. Univ. of California
Santa Barbara, CA 93106



Simulations
and Optimal

Erosion

Birnir

Erosion

Numerical
Methods

Optimal
Transport

Entropy and
Weak
Solutions

Mountains
and Ridges

Statistical
Theory

Collaborators

Terrence Smith

Department of Geography,
Univ. of California,
Santa Barbara, CA 93106



Simulations
and Optimal

Erosion

Birnir

Erosion

Numerical
Methods

Optimal
Transport

Entropy and
Weak
Solutions

Mountains
and Ridges

Statistical
Theory

Outline

1 Erosion

2 Numerical Methods

3 Optimal Transport

4 Entropy and Weak Solutions

5 Mountains and Ridges

6 Statistical Theory



Simulations
and Optimal

Erosion

Birnir

Erosion

Numerical
Methods

Optimal
Transport

Entropy and
Weak
Solutions

Mountains
and Ridges

Statistical
Theory

Outline

1 Erosion

2 Numerical Methods

3 Optimal Transport

4 Entropy and Weak Solutions

5 Mountains and Ridges

6 Statistical Theory



Simulations
and Optimal

Erosion

Birnir

Erosion

Numerical
Methods

Optimal
Transport

Entropy and
Weak
Solutions

Mountains
and Ridges

Statistical
Theory

What should a mathematical model of erosion
produce?

The emergence of channelized drainage patterns from
unchanneled surfaces
The development of relatively stable surfaces
characterized by branching patterns of ridges and
valleys
The decline of the surfaces and the dissipation of the
forms
The variability of landforms under varying
environmental conditions
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A Typical Surface Simulated by David

Figure: A Pattern of Ridges and Valleys



Simulations
and Optimal

Erosion

Birnir

Erosion

Numerical
Methods

Optimal
Transport

Entropy and
Weak
Solutions

Mountains
and Ridges

Statistical
Theory

The B.-Bretherton-Smith Equations

Let H = z + h be the height of the free water surface,
where z is the height of the land surface and h is the
water depth.

η2∂h
∂t

= ∇ ·
[
h3/2 |∇H|1/2u

]
+ R, (1)

∂H
∂t

= ∇ ·
[
h10/3|∇H|3u

]
− δh3/2|∇H|. (2)

u = ∇H
|∇H| is the unit normal down the gradient of the

water surface, R is the rainfall rate and η is small.
The second term in Equation (2) models erosion and is
inspired by Kramer and Marder 1992.
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Initial Ridge

Starting with a a linear ridge extending uniformly in the
lateral (x)-direction and defined over a rectangular domain
of length L and width W ,

D = {(x , y) ∈ R2|0 ≤ x ≤ L, 0 ≤ y ≤W},

with initial conditions

h(x , y ,0) = d(y), d(0) = ho, d(W ) = 0,
H(x , y ,0) = cy + ho, 0 ≤ y ≤W (3)

and boundary conditions

h(x ,W , t) = 0,
H(x ,0, t) = h0 = h(x ,0, t) (4)
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Initial Surface

Figure: The initial water surface
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Instabilities

Linearize the PDEs around the initial surface we get two
instabilities:

If the PDE (2) has no erosion term, the dispersion
relation becomes

ω =
5
3

d
2
3 c

1
2 [(2− d)k2

1 + (
1
2
− 3d)k2

2 ],

where d is small. It shows that all the spatial
frequencies are unstable and that the highest
frequencies grow the fastest.
If the erosion term is included we get an additional
instability

ω =
3
2
δ − k2

1 .

This instability gives rise to river channels.
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Numerical Methods

If the smallest frequencies grow the fastest, we have a
real problem numerically.
In nature there is a natural (lower) cutoff, when the
scale of the grain size is reached.
Nonlinearities also saturate the exponential growth of
the instabilities.
How does one capture this numerically?
Answer: Implicit methods work, explicit methods do not
capture the small scales.
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Crank-Nickolson/Upwind versus Predictor
Corrector Numerical Schemes

The predictor-corrector is an explicit scheme
At time n + 1

2 predictor step (backward difference), at
time n + 1

2 corrector step (forward difference).
At time n + 1 predictor step (forward difference), at time
n + 1 corrector step (backward difference).
Upwind (water flow) is explicit, but the Crank-Nickolson
(sediment flow) is an implicit scheme

