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Wind effects: plume rise & ash dispersion



Volcanic Ash and the risk to aviation

• International airspace is advised by 9 Volcanic Ash 

Advisory Centres (VAACs) that provide guidance to airlines 

on the safety of flight paths.





2010 Eruption of Eyjafjallajökull (Iceland)



• The Eyja plume was 
relatively long-lived
(April-May 2010)

• Forecasters did not 
have operational tools to 
predict its behaviour

• UK government policy 
changed during the 
eruption period
(2mg/m3 threshold)

• Estimated cost to 
European economy 
£5bn.



Plume rise and entrainment

• How can mass flux of volcanic plume be determined?
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Empirical relation: Sparks & Mastin curves

Buoyancy Flux B  [B] =L4T-3

Buoyancy Frequency N [N]=T-1

Height of Rise H ~ B1/4 N-3/4



Plume model (Morton, Taylor, Turner 1956)
(z)=plume density, 

e(z)=atmosphere density

N2=-g(de/dz)/(0)=Buoyancy Frequency
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• Source (z=0): Buoyancy flux
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Plumes: typical results

• For an environment with

N2=constant

– Only dimensional 

parameters are N2 & B

– Lengthscale (BN-3)1/4

Timescale N-1

• Plume rises to neutral 

buoyancy level and 

overshoots due to inertia
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Plume model
• Integral model of wind-blown plumes 

– Model evolution of mass, momentum (vertical & horizontal) & energy

– Mixing with atmosphere plays a key role
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Plume models with Standard Atmosphere

• Plume model 

integrated in a 

standard atmosphere 

for various wind 

speeds at the 

tropopause (V1)



Rise heights in Standard Atmosphere



New empirical relationship with wind

• In standard atmosphere, the velocity varies linearly upto the 

tropopause (V=gz)

– The key dimensionless parameter

• New empirical laws for plume rise:
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Application to 2010 eruption of Eyjafjallajökull

Observations of

- plume height

- wind

- temperature



Plume height 14-17 April



Source flux: wind effect

Mass flux upto 

100 greater than 

predicted using 

wind-free 

formulae



Ash dispersal in atmosphere

• Use NAME (Numerical Atmospheric dispersion Modeling Environment)

to calculate dispersal

– 72 hours after eruption; Concentrations at 3km; No proximal adjustment

Source strength

adjusted for wind
Source strength

not adjusted for 

wind

>4 mgm-3

2-4 mgm-3

<2 mgm-3



Wind effects: plume rise & ash dispersion



High Intensity eruptions: weak winds

Lascar 1993 
Rise height 23 km
Wind 15 ms-1

Mount St Helens 1980
Rise height 16 km
Wind  33 ms-1

• For strong eruptions, wind does not 

significantly influence near source 

behaviour.

• Umbrella cloud expansion 



Satellite images of thin ash layers

Puyehue 24-12-2012 (600 km downwind): Fred Prata



A diffusion model
• The concentration of volcanic ash 

is produced by a sustained source 

(Q); advected by the wind (U); 

diffused due to action of 

turbulence (diffusivity: K); and 

settles under gravity (vs)
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• But this diffusive model neglects buoyancy-driven motion

Wind Settling Diffusion Source



Intrusion dynamics: buoyancy processes

• Plume delivers fluid at neutral 

buoyancy height, with uniform density

– Perturbs atmospheric stratification

• Particles do not add significantly to 

bulk density of intrusion.

• Thickness of intrusion, h, determines 

pressure excess above hydrostatic 

balance.

• Gradient of thickness sets up a 

horizontal pressure gradient
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Shallow layer model of intrusion

Plan view of intrusion
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Radial motion: unsteady, drag-free

• Close to the source, the intrusion spreads radially

• Source flux r h ur =Q at r=r0

• Front condition ur= Fr Nh at r=rf(t)

• Expectation that rf(t)~ (QNt2)1/3
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Numerical solution of shallow layer model

• The front: rf ~ t3/4

• Height & velocity fields are not time-dependent throughout

– Time dependence in frontal region; steady-state in tail.

Introduce dimensionless variables using

timescale N-1 and lengthscale (QN-1)1/3

For volcanic eruption in standard atmosphere

N~10-2 s-1, Q~1010 m3s-1



Structure of unsteady solution

• Within tail, motion is steady: rurh=1 ur
2+h2/4=const
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Numerical solution: radial, drag-free



Aside: constant flux, radial gravity currents 

through uniform environments

• For currents of excess density (D), moving through a 

uniform environment

• A similarity scaling would indicate that rf~(g’Qt
3)1/4

– But this is not realised from numerical 

solutions of the governing equations.
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Numerical solution

• Within tail, motion is 

steady: rurh=1 

ur
2+h=const
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Radial motion: unsteady, drag-influenced

• The motion becomes influenced by atmospheric drag, here 

modelled CDur|ur|

• At long times: pressure gradient~ drag [inertia negligible]
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Steady evolution with wind: Numerical solutions

Plan views of the height of an intrusion from a sustained source
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Far-field form of intrusion

• When width of intrusion W <<streamwise length L

• Fluid conservation
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Far downwind of source

• Height of intrusion: similarity solution far downwind
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Shape of intrusion
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Particle transport

• The concentration of suspended particles, , within a 

turbulent layer satisfies: (Hazen’s Law)
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Distribution of deposit: observations

• Measure deposit from umbrella clouds h

Field data from Fogo Volcano (Azores)Laboratory experiments



Ash transport in wind

• The concentration of particles satisfies:
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Conclusions

• Plume rise heights are reduced by atmospheric winds

• Estimates of source mass flux from height of rise need to be 

derived from models that account for wind

– Revised empirical formulae accounting for wind

• Intruding ash clouds are partly driven by buoyancy forces.

• Buoyancy processes lead to progressively thinning layers of 

ash in the atmosphere [contrast to diffusive thickening].

• Down wind the ash cloud moves with the atmospheric wind 

but continues to spread laterally,

• Ash is suspended in a well-mixed turbulent fluid layer and 

settles from its base.
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