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0. Relevant scales

Ambient fluid density 1 kg/m3 (air) /      1000 kg/m3 (water)

Particle density 300–1000 kg/m3 /   ~ 2500 kg/m3

Particle concentration 0.0001–0.6

Particle size 10–4–100 m

Flow length 100–106 m

Flow depth 10–2–102 m

Flow speed 10–2–102 m/s

Flow duration 101–105 s

Simulation duration 1–100 (1000) s

Number of grid cells 102–105 (106)



0. Relevant scales

Ambient fluid density 1 kg/m3 (air) /      1000 kg/m3 (water)

Particle density 300–1000 kg/m3 /   ~ 2500 kg/m3

Particle concentration 0.0001–0.6

Particle size 10–4–100 m

Flow length 100–106 m

Flow depth 10–2–102 m

Flow speed 10–2–102 m/s

Flow duration 101–105 s

Simulation duration 1–100 (occasionally 1000) s

Number of grid cells 102–105 (occasionally 106)



1. Brief introduction to the phenomenology

● Snow avalanches
(different release types, different flow types, erosion, 
«freak» behavior)

● Slush avalanches

● Subaerial and subaqueous debris flows
(sorting, levée formation, flow transformation, excess pore 
pressure, hydroplaning)

● Quick-clay slides
(remolding)



Avalanche classification by release type

● Point-release or loose-snow avalanches:

Occur in early winter or spring, usually small and of restricted practical 
importance. Not very well studied.



Loose-snow avalanches (photos SLF)



Mini slides of loose snow inside an avalanche path. Photo D. Issler, 2005.



Avalanche classification by release type

● Point-release or loose-snow avalanches:

Occur in early winter or spring, usually small and of restricted practical 
importance. Not very well studied.

● Slab avalanches:

Relatively hard layer on weak layer or interface, on 30–50° slopes. Shear 
fracture on sliding surface and sides, tensile fracture at crown.



Release area of a medium-size slab avalanche. Taferna path, Davos, Switzerland, 
February 2005. Photo J. Schweizer.



Primary release induced many secondary releases

Photo C. Pielmeier, SLF



Recent slab 
avalanches

Someone 
enjoying the 
snow conditions



About 2 s later



Heldiggris



Break-up of slab sets in very 
early.

Break-up energy is only a 
moderate fraction of the total 
potential energy.



Avalanche classification by release type

● Point-release or loose-snow avalanches:

Occur in early winter or spring, usually small and of restricted practical 
importance. Not very well studied.

● Slab avalanches:

Relatively hard layer on weak layer or interface, on 30–50° slopes. Shear 
fracture on sliding surface and sides, tensile fracture at crown.

● Slush avalanches:

In water-saturated snowpack on gentle slopes (3–10°), mostly in 
(sub-)arctic areas or on glaciers. Share some features with slab avalanches. 
Needs more dedicated research and experiments.



Telemark,  south-eastern Norway.  28.04.1984. Photo Erik Hestnes, NGI.



Fivelstad, Stranda, western Norway.  05.02.1990. Photo Erik Hestnes, NGI.
Extremely low runout angle and devastating effects.



  Tystigen, western Norway, 2005-06-21         Photo K. Kristensen, NGI



  Tystigen, western Norway, 2005-06-21         Photo K. Kristensen, NGI



  Tystigen, western Norway, 2005-06-21         Photo K. Kristensen, NGI



Flow regimes of snow avalanches

Behavior of snow avalanches in motion is varied because of

• differences in snow properties (dense/fluffy, wet/dry, clod size)

• differences in velocity (due to varying path steepness)

Avalanches in the same path may exhibit different flow regimes according to 
meteo-nivological conditions.

Flow regime may change in the course of an event.

Several flow regimes may be realized at the same time in different parts of 
an avalanche.

Flow regime has strong effect on runout, velocity and pressure of an 
avalanche.



 Sliding wet-snow avalanches:

Viscoplastic plug flow sliding on a plane (hard layer inside the snow 
cover, soil surface). Lubrification by a water film? Slow.



