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Sediment transport

U C Sediment transport modes:

- suspended-load
particles are transported
without contact with the
bed.

- bed-load
particles are transported with
intermittent or permanent
contact with the bed

Suspended-load is dominated by fluid particle turbulent interactions

Bed-load is dominated by particle-particle interactions: collisions and friction



Dimensionless numbers

Reynolds numbers:

fluid flow: Re =
UH

νf

particulate: Rep =
wsdp

νf

U some mean flow velocity
H typical fluid flow thickness
νf kinematic viscosity
ws settling velocity
dp particle size

τbedf fluid bed shear stress

u∗ friction velocity
ρf fluid density
ρs particle density
∆ρ = ρs − ρf density difference

Shields number: θ =
τ bedf

∆ρgdp
=

ρfu
2
∗

∆ρgdp

θ < θc ⇒ No bed-load

Suspension number:
ws
u∗

ws
u∗

> 1⇒ No suspended-load

Stokes number: St =
τp
τf

where τf : fluid timescale and τp: particle relaxation time scale
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Observations: What happens when the Shields number is increased?


ThresholdBedload.mp4
Media File (video/mp4)



Observations: What happens when the Shields number is increased?

!!! θ ≈ 0.085 !!!


Ripples.mp4
Media File (video/mp4)



Observations: What happens when the Shields number is increased?


SheetflowShort.mp4
Media File (video/mp4)



Fluid-particulate modelling approaches

Idea 1: Eulerian - Lagrangian approach

→ Fluid flow around each particle solved explicitely
⇒ Resultant force and torque exerted on each particle

→ Particle-particle interactions explicitely solved

→ Limited to small number of particles

”DNS at the particle scale” (≥2000’s)

Idea 2: Eulerian - Lagrangian approach

→ Fluid velocity spatially averaged Vaverage >> Vparticle
⇒ Ffluid→particle = f(φ,−→ur) empirical correlations

→ Particle-particle interactions explicitely solved

”Discrete Particle Modelling” (≥1990’s)

Idea 3: Eulerian - Eulerian approach

→ Fluid and particles velocities spatially averaged
Vaverage >> Vparticle

⇒ Ffluid→particle = f(φ,−→ur) empirical correlations

→ No limitation on the number of particles

”Two-fluid model”


LitFluidise.mp4
Media File (video/mp4)
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2 arguments for an Eulerian approach

How much particles of 1 mm diameter in a cube of 10 cm side filled at
60%?

With


dp = 10−3 m

L = 10−1 m

φ = 0.6

we get



Vt = L3 = 10−3 m3

vp =
π

6
d
3
p ≈ 5.10

−10
m

3

Np =
φVt

vp
≈ 10

6
particles

−→ Impossible to solve all the fluid scales and all the particles motion in
dense systems. There is a need for some upscaling !

The solution of the Lagrangian model would provide more detailed
information than it is usually needed. Indeed, a knowledge of the average
values of the velocity of the fluid, the velocities and angular velocities of
the particles, and the fluid pressure, over some appropriately small region
in the neighbourhood of each point [...], is usually all that is required.

Jackson (1997)

⇒ Eulerian - Eulerian approach (Idea 3)
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Two-phase ”two-fluid” equations

Continuity equations

∂ε

∂t
+
−→
∇ .
(
ε
−→
uf
)

= 0
∂φ

∂t
+
−→
∇.
(
φ
−→
up
)

= 0 φ+ ε = 1

Momentum equations

ρf

[
∂ε
−→
uf

∂t
+
−→
∇.
(
ε
−→
uf ⊗

−→
uf
)]

= −
−→
∇pf +

−→
∇ .
(
τf
)
− n

−→
f + ερf

−→g

ρp

[
∂φ
−→
up

∂t
+
−→
∇ .
(
φ
−→
up ⊗

−→
up
)]

︸ ︷︷ ︸
Inertia

= −
−→
∇pp +

−→
∇ .
(
τp
)

︸ ︷︷ ︸
Stresses

+ n
−→
f︸︷︷︸

Interaction

+ φρp
−→g︸ ︷︷ ︸

Gravity

Closure issue: relate the fluid and particulate phase stress tensors σf = −pfI + τf ,

