Simulating Saltation

Hans J. Herrmann

Computational Physics IfB, ETH Zürich, Switzerland and Dept. de Física, UFC, Fortaleza, Brasil

Program 'Mediated Particle Transport in Geophysical Flows' Kavli Inst. for Theoretical Physics Santa Barbara, Oct.10, 2013

Collaborators: Murilo Almeida Jose Soares Andrade Nuno Araújo **Marcus V. Carneiro Thomas Pähtz Eric Parteli** Keld Rasmussen

Particles in Turbulent Fluids

- Saltation
- Aerosols
- Fluidized beds
- Preferential concentration

(e.g. distribution of plankton in oceans)

- Pneumatic transport
- Turbulent mixing
- Rheology of suspensions

Sandstorm

Equation of motion of fluid **ETH**

 $\vec{v}(\vec{x})$ and $p(\vec{x})$ are velocity and pressure field of the fluid, ρ and μ its density and kinematic viscosity.

Incompressible Navier-Stokes equation:

$$\frac{\partial \vec{v}}{\partial t} + \vec{v}(\vec{\nabla}\vec{v}) = -\frac{1}{\rho}\vec{\nabla}p + \mu\Delta\vec{v}$$
$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho\vec{v}) = 0 \land \rho = \text{const} \Rightarrow \qquad \vec{\nabla}\vec{v} = 0$$

Reynolds number Re

 $\operatorname{Re} = \frac{Vh}{\mu}$

V is characteristic velocity h is characteristic length µ is kinematic viscosity

In turbulent regime: Re >> 1

One particle in fluid

Ξī

create shear in fluid : exchange momentum

Drag force

stress tensor $\Theta_{ij} = -p\delta_{ij} + \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$

$\eta = \rho \mu$ is dynamic viscosity

Homogeneous flow

 $\overrightarrow{\mathbf{R}} \xrightarrow{\mathbf{R}} \overrightarrow{\mathbf{R}} \overrightarrow{\mathbf{R}} \xrightarrow{\mathbf{R}} \overrightarrow{\mathbf{R}} \overrightarrow{\mathbf{R}} \xrightarrow{\mathbf{R}} \overrightarrow{\mathbf{R}} \overrightarrow{\mathbf{R}} \xrightarrow{\mathbf{R}} \overrightarrow{\mathbf{R}} \overrightarrow{\mathbf{R}} \xrightarrow{\mathbf{R}} \overrightarrow{\mathbf{R}} \overrightarrow{\mathbf{$

general drag law:

$$F_D = \frac{\pi}{8} \frac{\eta^2}{\rho} C_D \operatorname{Re}^2$$

 C_D is the drag coefficient

ETH

Inhomogeneous flow

=

In velocity or pressure gradients: Lift forces are perpendicular to the direction of the external flow, important for wings of airplanes.

lift force:
$$L = C_L \times \rho \times \frac{V^2}{2} \times A$$

 C_L is "lift coefficient"

when particle rotates: Magnus effect important for soccer

Many particles in fluids

•The fluid velocity field follows the incompressible Navier Stokes equations.

• Many industrial processes involve the transport of solid particles suspended in a fluid. The particles can be sand, colloids, polymers, etc.

•The particles are dragged by the fluid with a force:

$$F_D = \frac{\pi}{8} \frac{\eta^2}{\rho} C_D \operatorname{Re}^2$$

ETH

simulating particles moving in a sheared fluid

Aeolian Sand transport **ETH**

Transport by Saltation (on coastal dunes)

ETH

Saltation in the desert **ETH**

The Mechanism of Saltation

• Grains are drawn from the ground and accelerated by the wind. With more energy they impact again against the surface and eject a splash of new particles. In this way more and more grains saltate until saturation is reached due to momentum conservation.

Dependence on grain size

Schematic saltating trajectory

Physical Review Letters, 96, 21 (2006)

The turbulent air flow **ETH**

logarithmic velocity profile of the horizontal component of the velocity as function of height *y*:

$$u_{x}(y) = \frac{u_{*}}{\kappa} \ln\left(\frac{z}{z_{0}}\right)$$

 $\kappa \approx 0.4$ is the von Kármán constant

 z_0 is the roughness length

viscosity of air: $\eta = 1.7895 \cdot 10^{-5} \text{ kg m}^{-1} \text{ s}^{-1}$

density of air: $\rho = 1.225$ kg m⁻³

Solve it with k- ϵ model using Fluent.

a commercial finite volume solver on an adaptive triangulated mesh

Types of transient behaviour

threshold velocity $u_t \approx 0.35$

Steady state

\Rightarrow saturated flux q_s

Saturated flux

Physical Review Letters, **96**, 21 (2006)