Längenboden near Davos, Switzerland. Photo Thomas Wiesinger, SLF

Indications of free 
water lubricating the 
flow.



Photo D. Issler



Icy glide plane created by 
the avalanche through 
frictional melting and 
refreezing.

Photo D. Issler



 Sliding wet-snow avalanches:

Viscoplastic plug flow sliding on a plane (hard layer inside the snow cover, 
soil surface). Lubrification by a water film? Slow.

 Granular wet-snow avalanches

High density, coalescing particles. Flow is dominated by inter-particle 
friction. Slow.



Dorfberg, Davos, Switzerland, 2005-03-20. Photo H. Gubler



Dorfberg, Davos, Switzerland, 2005-03-20. Photo H. Gubler



Dorfberg, Davos, Switzerland. Photo SLF



 Sliding wet-snow avalanches

Viscoplastic plug flow sliding on the bed (hard layer in snow pack or soil), 
possibly lubricated by water film. Slow.

 Granular wet-snow avalanches:

High density, coalescing particles. Flow is dominated by inter-particle 
friction. Slow.

 Dense dry-snow avalanche:

High density. Particles fracture due to friction or collisions. Inverse 
grading may occur. Moderate velocities.



Photo D. Issler

Dense granular deposit

What happened here???
Massive erosion (0.5–1 m), 
no deposit.

Flow
 direction



Photo D. Issler

Often very hard deposits with 
embedded snowballs and/or topsoil



 Sliding wet-snow avalanche

Viscoplastic plug flow sliding on the bed (hard layer in snow pack or soil), 
possibly lubricated by water film. Slow.

 Granular wet-snow avalanche

High density, coalescing particles. Flow is dominated by inter-particle 
friction. Slow.

 Dense dry-snow avalanche:

High density. Particles fracture due to friction or collisions. Inverse grading 
may occur. Moderate velocities.

 Fluidized dry-snow avalanche:
Medium density, wide particle size distribution. High speed.



Example: 1995 Albristhorn avalanche, Switzerland

Deposit area of 
dense flow

Deposit of 
fluidized layer

Powder-snow 
deposit extends 
~ 500 m to left 
(uphill).

Photo S. Keller



Deposit of a small mixed avalanche, photo taken in a region not reached by 
dense flow (after sharp bend of gully). Photo M. Schaer, SLF.

~ 0.3 m

Eroded new-snow layer

Compacted deposit



Dense-flow part

Fluidized part

Photo A. Errera / S. Priano

Even small avalanches may develop a highly mobile fluidized part.



Small avalanche in Davos:

• Drop height~ 100 m

• Ratio of fluidized to total mass 
approx. 1%

• Fluidized front approx. twice 
as fast as dense part

• Fluidization does occur in 
small avalanches, but is more 
important in large ones.

Photo A. Errera / S. Priano



Photos:  http://www.geodar.net,  SLF



1999-02-25:   Why was the bunker at Vallée de la Sionne not destroyed?

up to 5 m

Velocity at bunker:
U ≈ 30–50 m/s

Pressure:
p ≈ 70 kPa

Density:

Dense-flow part deflected or
stopped at opposite slope.

Density of fluidized layer << Density of dense flow.

Powder-
snow 
cloud

ρ ≈ p /u 2

≈ 30...80kg /m3



1999 measurements at Vallée de la Sionne
(from Schaer and Issler (2001). Annals Glaciol. 32)

3.0 m

3.9 m

7.0 m

19 m

Load cell measurements

FMCW radar profile

~ 10 s
> 300 m

suspension layer

fluidized layer

dense layer

A

B

C



Explanation of the preceding slide (1):

Plots A and B show the pressure time series during the passage of a large mixed 
dry-snow avalanche.

• At 3 m, very high mean pressures superposed by violent short-term 
fluctuations.
→ Dense part arrives much later than the front.

• At 3.9 m, some pressure peaks exceed 1 MPa, but pressure drops to near zero 
between impacts.
→ Fluidized layer, moderate density, impact of snowballs up to

30 cm at ~ 40–50 m/s.

• At 7 m, intermittent swarms of impacts up to ~100 kPa.
→ Fluidized layer, smaller particles and lower density.