σp = −ppI + τp and the interaction term n
−→
f to the average variables ε,φ,

−→
uf ,
−→
up

Remark: The mixture is incompressible
−→
∇ .
(
φ
−→
up + ε

−→
uf
)

= 0


ε,φ : Volume fractions
−→
uf ,
−→
up : Average velocities

n
−→
f : Force fluid↔ particle



Closure for the particulate stress tensors : Particle-particle interactions

General stress-shear rate relationship σp = −ppI + ηp
(
−→
∇
−→
up +

−→
∇
−→
up
T
)

where pp and ηp depends on the physic at work

In very dilute suspension (φ ∈ [0.;≈ 10−3?]): σp ≈ 0

→ No contact between particles ⇒ no stress transmission

Intermediate concentration (φ ∈ [≈ 10−3?;≈ 0.55?]): σp 6= 0

→ Collisions between particles occurs ⇒ collisional stresses

⇒ pp = pp(φ,T p) and ηp = ηp(φ,T p) with T p is the ”granular temperature“

Haff (1983), Jenkins and Savage (1983), Lun et al. (1984), ...

Dense systems (φ ∈ [0.3;φmax]): σp 6= 0

→ Enduring contact between particles exists ⇒ Frictional and collisional stresses
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Dense granular rheology µ(I) (inertial regime)

Dimensional analysis

⇒ Inertial parameter: I =

∣∣γ̇p∣∣ dp√
pp/ρp

=
tmicro
tmacro

Frictional rheology: τp = µ(I) pp

→ GDR Midi (2004), Jop et al. (2006), Forterre

and Pouliquen (2008)

with µ(I) = µs +
µ2 − µs
I0
I

+ 1

with typical values for monodisperse beads:

µs = 0.38 ; µ2 = 0.65 ; I0 = 0.3

Simplified frictional rheology (Coulomb):
→ µ = µs = constant

Dilatancy law: φ(I) = φmax + (φmin − φmax) I

φmax = 0.6 ; φmin = 0.4

See Olivier Pouliquen’s talk during this workshop for details
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Dense granular rheology µ(Iv) (viscous regime)

Boyer et al. (2011)

If tviscousmicro =
ηf
pp

>> tinertialmicro =
d√

pp / ρp

Then control parameter: Iv =
ηf |γ̇|
pp

From pressure-imposed rheometry measurements:

µ(Iv) = µs +
µ2 − µs
I0/Iv + 1

+ Iv +
5

2
φmaxI

1/2
v

φ(Iv) =
φmax

1 + I
1/2
v

That can be recasted as follows:

µc(Iv) = µs +
µ2 − µs
I0/Iv + 1

ηe
ηf

= 1 +
5

2
φ

(
1− φ

φmax

)−1

with typical values for monodisperse beads in neutrally
buoyant conditions:

µs = 0.32 ; µ2 = 0.7 ; I0 = 0.005 ; φmax = 0.585



Tensorial formulation of the local rheology

For 3D configurations the granular media can be sheared in different directions.
Therefore a generalisation of the scalar constitutive laws to a tensorial formulation is
required:

σp = −pp I + τp,

where pp is the isotropic pressure and τp = µ(I) pp
γ̇p

‖ γ̇p ‖
is the shear stress tensor.

Hypothesis and consequence:

These relationships are based on the assumption that the shear stress tensor τp is

colinear to the shear rate tensor γ̇p.

One can define an effective viscosity such that: τp = ηpγ̇p

ηp =
µ(I) pp

‖ γ̇p ‖

Jop, Forterre and Pouliquen (2006)



Link with classical visco-plasticity

Bingham constitutive relationship
if ‖ τ ‖ ≤ τ0 then γ̇ = 0

else τ = ηb γ̇

with : ηb = η +
τ0

‖ γ̇ ‖

τo

‖ τ ‖

‖ γ̇ ‖

η

Coulomb rheology: µ(I) = µs

τp = µs p
p γ̇p

‖ γ̇p ‖
=⇒ ηp =

µs p
p

‖ γ̇p ‖

⇐⇒ Purely plastic material: η = 0 and τ0 = µs p
p
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Link with classical visco-plasticity

Bingham constitutive relationship
if ‖ τ ‖ ≤ τ0 then γ̇ = 0

telse τ = ηb γ̇

with : ηb = η +
τ0

‖ γ̇ ‖

τo

‖ τ ‖

‖ γ̇ ‖

η

µ(I) granular rheology: µ(I) = µs +
µ2 − µs
I0/I + 1

with I =
‖ γ̇p ‖
f(pp,...)