Wind velocity profile

difference between disturbed and undisturbed velocity profile

 $u_* = 0.51$

collapse when normalizing with flux *q*

314

Wind velocity profile

ETH

Height of saltation layer

Planet Mars

ETH

Eric Parteli

M. Almeida, E. Parteli, J.S. Andrade, HJH PNAS 105, 6222 (2008)

Parameters on Mars

Earth

Mars

 $g = 9.81 \,\mathrm{m/s^2}$ $\rho_{\rm air} = 1.225 \, \rm kg/m^3$ $\rho_{\rm grain} = 2650 \, \rm kg/m^3$ $d = 250 \,\mu m$ $u_{*t} \approx 0.2 \text{ m/s}$ $\eta \approx 1.8 \times 10^{-6} \text{ kg/s} \cdot \text{m}$

 $g = 3.71 \,\mathrm{m/s^2}$ $\rho_{\rm air} = 0.02 \, \rm kg/m^3$ $\rho_{\rm grain} = 3200 \, \rm kg/m^3$ $d = 600 \,\mu m$ $u_{*t} \approx 2.0 \text{ m/s}$ [Greeley and Iversen (1985)] $\eta \approx 1.1 \times 10^{-6} \text{ kg/s} \cdot \text{m}$ (Viscosity of CO_2 at $-100^{\circ}C$)

- u_* on Earth is 0.4 m/s and on Mars, Pathfinder Mission 1997 found u_* close to threshold. Further, it has been found that the angle of the slip face of martian dunes is the same as of terrestrial dunes.

E

Length L_{salt} and height H_{salt} of saltation trajectory

 $L_{salt} \propto t_v \left(u_* - u_t \right)$ $H_{salt} \propto t_v \left(u_* - u_t \right)$ $t_v = (\mu / g^2)^{\frac{1}{3}}$

=

Impact angle and height to length ratio of saltation trajectory as function of *u**

Dune velocities

ETH

Discrete Element Model for Saltation

- We consider a bed of spheres of similar size under gravity in a channel, with periodic boundary conditions in horizontal direction and reflective conditions at top and bottom walls.
- Dissipation occurs at particle-particle and particle-wall collisions.
- At t = 0, some particles are dropped from random positions triggering the saltation process.

M.V. Carneiro, T. Pähtz, H.J.H., Phys. Rev. Lett. 107, 098001 (2011), arXiv:1104.2767

Marcus Vinicius Carneiro

Thomas Pähtz

Sketch of the system **ETH**

$$u_{x}(z) = \frac{u_{*}}{\kappa} \ln \frac{z + z_{0} - h_{0}}{z_{0}}$$

$$z_0 = D_{av}/30$$

• Logarithmic wind profile above the sand bed starts at height h_0 , which must be determined.

DEM model of bed in moving fluid

$$m_i \ddot{\boldsymbol{x}}_i = \boldsymbol{F}_D + \boldsymbol{F}_{coll} + m_i \boldsymbol{g}$$

The fluid exerts on the particles the drag force:

$$F_{D} = \frac{\pi d_{p}^{2}}{8} \rho C_{D} (u - v_{p})(\vec{u} - \vec{v}_{p})$$

$$C_{D} = \left[\left(\frac{32}{\text{Re}} \right)^{2/3} + 1 \right]^{3/2} , \quad \text{Re} = \frac{\rho_{f} |\boldsymbol{v} - \boldsymbol{u}| D_{av}}{\eta}$$

N. S. Cheng, J. Hydraul. Eng., 123(2), 149 (1997)

Dissipative collisions between particles

$$\boldsymbol{F}_{coll} = \left(k_n \delta_{ij} + c_n \dot{\delta}_{ij}\right) \boldsymbol{n}_{ij}$$

 k_n elastic spring constant, c_n damping coefficient

$$\boldsymbol{n}_{ij} = \frac{\boldsymbol{x}_i - \boldsymbol{x}_j}{|\boldsymbol{x}_i - \boldsymbol{x}_j|}$$

$$\boldsymbol{\delta}_{ij} = (\boldsymbol{R}_i + \boldsymbol{R}_j) - |\boldsymbol{x}_i - \boldsymbol{x}_j|$$
 for sand
 $\boldsymbol{e}_n = \mathbf{0.7}$

 $e_n = \exp[$

 $\frac{\pi c_n}{\sqrt{4m_{eff}k_n-c_n^2}}$

The restitution coefficient e_n is related to c_n through:
Results without feedback

DEM model of bed in moving fluid

A feedback procedure corrects the wind profile iteratively before the drag forces are applied on the particles.