• At 19 m, turbulent eddies O(1kPa) from the suspension layer.
→ Small snow grains, low density, moderate velocity.



Explanation of the preceding slide (2):

Plot C is the time-series of the output of a profiling radar looking upward from a 
cavern in the ground. Abscissa – time; ordinate – distance from ground; darkness 
– strength of echo from the respective distance.

• The echo strength is in agreement with the schematic avalanche structure 
proposed below.
Dense part moves much more slowly than fluidized layer.

• Approx. 2 m of snow cover are eroded during the first 10 s, i.e. during the 
passage of the fluidized head. Erosion rate up to 250 kg/(m2s).

Snow entrainment is a very important, but poorly understood process in 
avalanche flow.



 Sliding wet-snow avalanches:

Viscoplastic plug flow sliding on the bed (hard layer in snow pack or soil), 
possibly lubricated by water film. Slow.

 Granular wet-snow avalanches:

High density. Coalescing particles, frictional flow regime, inverse 
grading. Slow.

 Dense dry-snow avalanche:

High density, fracturing particles, frictional to collisional flow regime. 
Inverse grading may occur. Moderate velocities.

 Fluidized dry-snow avalanches:

Medium density, various particle sizes, collisional to inertial flow regime. 
High velocities.

 Powder snow avalanches:

Low density, small particles suspended by turbulence in the air.
Particle collisions negligible. Boussinesq or non-Boussinesq.



4  ambient air
3  suspension layer
2  fluidized layer
1  dense flow

0  snow cover Mass fluxes

Present view of avalanche structure

1

3

4

0 2



Order-of-magnitude estimates:

Physical properties and transport processes differ substantially between flow 
types!

Flow type Density Concentration Mean free path Granular flow 
regime

(kg/m³) (—) (Particle diam.)

Dense 100–500 0.1–0.6 0–1 Frictional/
collisional

Fluidized 10–100 0.01–0.1 1–4 Collisional/
grain-inertial

Suspension 1–10 < 10–2 > 4 Macro-viscous 
(turbulent)



Entrainment and deposition

● Typical shear strength of fresh snow: τs = 0.1−2 kPa,
Typical grav. traction on avalanche: ρ g h sin θ = 0.5−3 kPa.

 Entrainment of snow cover is rule rather than exception!

● Typical starting zone is 5−30% of path length.

 Avalanche mass may increase by large factor!

● Entrainment has a substantial effect on the flow dynamics
(flow height, velocity, runout distance, impact pressure).

● Entrainment mechanisms are still poorly understood and crudely 
modeled (or neglected) in most models.



Mini slides of loose snow inside an avalanche path. Photo D. Issler, 2005.



Traces of eroded topsoil

Photo D. Issler



Dorfberg, Davos, Switzerland, 2005-03-20.       Photo Hansueli Gubler



Spatial mass balance in a snow avalanche (Monte Pizzac test site, Italy, 1998)

From Sovilla et al., Annals Glaciol. 32 (2001), 230–236.



FMCW radar plot of snow avalanche at Vallée de la Sionne

Observed entrainment 
rate:

10–200 kg m−2 s−1,

diminishing with time 
and erosion depth.

dense flow
fluidized flow

~10 s, ≥ 300 m

2 m of fresh snow eroded

Hard old snow not eroded



Conjectured erosion mechanisms    (Gauer & Issler, 2004)

Scour and impact erosion

“Ripping”“Plowing”

Frontal mechanisms Mechanisms acting along bottom

non-erodible snow

erodible snow

“Eruption”

avalanche



The plowing mechanism:

● Clearly dominant in wet-snow
avalanches.

● Possibly important in dry-snow
avalanches as well, but clear
experimental confirmation is
still lacking.

● Open question for debris flows
and pyroclastic flows.

● Likely condition for plowing to
be possible: Flowing material
must have higher strength than
bed and sufficient weight.

● In laboratory granular flows, length of plowing zone = O(flow height).



Observation of impact and abrasion traces

Klosters 2006-03-12.  Photo D. IsslerRyggfonn 2003-04-6.  Photo P. Gauer



Watch out for freak avalanches!