τp = µ(I) pp
γ̇

‖ γ̇p ‖
=⇒ ηp =

µs p
p

‖ γ̇p ‖
+

(µ2 − µs) pp

I0 f(pp,...)+ ‖ γ̇p ‖

⇐⇒ visco-plastic material η(γ̇p) =
(µ2 − µs) pp

I0f(pp,...)+ ‖ γ̇p ‖
and τ0 = µs p

p

→ non-conventional shear thinning rheology



Numerical methods for visco-plastic flows

Two main approaches:

Regularization methods

Multipliers methods → e.g. Augmented Lagrangian Method

[Dean, Glowinsky and Guidoboni, 2007]

Regularization: ηb = η +
τ0

‖ γ̇ ‖

Issue: ηb diverges when ‖ γ̇ ‖−→ 0

Simplest solution: viscosity regularization (Frigaard and Nouar, 2005)

i.e. ηb = η +
τ0

‖ γ̇ ‖ +λ
with λ small numerical parameter

Regularisation of the µ(I) rheology

ηpmc =

[
µs +

(µ2 − µs) ‖ γ̇p ‖

I0f(pp,...)+ ‖ γ̇p ‖

]
pp(

‖ γ̇p ‖2 +λ2
)1/2

see Chauchat and Medale (2010, 2013)
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This work has been done in collaboration with Pascale Aussillous, Elizabeth
Guazzelli, Marc Médale and Mickael Pailha at the IUSTI Lab in Marseille
(France).
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Experimental set-up

H = 6.5 cm

W = 3.5 cm

L = 100 cm

Laser 2000, 532 nm, 100 mW

digital camera (Basler Scout): 1392x1040 ; 20 fps

dye: Rhodamine 6G fluoresces at λ >555 nm

fluid tracers: Finger print powder (white dots)

Borosilicate: dp = 1.1mm ; ρp = 2230kg.m−3 ; ρf = 1060kg.m−3 ; ηf = 320 10−3Pa.s

PMMA: dp = 2.04mm ; ρp = 1190kg.m−3 ; ρf = 1070kg.m−3 ; ηf = 270 10−3Pa.s



Experiments: Index-matching technique

Laminar viscous regime: Re ∈ [0.2; 1.2]

Mobile dense granular medium φ ≈ 0.55 (constant)

⇒ Intense bed-load: θ >> θc with θ ∈ [0.2; 1.2] and θc = 0.12

Thickness of the layer > particle size


pmma2mm_15_mirror_low.mov
Media File (video/quicktime)



Bed interface tracking

Grey level Fluid bed interface as function of time

hf is deduced from a threshold criteria on the average grey level profile (over 10 frames)

hf (t) is measured every 5 s

Initial decrease of hf is due to dilatation of the granular layer



Velocity and concentration profiles

Green = Volume fraction (100 pix = 0.1)

Red = Particles velocity (110 pix = 2.5mm/s)

Blue = Fluid Velocity

No velocity slip between fluid and
particles

PIV : DPIVsoft (Meunier & Leweke 2003)



Particle velocity flux and flowing layer thickness

300 velocity profiles ⇒ 300 points

qv =

∫ hp

hc

usdz: particle velocity flux ⇒ Less uncertainty than particle flux

hm = hp − hc where hc is defined from a velocity threshold (0.09 mm/s)

Red = Borosilicate 1mm and Blue = PMMA 2mm
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Two-phase model for laminar bed-load regime

Continuity equations

∂ε

∂t
+
−→
∇.
(
ε
−→
uf
)

= 0
∂φ

∂t
+
−→
∇ .
(
φ
−→
up
)

= 0 ε+ φ = 1

Momentum equations

ρf

[
∂ε
−→
uf

∂t
+
−→
∇.
(
ε
−→
uf ⊗

−→
uf
)]