Hn+1
ij − Hn

ij

∆t
=

C1

2

δx

(hn+1
ij

)B
Hn+1

ij,x

((
Hn+1

ij,x

)2
+
(

Hn+1
ij,y

)2
) C

2

 + δy

{(
hn+1

ij

)B
Hn+1

ij,y

((
Hn+1

ij,x

)2
+

(
Hn+1

ij,y

)2
) C

2


 +

C1

2

δx

(hn
ij

)B
Hn

ij,x

((
Hn

ij,x

)2
+
(

Hn
ij,y

)2
) C

2

 + δy

{(
hn

ij

)B
Hn

ij,y

((
Hn

ij,x

)2
+
(

Hn
ij,y

)2
) C

2


 + O(∆x2

,∆t2) (5)
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Comparison of the Numerical Scheme

Artificial viscosity must be added to the
Predictor-Corrector scheme to keep it stable.
Small viscosity is build into the Crank-Nickolson/Upwind
scheme in a very controlled way. It is small and
decreases with the discretization size.
Both schemes capture the large scale features of the
landscape. They are the same when, water depth, land
elevation, water and sediment flow are averaged at
fixed (y ) upslope cross sections.
The number of ridges and the number of valleys are the
same and the half-width of the valleys.
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Scaling of the Variogram

The variogram

Vf (x, t) = < |f (x + y, t)− f (y, t)|2 >
1
2 (6)

is the root mean square of the elevation differences as
a function of distances of separation (or lag) | x |.
This function, known as the variogram, height-height
correlation function, roughness function, or width
function, characterizes the roughness of the surface.
The variogram is just the second structure function
from turbulence.
Crank-Nickolson/Upwind produces the scaling
exponents 1/2 for h and 3/4 for H, see B., Smith and
Merchant (2001).
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Hack’s Law

The length ` of the main river in a river basin scales
with the area A of the river basin as ` ∼ A0.58

Figure: The Amazon River Basin

Predictor-Corrector produces the same scaling
exponent, dependent on the viscosity, for h and H.
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The computation of Hack’s exponent

A ∼ `D

The avalanche dimension is D = 1 + χ, ` being the
length of the main river. Then the width of the basin in
the direction perpendicular to the main river, is `χ,
χ = 3/4 = 0.75, whereas along the main river it is `,
hence

` ∼ A
1

1+χ

≈ A0.58
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Optimal Transport
In 1781 Monge asked the question:

What is the least expensive way to transport mounds of
dirt in order to fill holes?
If one has a collection of mounds of dirt and one also
has several holes to fill, and if the amount of dirt in the
mounds is precisely the amount needed to fill the holes,
how should one move the dirt from the mounds to the
holes with the least amount of work?
As a geometer, Monge recognized that the direction of
transport should be along straight lines that would be
orthogonal to a family of surfaces.
Erosion is nature’s process of “moving dirt”, thus not
unreasonable to expect connections between erosion
and optimal transport.
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Model Equations with a Steady Water Depth

Consider the equations on Ω = T1 × [0,W ],

∇ ·
[
h3/2 |∇H|1/2u

]
+ R = 0, (7)

∂H
∂t

= ∇ ·
[
h10/3|∇H|3u

]
− δh3/2|∇H|. (8)

Assume that (7) has a solution; the equlibrium water depth
that satisfies the conditions: h ≥ 0, on Ω, h > 0, a.e. on Ω,
and

sup
(

1
|B|

∫
B

h10/3dx
)(

1
|B|

∫
B

h−10/9dx
)3

<∞. (9)

|B| is the volume of the ball B, and the supremum is taken
over all balls B ⊂ R2. This condition implies that h10/3 is in
Muckenhoupt’s A4 class. (For example, h ∼ xα, α < 9

10 ).
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The existence and uniqueness of entropy
solutions

The condition (9) means that smooth functions are dense in
the weighted Sobolev space W 1,4

h with norm

‖u‖W 1,4
h

=

(∫
Ω
|u|4 + |∇u|4h10/3)dx

)1/4

,

see F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo
(2011). Consider the domain, B. and J. Rowlett (2013),