Some avalanches do things that even a seasoned export may consider 
impossible (but the avalanche doesn’t care what the expert thinks!!!).

Important in hazard mapping to consider these possibilities. Need both 
experience and physical insight.

“Freak behavior” in snow avalanches can be due to e.g.:

• Run-up height of fluidized and suspension layer

• Particular snow conditions

• Discontinuous behavior due to thresholds

• Funnel effects (?)



Brenva avalanche, Courmayeur, Italy, 1997-01-18. Image 1/4. Photographer unknown.



Brenva avalanche, Courmayeur, Italy, 1997-01-18. Image 2/4. Photographer unknown.



Brenva avalanche, Courmayeur, Italy, 1997-01-18. Image 3/4. Photographer unknown.



Brenva avalanche, Courmayeur, Italy, 1997-01-18. Image 4/4. Photographer unknown.



Some avalanches start with just a snowcat and become pretty large…

Example:  Col du Pillon, western Switzerland, 1995-01-31

• Released when clearing snow from the entrance to the telepherique at ~ 
2950 m a.s.l.

• Release mass approx. 2 mill. m3

• Dense flow deposit at ~1400 m a.s.l., depth up to 10 m

• Run-up of fluidized layer on opposite slope ~ 120 m, deposit depth on pass 
road up to 3 m over a length of 800 m, ~ 0.5 m on plateau

• Powder-snow cloud continued down the valley flank (without damage) for ~ 
5 km



Scale

Release area

Dense flow

Suspension / fluidized layer



Deposits of dense layer

Deposits of fluidized layer



Wet-snow avalanches do not always follow straight lines…

Dorfberg, Davos, Switzerland. Photo SLF



Some avalanches 
have much longer 
runout than ex-
pected from to-
pographic-statis-
tical model.

α = 14–16° in
extreme cases!

(See next slide for α-β 
model.) 

Plot courtesy
P. Gauer, NGI

Avalanches with very low values of run-out angle α

α-β model



The statistical-topographical α-β model (Lied and Bakkehøi, 1980)

Norway: α = 0.96 β − 1.4°, SD = 2.3°, R = 0.92 (~ 200 avalanches)

Austria: α = 0.95 β − 0.8°, SD = 1.5°, R = 0.96 (~ 70 avalanches)

(Databases contain supposedly «exterme» avalanches for each path.)

Fracture line

End of deposit
area

A B

B: Point where the slope angle
falls below 10° (considered
as beginning of run-out zone).



Photo T. Wiesinger

Wet-snow avalanche near Davos, probably gliding on water film, α = 16°

Traces of liquid water



Photo Svein Helge Frækaland

Dry-snow avalanche at Tyin, central Norway:
Strongly fluidized and gliding on depth-hoar layer, α = 14° (!)



α(β)  = 24.5°
αobs  = 14° = α(β) – 4.5σ

Plot courtesy P. Gauer, NGI



  
 

Threshold behavior: The 1994 avalanche at Bleie (western Norway)

11°



Conditions conducive to unusually long runout:

• Often on small to medium-sized gentle slopes

• Inclination of runout area ~ 10°

• Dry, cold, fine-grained snow

• Large supply of low-strength erodible snow

• Special conditions at the bed, e.g. cold depth-hoar layer with low cohesion

• High degree of fluidization

• Alternative: lubrication by water film (wet-snow avalanches)

These are avalanches with presumed return periods ≥ 100 years.



Destroyed house in Davos, Switzerland, 1968. Photo SLF.



Cars after the passage of a large avalanche at Arinsal, Andorra (Pyrenees), 1996



Snow avalanches may damage large forest areas (up to 1 km2)



Even small avalanches can be a serious problem!



Example of a Norwegian GMF hazard map for return periods 100, 1000 and 5000 y



Fr > 1Fr < 1

Supercritical overflow

Shock formation at catching dam:  u2 = 0, shock travels upstream

(From T. Jóhannesson et al. (2009), The Design of Avalanche Protection Dams, EUR 23339)

Effects at avalanche impact on dams



Why should shock theory be applicable to 
avalanche run-up on dams?