= −pfI +
−→
∇ .
(
τf
)
− n

−→
f + ερf

−→g

ρp

[
∂φ
−→
up

∂t
+
−→
∇.
(
φ
−→
up ⊗

−→
up
)]

︸ ︷︷ ︸
Inertia

= −ppI +
−→
∇.
(
τp
)

︸ ︷︷ ︸
Stresses

+ n
−→
f︸︷︷︸

Interaction

+ φρp
−→g︸ ︷︷ ︸

Gravity

Closures

Newtonian rheology for the fluid phase → Einstein correction (bed layer)

Granular rheology for the particle phase → Friction: µ(Iv) or Coulomb

Particle-fluid interaction → Darcy + Buoyancy

Ouriemi, Aussillous & Guazzelli J. Fluid Mech. 2009 (Part 1)


ε,φ : Volume fractions
−→
uf ,
−→
up : Average velocities

σf ,σp : Stress tensors

n
−→
f : Force fluid↔ particle



A simple calculation

Mixture momentum balance at steady state

τm(z) = τp(z) + τ f (z) = τ f (hp)−∂pf

∂x (hp − z)

τf(hp)

τp= µsp
p

z

hp

τ

∂pf

∂x
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Particle shear stress: Coulomb

τp ≤ µspp = µsφ0∆ρg(hp − z)

Fluid shear stress:

τf = ηe
∂uf

∂z

z

hp

hc

τ

τf(hp)

τp= µsp
p

τf(z)

um

∂pf

∂x

(Ouriemi et al., 2009)

Mixture velocity profile:

up ≈ uf =
(µφ0∆ρg+ ∂pf

∂x
)

ηe

(z−hc)2

2

Particle flux:

qp =
∆ρgh3f
ηf

[
φ0
6

ηf
ηe

(
hm
hf

)3 (
∂pf/∂x

∆ρg
+ µsφ0

)]



Three rheological laws tested

(i) Coulomb model: (Ouriemi et al.,2009)

Constant friction coefficient: µ = µs

Einstein viscosity: ηe = ηf (1 + 2.5 φ0) ≈ 2.4ηf

Constant volume fraction: φ = 0.55

(ii) Dense granular rheology:

Shear-rate-dependent friction coefficient µ(Iv) (e.g. Forterre & Pouliquen 2008)

Effective viscosity: ηe = ηfβ

Constant volume fraction: φ = 0.55

(iii) Dense granular rheology+variable volume fraction

Shear-rate-dependent friction coefficient µ(Iv)

Effective viscosity:
ηe
ηf

= 1 +
5

2
φ

(
1− φ

φmax

)−1

Volume fraction: φ(Iv) =
φmax

1 + I1/2

both are deduced from pressure-imposed rheological measurements of dense
suspensions of neutrally-buoyant spheres (Boyer et al., 2011)



Finite Element Model

Numerical model (M. Médale)

3D Navier-Stokes equations

Finite Element Method
Velocity: Quadratic elements
Pressure: Linear elements

Newton-Raphson algorithm

Rheology implementation and BC’s

Regularisation technique for the
frictional rheology

No-slip boundary conditions at the
walls

Chauchat & Médale (2010, 2013)
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Scaling laws

Two-phase model scaling:

L = hf and T =
η

∆ρghf

⇒ qf
∆ρgh3

f/η
good control parameter

Classic bed-load scaling:

control parameter: Shields number θ

Better collapse of the data with the
two-phase scaling

But still the Shields scaling can be
seen as appropriate
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Data model comparison: Particle flux and flowing layer thickness

–·– Coulomb 2D: µs = 0.32 and ηe/η = 2.4 (Einstein with φ = 0.55)

⇒ Best fit of the rheological parameter

– – Coulomb 2D: µs = 0.24 and ηe/η = 14 (least square fit)

—– Coulomb 3D: µs = 0.24 and ηe/η = 14 ⇒ 3D effects arise for qf ≥ 10−2

– – µ(I) 2D: µs = 0.24, µ2 = 0.39, I0 = 0.01 and ηe/η = 6.6 (least square fit)

—– µ(I) 3D: µs = 0.24, µ2 = 0.39, I0 = 0.01 and ηe/η = 6.6
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Data model comparison: Velocity profiles