Including Feedback

- The reaction-drag forces exerted by the particles on the wind slow down the wind.
- We calculate the grain-stress generated by the accelerated particles through (A =area of sand bed, f =force density)

$$\tau_g(z) = \int_{z}^{\infty} f(z') dz' \cong \sum_{i:z_i > z} \frac{F_i}{A}$$

The grain-stress modifies the shear velocity in the saltation layer by $\int \tau_{o}(z)$

$$u_{\tau}(z) \coloneqq u_* \sqrt{1 - \frac{\iota_g(z)}{\rho_a u_*^2}}$$

• With this we determine the wind profile using $\frac{du}{dz} = \frac{u_{\tau}(z)}{\kappa z}$

Feedback Algorithm

Results for $u_* = 0.52$ m/s in 2d

ETH

Results for $u_* = 0.82$ m/s in 2d

ETH

Saturated flux as function of *u*^{*} for different restitution coefficients

ETH

Comparison with different theories

Normalized quantities **ETH**

Perturbations

• lift forces: Apply to the particles close to the surface a force πD^3

$$\left| F_{l} = \frac{\pi D_{av}}{8} \rho_{fl} C_{l} \nabla v_{rel}^{2} \right| \quad C_{l} = 0.425 C_{d}$$

random forces:

Move every second randomly 20% of the particles at the surface up by one average diameter D_{av} .

Time series of the flux near threshold

Height dependence of momentum exchange

Bagnold Focus

ETH

Impact on the ground **ETH**

Jump in the saturated flux in 3d

Time series close to jump in 3d **ETH**

Comparison with experiments and fit

The role of mid-air collisions

Marcus Vinicius Carneiro Thomas Pähtz

Nuno Araújo

Common belief has generally been that collisions between grains in the air are not relevant.

Effect of collisions in 3d

Changing restitution coefficient for mid-air collisions, while for collisions with the ground we keep $e_n = 0.7$.

Flux as function of restitution coefficient

Flux as function of restitution coefficient

Saturated flux in 2d

Changing restitution coefficient for mid-air collisions, while for collisions with the ground we keep $e_n = 0.7$.

Comparing 2d and 3d ETH

Role of collisions: saltons

Role of collisions: saltons

Saltons jumping on the soft bed

 $\theta = 0.90$ e = 0.7

Role of collisions: saltons

GeoFlows, Kavli Inst. for Theoretical Physics, Santa Barbara, Oct.10, 2013

Contribution to the flux

ETH

Splash after impact of salton

Temperature and flux profiles

Particle alignment due to dissipation

Height profiles of concentration, horizontal grain velocity and flux in 3d

Height profile of concentration, horizontal grain velocity and flux in 2d

Ξī

Comparing 2d and 3d

more details in 2d

ETH

granular temperature (fluctuation of vertical velocity)

skewness of horizontal velocity distribution

 $e_n = 0.7, e_n = 1.0,$ no collisions

Wind Channel in Aarhus **ETH**

Wind Channel in Aarhus **ETH**

Measuring the wind velocity in channel

Intermittent Flow

ETH

Burst statistics in wind channel

Flux in wind channel changing u* ETH

Intrinsic velocity fluctuations

A.M. Reynolds (2003) Logarithm of local dissipation rate $\chi = \ln(\varepsilon/\langle \varepsilon \rangle)$ Stochastic differential equations for χ and each component of the acceleration a_t .

$$d\chi = -(\chi - \langle \chi \rangle)T_{\chi}^{-1}dt + \sqrt{2\sigma_{\chi}^{2}T_{\chi}^{-1}}d\xi_{1}$$

$$da_{t} = -\left(T_{\chi}^{-1} + t_{\eta}^{-1} - \sigma_{a_{t}|\varepsilon}^{-1}\frac{d\sigma_{a_{t}|\varepsilon}}{dt}\right)a_{t}dt - T_{L}^{-1}t_{\eta}^{-1}$$

$$+\sqrt{2\sigma_{u}^{2}(T_{L}^{-1} + t_{\eta}^{-1})T_{L}^{-1}t_{\eta}^{-1}}d\xi_{2}$$

$$du_{t} = a_{t}dt \quad , \quad dx_{t} = u_{t}dt$$

3d simulation of a burst

Comparing experiment and simulation

DEM model of bed in moving fluid

- Reproduce splash
- Agreement with experiment and theory
- Jump in saturated flux at onset of saltation
- Mid-air collisions enhance flux.
- We can distinguish saltons, soft-bed and reptons.
- Temporal fluctuations of turbulent produce intermittency.

Including electrical charges

Electrons trapped locally in high energy states.

Particle transport by water

under water dunes in front of San Francisco bay

Drag in Water Channel

GeoFlows, Kavli Inst. for Theoretical Physics, Santa Barbara, Oct.10, 2013

Drag in Water Channel

Particle transport by water

Transport mechanisms on ground:

1. Creep – rolling and sliding of grains on the soil
2. Saltation – hops of grains near the soil
3. Sheet Flow – completely mobile sand bed, grains moving in granular sheets

Future Perspectives

- Make full 3d turbulent simulation.
- Consider saltation in water.
- Consider electric charges.
- Consider different shapes of grains.
- Consider realistic boundary layers.
- Consider rotations of grains (Magnus forces).
- Consider obstacles in the flow.
- Consider non-Newtonian rheologies.

Thank you !