• Hydraulic jumps and supercritical overflow are 
natural consequences of the shallow water 
equations and do occur in Nature.

• Granular media behave like a fluid in many 
respects, and shock formation has been 
observed in chute flows against obstacles.

• Fast dry-snow avalanches can be characterized 
as granular flows.

• Some observations of avalanche deposits near 
deflection dams suggest that shock may have 
formed.

From Tai et al. (2001), Annals Glaciol. 32, 281–284.



How can numerical models help in the design of dams?

1. Determine approach velocity and flow depth of the design avalanche at 
the dam location.
(Keep in mind that Voellmy or PCM-type models tend to underestimate velocity!)

2. Directly simulate flow of the avalanche against the dam with a quasi-3D 
model:
• Need a numerically stable, shock-capturing code!

• Need a correct, high-resolution terrain model (resolution ~ 1 m)!!
(May need different calibration of friction parameters at high resolution.)

• Basic assumptions behind depth-averaged models violated, yet results are 
usable if slope breaks are not too extreme.

• Energy loss in sharp bends is poorly modeled
⇒ obtain conservative results

• Opens for optimization of dam location, shape and dimensions!



Chute experiment    Numerical simulation
From Tai et al. (2001), Annals Glaciol. 32, 281–284.



Summary of practical needs wrt. dynamical avalanche models:

● Numerical models are but one of several tools and methods used by 
the expert!!! (Gut feeling is also important...)

● Model must be easy to use (intuitive, integrated in GIS environment).

● Quasi-3D or 3D, but must be fast (≤ 300 s /simulation on PC)!

● Must be robust.

● Must be well calibrated and validated.

● Detailed reproduction of minor flow details is not required because 
numerical modeling entails

– Major conceptual uncertainties (flow rheology, erosion,...),

– Extrapolation of initial conditions to return periods up to 5000 y,

– Only minor numerical issues in comparison with the above errors.



3. A lesson to be learnt from statistical analysis

Typical dynamical avalanche models in practical use in 2013:

● Assume dense flow with constant density 200—300 kg/m3, neglect other 
flow regimes.

● Depth-averaged, assume uniform velocity profile.

● Erosion model: none or empirical.

● Assume bed friction to consist of dry (Coulomb) friction and «turbulent» 
drag (Voellmy, 1955; Perla et al., 1980):

μ = 0.15...0.4,  k = 0.0025...0.025 from calibration against observed run-out 
distances.
Recommended parameters depend strongly on avalanche size and return 
period.

● A few more advanced approaches exist (Norem-Irgens-Schieldrop, Jop-
Forterre-Pouliquen).

σxz = μg h cosθ +k ū 2



Parameter variability in a typical model like RAMMS, SAMOS-AT:

• Physically justified variability (measurable variability):

• Variable snow temperature and humidity

• Terrain roughness, forest, etc.

• Variable particle size due to slab break-up and comminution

• Variability due to model shortcomings:

• Flow-regime transitions and density change neglected

• Snow entrainment effects neglected

• Voellmy fluid is poor approximation to rheology of dense flow.

Attempts to calibrate simple models wrt. many criteria (e.g. RAMMS):

• Climate zone, altitude, return period, forest (physically justified)

• Avalanche size, terrain curvature (due to model deficiencies)



A word of caution for users of Voellmy or PCM-type models:

«Turbulent» drag term is a built-in limiter for flow velocity:

• With θ = 30°, h = 1.5 m, μ = 0.2, k = 0.006 or ξ = 2500 m/s2:

in contradiction with velocity measurements – should be ~ 60 m/s!

• Compilation of velocity measurements from a large variety of paths indicates 
trend

• Especially relevant for design of mitigative measures!

ū max = (0.5...0.7)√g H drop

ū inf<30m/s

ū∞= √(1/k )g h (sinθ −μcosθ)



From (P. Gauer, Cold Regions Sci. Technol. , 2013) 

Typical limit velocity for 
Voellmy-type models with 
standard parameters



Simulation of velocity data with Coulomb model (from (Gauer et al., 2010)):



Velocity measurements were often neglected in model calibrations (scarcity 
of data).