–·– Coulomb 2D:
µs = 0.32 ; ηe/η = 2.4

– – Coulomb 2D:
µs = 0.24 ; ηe/η = 14

—– Coulomb 3D:
µs = 0.24 ; ηe/η = 14

– – µ(I) 2D:
µs = 0.24, µ2 = 0.39,
I0 = 0.01 and ηe/η = 6.6

—– µ(I) 3D:
µs = 0.24, µ2 = 0.39,
I0 = 0.01 and ηe/η = 6.6

Coulomb 2D µs = 0.32 ; ηe/η = 2.4
→ hm underestimated and U(z) overstimated ⇒ compensation on qv

Fitted Coulomb and µ(I) rheologies ⇒ Clear 3D effects for both
→ More refined µ(I) rheology has a much reasonable effective viscosity



Data model comparison: Dense granular rheology+variable volume fraction

Good order of magnitude but too stiff velocity profiles however φ is good (φ ≈ cst)

→ Non-buoyant rheology 6= Buoyant rheology

→ Validity of a continuum approach at the fluid-bed interface

→ Pore pressure effects



Conclusions: laminar bed-load

Experiments

No significant slip between fluid and particles

Volume fraction approximately constant (except at the bed interface)

Scaling: fluid height as length scale / Viscous timescale
→ Shields OK but not that good

Models

Coulomb → good prediction for qv but not for hm and U(z)

Fitted rheological parameters → good predictions and 3D effects recovered
→ µ(I) corresponds to more realistic effective viscosity

Boyer et al. (2011) rheological model (µ(I) and φ(I))
→ Good trend and order of magnitude but fails in predicting velocity profiles

⇒ Why original parameters do not fit: non-equilibrium experiments? rheology is different
for neutrally-buoyant and buoyant particles? Modelling a sharp interface as continuum?

⇒ Two-Phase continuum model having a frictional rheology is able to describe
intense bed-load transport in laminar shearing flows.

Accepted for publication in JFM: Aussillous, Chauchat, Pailha, Médale and Guazzelli
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Two-phase model for turbulent sheet-flow regime

z

x SBL

U

U, up 

Interface z=h
p

FL

Two layers:

Fluid Layer (FL)
−→ single fluid model
−→ passive scalar

Sediment Bed Layer (SBL)
−→ two-phase model

Unidirectional: uf = uf (z) and up = up(z)

Uniform:
∂

∂x
= 0

Steady:
∂

∂t
= 0 and wf = wp = 0

Revil-Baudard and Chauchat JGR (2013)



Two-phase model in the SBL

Continuity equations

∂ε

∂t
+
−→
∇.
(
ε
−→
uf
)

= 0
∂φ

∂t
+
−→
∇.
(
φ
−→
up
)

= 0 ε+ φ = 1

Momentum equations

ρf

[
∂ε
−→
uf

∂t
+
−→
∇.
(
ε
−→
uf ⊗

−→
uf
)]

= −
−→
∇pf +

−→
∇.
(
τf +Rf

)
− n

−→
f + ερf

−→g

ρp

[
∂φ
−→
up

∂t
+
−→
∇.
(
φ
−→
up ⊗

−→
up
)]

︸ ︷︷ ︸
Inertia

= −
−→
∇pp +

−→
∇ .
(
τp
)

︸ ︷︷ ︸
Stresses

+ n
−→
f︸︷︷︸

Interaction

+ φρp
−→g︸ ︷︷ ︸

Gravity

Newtonian rheology for the fluid phase (τf ) → Boyer et al. (2011)

Mixing length for the Reynolds stresses (Rf ) → Li and Sawamoto (1995)

Granular rheology for the particle phase (τp) → Friction: µ(I)

Particle-fluid interaction (−→nf ) → Drag (Dallavalle+R&Z) + Buoyancy

Concentration profile → Dilatancy φ(I) + Rouse (turbulent dispersion)


ε,φ : Volume fractions
−→
uf ,
−→
up : Average velocities

n
−→
f : Force fluid↔ particle



Two-phase equations

Global volume conservation: ε+ φ = 1

Vertical momentum equations:

0 = −dpf

dz
− nfz − ερfg cosβ 0 = −dpp

dz
+ nfz − φρpg cosβ

Archimede buoyancy force: nfz = −φ
dP f

dz

dpf

dz
= −ρfg cosβ

dpp

dz
= −φ(ρp − ρf )g cosβ

⇒ Hydrostatic pressure distribution for both phases
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Horizontal momentum equations

0 =
dRfxz

dz
+ ε

dτfxz
dz
− CD (U − up) + ε ρf g sinβ

0 =
dτpxz
dz

+ φ
dτfxz
dz

+ CD (U − up) + φ ρp g sinβ

where CD is given by: CD =
ρf φ

dp (1 − φ)3.1

(
0.3 (U − u

p
) + 18.3

ηf

ρf dp

)
Dallavalle (1943) + Richardson and Zaki (1954)

Fluid closures:

Effective viscous stresses: τfxz = ηe
dU

dz
where

ηe
ηf

= 1 + 2.5φ

(
1− φ

φmax

)−1

→ Boyer et al.(2011) (similar to Krieger-Dougherty’s effective viscosity)

Reynolds stresses: Rfxz = ηt
dU

dz
with ηt = ρf (1− φ) l2m

∣∣∣dU
dz

∣∣∣
and lm = κ

∫ z

0

φmax − φ
φmax

dz (Li and Sawamoto ; 1995)

→ used by Dong and Zhang (1999) to model oscillatory sheet flows.



Dense granular rheology

Frictional stress: τpxz = µ(I)pp

where µ(I) = µs +
µ2 − µs
I0/I + 1

and I =

∣∣∣∣dupdz

∣∣∣∣ dp√
pp/ρp

We have shown that in sheet flow regime the granular flow is in the inertial regime

−→ This is consistent with Bagnold’s (1956) model

see Revil-Baudard and Chauchat (2013)

Dilatancy law: φ(I) =
φmax

1 + b I1/2

validity range φ ∈ [0.3;φmax]

same relationship as in the viscous regime

b = 0.75 is added as a tunable parameter to account for non-sphericity



Single-phase model in the FL

Horizontal fluid momentum equation:

0 =
dτfxz
dz

+
dRfxz

dz
+ ρf g sinβ

Same closures for τfxz and Rfxz as in the SBL layer

Concentration profile:

Vertical equilibrium: wsφ+
ηt
ρf

dφ

dz
= 0

φ(z) = φhp exp

(
−ρf ws

∫ z

hp

η−1
t dz

)

Sumer et al.(1996) have shown that a Rouse profile is observed above a sheet
flow layer provided that the reference level is taken high enough above the
mobile bed (φ ≥ 0.25)

Rouse profile and dilatancy law (φ(I)) can cover the whole range of
concentration from the static bed up to the dilute suspension.



Resolution strategy and boundary conditions

Numerical method:

pseudo-time integration and an implicit
finite difference discretisation

FL → tridiagonal system solved using a
doublesweep algorithm

SBL → Moore-Penrose solver (Matlab R©)

Under-relaxation for the dilatancy law

Lagrangian mesh adaptation:

SBL → mass conservation in each cell

⇒ ∆z is varied to account for bed
decompation

FL → the eroded volume of sediment is
subtracted from the SBL (uniformly)

⇒ The sediment volume conservation is
about 99.9%
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Comparison with Sumer et al. experiments: velocity profiles

Fig. : Comparison of the fluid (—) and the particulate (- - -) velocity profiles between the present
model and the measurements of Sumer et al. (1996) (+) in (a) and comparison of the concentration
profiles predicted by the present model (—) with Hsu et al.’s (2004) results (- - -) in (b).

Run 82
(θ = 1.37)

Run 91
(θ = 1.65)

Run 99
(θ = 2.3)

µs = 0.51 ; dp = 2.6 mm ; ρp = 1140 kg.m−3 ; µ2 = 0.7 ; I0 = 0.3 and κ = 0.35

Good overall agreement in velocity profiles (discrepancy ↔ turbulence model)

Similar concentration profiles obtained with phenomenological model and kinetic
theory−→ both exhibit a concentration shoulder



Solid load comparison with literature data
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Fig. : Dimensionless sediment transport rate ψ = qp/ρp
√

(ρp − ρf )gd3
p/ρf and SBL

contribution ψSBL = qSBLp /ρp
√
ρpgd3

p/ρf versus Shields parameter θ.