Ω = {(x , y) ∈ R2| 0 ≤ x ≤W , 0 ≤ y ≤ L}

Theorem (1)

Let h be a given function satisfying the assumptions (9)
above. Then for any H|t=0 = H0 ∈W 1,1(Ω), and T > 0,
there exists unique entropy solution to the erosion PDE (8)
for the water surface H, with the same boundary conditions
as above.
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Entropy Solutions

Consider W 1,1(Ω) :=
{

u ∈ L1(Ω) such that∇u ∈ L1(Ω)
}

Definition

A function H ∈W 1,1(0,T ; L1(Ω)) is an entropy solution of
(8) on (0,T ) with initial data H0 ∈W 1,1(Ω), if H(0) = H0,
and for all k > 0, and

Tk (H(t , x , y)) := sup{inf{H(t , x , y),k},−k} ∈W 1,4
h (Ω),∫

Ω
(H ′(t)Tk (H(t)− φ) + h10/3|∇H(t)|2∇H(t) (10)

×∇(Tk (H(t)− φ)))dx ≤ 0;

where the last equation holds for all φ ∈W 1,4
h (Ω) ∩ L∞(Ω).

Tk (H) is equal to H if the value of H lies in [−k , k ], and
otherwise is equal to −k if H < −k or k if H > k .
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Weak Solutions

We do not know if weak solutions of (8) exist. However, with
one more assumption: the equilibrium water depth h is
continuous on Ω/h−1(0) and h−1(0) consists of a finite
union of piecewise smooth curves. The following holds:

Lemma

Let H be a weak solution of (8), then the L2 norm |H|2 and
the energy functional K (H) =

∫
Ω
∇H|4

4 h10/3dx are both
decreasing functions of t ∈ [0,T ].

Theorem (2)

Weak solutions are unique.

Lemma

Weak solutions are also entropy solutions.
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The Optimal Transport Problem

Let µ and ν be non-negative Radon measures with
(respectively) compact supports U,V ⊂ Rn satisfying,∫

U
dµ =

∫
V

dν. (11)

A map s : U → V pushes µ onto ν, and we write
s#(µ) = ν if s is Borel measurable and for any Borel set
E ⊂ V , ∫

s−1(E)
dµ =

∫
E

dν. (12)

Associated to the optimal transport problem is a cost
function which is typically given by

C(s) :=

∫
U

c(x,s(x))dµ(x), c(x,y) :=
|x− y|p

p
,

(13)



Simulations
and Optimal

Erosion

Birnir

Erosion

Numerical
Methods

Optimal
Transport

Entropy and
Weak
Solutions

Mountains
and Ridges

Statistical
Theory

What do we want to know?

A general optimal transport problem is

Does there exist s : U → V which minimizes C
with s#(µ) = ν?

If it exists, such a map s is called an “optimal mass
reallocation plan," or an “optimal mass transport plan.”
In the context of erosion, we pose the following natural
question

Is sediment “optimally transported” according to (8)?

Some immediate difficulties arise. Monge’s problem
does not depend on time; erosion does. Moreover, the
mass of the sediment is not preserved over time since it
flows out of the region Ω.
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An optimal transport problem for the sediment
flow

Define the measures µ and ν with support on Ω,

dµ := −∂H
∂t

(x, t)dx, dν := −Fdx (14)

F := F̄Ω/|Ω|,

F̄Ω :=

∫
Ω

∂H
∂t

dx =

∫ L

0
∇H|∇H|2h10/3(W , y , t) · n̂dy < 0

(15)
and |Ω| denotes the area of Ω. This follows L. C. Evans
(1999).
We make the assumption that the landsurface is
eroding:

∂H
∂t
≤ 0 a. e. on Ω. (16)

Under these assumptions, both the measures are
non-negative.
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The Sediment Flux is Optimally Transported

Theorem (4)

Assume that for a given function h satisfying (7) and
H0 ∈W 1,4, H is a weak solution of (8) initial data H0.
Assume that at t ∈ (0,T ) (15) and (16) are satisfied, and let
µ and ν be the measures supported on Ω and defined by
(14). Then, there exists an optimal mass reallocation plan
s : Ω→ Ω, which solves (14), and there exists a function u
so that s and u satisfy the equation

s(x)− x
|s(x)− x|

= −∇u. (17)
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When Erosion implements Optimal Transport

Corollary

If ∇H is defined a.e. on Ω and satisfies

∇× (∇H/|∇H|) = 0, (18)

at time t, at a.e. points where ∇H is defined and non-zero,
then at these points ∇u = ∇H

|∇H| . In this case, the sediment
flow implements the optimal transport.