Exerimental data synthesized by Yalin (1977):
- MPM,1948 +
- Gilbert,1914, +
- Wilson,1966 +

Numerical results:
- total load �
- bed-load only ♦

Good predictions of solid load on a large range of Shields numbers θ ∈ [0.5; 2.5]

Power law predicted by the model: ψ = 11.9 θ2.3



Comparison with Sumer et al. experiments: sheet layer thickness

δs
dp

=
θ

µs φ̄ cosβ −
[
ρf/(ρp − ρf ) + φ̄

]
sinβ

(32) δs
dp

=
θ

µsφ̄
(33)



Comparison with Sumer et al. experiments: Flux and stresses repartition
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Run 91: θ = 1.65

Concentration profile (- - -)

Local volume flux (-·-): π(z) = φ(z)up(z)

Cumulative flux (—): Π(z) =

∫ z

0
φ(ξ)up(ξ)dξ

Effective viscous stresses are negligible

Sheet layer divided into two parts:

upper ↔ turbulence

lower ↔ intergranular interactions
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Experiments: Unidirectional, quasi-Uniform and quasi-Steady sheet flow

T=0 T>0

Parameters:

L = 10m
W = 0.35m
Hf ≈ 0.1m

PMMA particles
ρp = 1192 kg/m3

d50 =3 mm
µs = tan(35◦) ≈ 0.7

Qf = 35 L/s
S = 0.5%

Measurement devices:

- HighSpeed Camera (max 300 Hz)
- Acoustic Doppler profilers:

- Vectrino II (Nortek):
f = 10 MHz
Hmeas = 3cm
∆z = 1 mm / facq = 100 Hz

- ADVP :
f = 1.25 MHz
Hmeas = 20cm
∆z = 3 mm / facq = 30 Hz



Experiments: Unidirectional, quasi-Uniform and quasi-Steady sheet flow

Dimensionless numbers:

θ ≈ 0.5− 0.6

Re =
U Hf
νf

≈ 105

Rep =
ws dp
νf

≈ 2.102

ws
u∗

= 1.4 (no suspension)

St =
τp
τf
≈ 25 with τf =

νf
u2
∗

with τp =
ws
g


SheetFlowHiSpeedCam.mp4
Media File (video/mp4)



Experimental set-up

The same experiment is repeated 10 times

Upper and lower interface positions are deduced from
greylevel threshold on the images

Lower interface position can also be deduced from
acoustic measurement

Velocity profiles are obtained from two different
acoustic doppler profilers and space-time correlation
method on the images

Space-time correlation:

Time stack of horizontal ROI (1 dp thick)

slope = mean velocity → example on the left

(collaboration with P. Snabre, University of Bordeaux,
France)



Experimental results: interfaces

The same experiment is repeated 10 times

Upper and lower interface positions are deduced from greylevel threshold on the
images

Lower interface position can also be deduced from acoustic measurement



Experimental results: interfaces

Ensemble averaged experiment:

Standard deviation:

−→ Experiments are reproducible



Experimental results

 

 

Stream wise velocity t=40−46s
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Acoustic Doppler profilers recovers the same velocity at the top of the sheet flow layer

Velocity profile deduced from the digital images is much lower than the acoustic ones

→ particles velocity (video) is smaller than the fluid velocity (acoustic doppler)

Turbulent quantities are not converged with the vectrino II (not enough statistics)



Quadrant analyses: Moving bed Vs Fixed bed
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Interactions
Ejections
Interactions
Sweep

Sheet layer: Sweeps > Burst // Fixed bed: Sweeps ≈ Bursts

Crossing between Sweeps & Burst occurs higher under sheet flow conditions

Interactions are two times larger than in the fixed bed case



Logarithmic profile: Fixed bed experiments
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Logarithmic profile:
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∂z
= γ̇ =
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with lm = κz

u∗ is deduced from Reynolds shear stress measurements

γ̇ is deduced from mean velocity profile

If a log layer exists γ̇ should be linear in z ⇒ κ =
u∗γ̇
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z
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Logarithmic profile: Moving bed experiments (acoustic measurements)
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g=0.28 ± 0.01

A log layer is still observed: κ = 0.28 (lower than in clear water)



Logarithmic profile: Moving bed experiments (video measurements)

A log layer is again observed with κ ≈ 0.2 ⇒ κ =
κCW

2



Density stratification?