Does this ever happen? For what kind of surfaces is (18)
satisfied?
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Mountains and Ridges

It turns out that there exist weak solutions satisfying the
condition ∇× (∇H/|∇H|) = 0. These are called mountains
and ridges. H(x , y , t) = Ho(x , y)T (t), T (t) = (a− 2λt)−1/2.

Figure: A Mountain and a Ridge using separable solutions.

ho(x , y) = h1(H1/c
1 + a(x − x0) + b(y − y0))d

Ho(x , y) = (H1/c
1 + a(x − x0) + b(y − y0))c

(19)
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Collapsing Hills

Figure: The collapsing hill

These collapsing hills violate (18) and the scaling.
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The Half-Width and Number of Valleys

Using Hack’s law, one can work out the half-width

` ∼ 0.40(Hmax)4/3,

and the number of the valleys

n ∼ L
0.80(Hmax)4/3

for mature long-lived landscape, where Hmax is the
maximum height of the mountain (upper boundary) and
L is the length of the mountain range
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Stochastic Theory by Linearization

Figure: Sections for adolescent and mature surfaces
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The Scalings of a Landsurface

By linearizing around young, adolescent and mature
surfaces, we get a stochastic theory of erosion
There are actually three ranges in "Hack’s law" that
have been identified, see B., Hernández and Smith
(2007):
Scaling exponent 1/2, Channelization
Scaling exponent 2/3, Evolution of hillsides, see Welsh,
B. and Bertozzi (2007).
Scaling of Shocks, Bores, Hydraulic Jumps
River turbulence has scaling exponent 3/4, Hack’s law
This is the largest range by far !
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The Statistical Theory is Determined by the
Invariant Measure

The linearized PDEs driven by noise allows one to
compute an invariant measure
This measure determines all the deterministic statistical
quantities, variogram, structure functions PDFs, etc.
These quantities along with the mountains and ridges
are the only deterministic quantities that exist
The noise is generic, white in time and close to white in
space
Is is possible the the land surface evolutions is driven
by the turbulent noise in the water flow?
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Theorem (5)

In one dimension the Navier-Stokes equation (with
pressure) driven by generic noise, has a unique solution if U
is sufficiently large. Moreover, there exists a unique
measure left invariant by the flow. The flow is ergodic and
strongly mixing and the second structure function
(variogram) scales with roughness exponent χ = 3/4 in the
statistically stationary state

S2(x) ∼ |x |3/2

All the statistical properties of the solution are determined
by the invariant measure.

B. Turbulent Rivers (2007).
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Meanderings of the Mississippi
B., K. Mertens, V. Putkaradze, P. Vorobieff (2008)
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The Meandering Exponent (in the lab) is
Determined by Turbulent Flow, S(k) ∼ k−5/2
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Conclusions

All the scaling laws of landsurface theory and river
meanderings are analogous to the roughness
coefficient of turbulent flow in rivers
The theory gives an invariant measure that determines
all the statistics of landsurface evolution
This only holds up to the upper cut-off of the scaling
where tectonic forces etc. must be taken into account
The theory applies to mature surfaces, for young and
channelizing surfaces the theory still exists but the
scaling laws are different
The mature surfaces possesses a scaling
corresponding to Hölder continues functions of order
3/4. This scaling produces Hack’s law
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Speculation

Kantorovich devised a notion of distance between
probability measures.
This distance is the optimal transport cost from one
measure to the other; it is called
Kantorovich-Rubinstein or Wasserstein distance, see F.
Otto (2001).
The invariant measure of the surface evolution should
move towards the measure of the optimal surface in
time, if we measure the distance in the
Kantorovich-Rubinstein or Wasserstein metric.
One should also be able to understand the surface
itself as a measure and see it move towards the optimal
measure in time, using a similar metric.
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