Gradient Richardson number: Ri =
g
∂ρ

∂z

ρ

(
∂u

∂z

)2

Rough estimates:

δ ≈ 5− 10 dp

Umax ≈ 0.4− 0.6 m/s

φ =
φmax

2

Ri =
gδφmax∆ρ(

ρf + φ∆ρ
)
U2
max

≈ 0.1

Does density stratification is responsible for
the damping of turbulence through the
sheet-flow layer?

φ

φ
max

δ

U
max

z



Conclusions

Dense granular rheology can be used to describe intergranular stresses in
sheet-flow

First turbulence measurements down to the fixed bed has been obtained
under sheet flow conditions

On-going work

Improve the sheet-flow model by accounting for turbulent dispersion inside
the ”sediment bed layer”

Implementation in a 3D numerical model...

Analysis of the measurements to understand why the turbulent structures
are so strongly modified by the presence of a movable bed

Experiments with spherical particles and smaller particles (non-spherical)
i.e non-massive particles ws/u∗ < 1
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Summary

Dense granular rheology can be used to describe intense bed-load
transport (laminar and turbulent)

Regularization technique can be used to implement this rheology in 3D
numerical model

First turbulence measurements down to the fixed bed has been obtained
under sheet flow conditions

Open questions

Does the buoyancy plays a role in the dense granular rheology?

What happens to the turbulence at the transition between the dilute
suspension and the dense static bed? How can we model it?





Plane shear experiments: Dimensional analysis (1/2)

Monodisperse spherical particles with density ρp
and diameter d

Imposed pressure P and velocity V on the top

plate ⇒ γ̇ =
V

H
.

Measure the shear stress τ that develops on the
top plate

For large system (H >> d) a single dimensionless number control the system:

Inertial number: I =
γ̇ d√
P/ρp

Da Cruz et al. (2004), Lois et al. (2005)



Plane shear experiments: Dimensional analysis (2/2)

Andreotti, Forterre and Pouliquen (2011)

Interpretation of the Inertial number:

I =
γ̇ d√
P/ρp

=
tmicro
tmacro

where tmicro =
d√

P / ρp
and tmacro =

1

γ̇

Da Cruz et al. (2004), Lois et al. (2005)

The shear stress is proportional to the pressure and depends on I, also the
volume fraction depends on I:

τ = µ(I) P and φ = φ(I)



Local rheology: dry granular flows / inertial regime

The following curves are obtained from experiments and tends to confirm
the previous postulated constitutive laws

GDR Midi (2004), Pouliquen (1999), Baran et al. (2006), Savage and Sayed

(1984) from Forterre and Pouliquen (2008)

Functions can be fitted to these data in order to get explicit relationship for the
constitutive laws:

µ(I) = µs +
µ2 − µs
I0/I + 1

and φ(I) = φmax + (φmin − φmax) I

with typical values for monodisperse glass beads:

µs = tan(21◦) ; µ2 = tan(33◦)) ; I0 = 0.3 ; φmax = 0.6 and φmin = 0.4



Two-phase equations

Horizontal momentum equations:

0 =
dτfxz
dz

+
dRfxz

dz
− nfx + ε ρf g sinβ

0 =
dτpxz
dz

+ nfx + φ ρp g sinβ

Generalized buoyancy and drag force: nfx = φ
dτfxz
dz

+ CD (U − up)

0 =
dRfxz

dz
+ ε

dτfxz
dz
− CD (U − up) + ε ρf g sinβ

0 =
dτpxz
dz

+ φ
dτfxz
dz

+ CD (U − up) + φ ρp g sinβ

where CD is given by: CD =
ρf φ

dp (1 − φ)3.1

(
0.3 (U − u

p
) + 18.3

ηf

ρf dp

)
Dallavalle (1943) + Richardson and Zaki (1954)

Closure issue: relate τfxz, Rfxz and τpxz to averaged quantities
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