Coulomb-type model with constant friction coefficient μ does much better 
job in reproducing run-out distance and maximum velocity than Voellmy-type 
models.

BUT

Run-out angle α = arc tan(μ) varies with average slope angle from fracture 
line to beginning of run-out zone:

 What does that mean in terms of avalanche dynamics?

 Which physical model is able to reproduce this?

α = 0.96 β −1.4 ° (calibrationfor Norway )



Plot courtesy 
P. Gauer, NGI

Compilation of data from 300—400 observed «extreme» avalanches

α-β model



4. How to model flow-regime transitions in 
snow avalanches?

• Norem–Irgens–Schieldrop (NIS) rheology incorporates dry friction from 
persistent particle contacts and particle collision effects (dispersive 
stresses).

• At sufficiently high shear rates, effective stress and Coulomb friction 
vanish. Material expands, but NIS model does not modify the density.

• With constant flow depth, NIS block model is equivalent to PCM model.

• Potential for richer dynamics if fluidization modifies the rheological 
parameters!

(Norem et al.,1989, Annals Glaciol. 13, 218–225. 
Issler and Gauer, 2008. Annals Glaciol. 49, 193–198.)

B2FR – a block model switching between two flow regimes



The granular view:

• At macroscopic scale, frictional and collisional regimes can coexist at 
same location.

• Frictional regime:
Mean free path  0→ , continuous contact between particles, 
Coulombian friction

• Collisional regime:
Short-duration collisional contacts,
dispersive pressure ~ (shear rate)2, but also
dispersive shear stress ~ (shear rate)2

• Fluidization occurs when and where the dispersive pressure supports 
the avalanche weight.
Seems to require slopes with tan θ ~ 1, however!



Two possible causes for fluidization to consider:

A) Purely granular mechanism:

Dispersive pressure from collisions between particles overcomes 
normal load.

Conditions: high shear rates,
sufficiently elastic collisions
dispersive shear stresses small

B) Pneumatic mechanism:

Air flow over avalanche creates stagnation pressure at snout, 
underpressure on the head.

Conditions: high velocity
?   small cohesion in avalanche



Amended formulation of NIS rheology:

For simplicity, consider plane shear flow in x-z plane here.

pe effective pressure (through long-lasting grain-grain contacts)
c cohesion [Pa]
ν1–3 viscometric coeff. [m2]
pu    pore pressure
μ dry friction [–]
m shear viscosity [m2]

σxx =−pe−pu−ρ(ν3+ν2−ν1) γ̇
2

σ yy =−pe−pu−ρν3 γ̇
2

σzz =−pe−pu−ρ(ν3+ν2) γ̇
2

τxz = c +μ pe+ρm γ̇2



Salient features of this rheology:

● Overburden weight is carried by pore pressure (pu), persistent grain–
grain contacts (pe), and grain–grain collisions. Relative importance 
depends on shear rate.

● Coulomb friction dominates at low shear rates, granular collisions at 
high shear rates.

● Normal stresses are not isotropic.

● Velocity profile is typical of granular flows.

● Effective pressure pe may vanish at high shear rate
  fluidization



Solution for steady gravity-driven shear flow:

Neglect cohesion and pore pressure. Then

Obtain 

⇒ Steady-state flow only for μ < tan θ < m/(ν2+ν3)
Implies the condition m > μ (ν2+ν3)

ρg h cosθ = pe+ρ(ν2+ν3) γ̇
2

ρg h sinθ =μpe+ρm γ̇2

pe = ρg (h−z )cosθ
m /(ν2+ν3)−tanθ

m /(ν2+ν3)−μ

γ̇2(z ) =
g (h−z )cosθ (tanθ −μ)

m−μ(ν2+ν3)



● Bed-normal and shear components of dispersive stress:

• Effective stress:

• Resulting expression for bed shear stress:

{σn
(d )(z=0)

σs
(d )
(z=0)}=ρp {νn (c )

νs (c ) } γ̇
2(z=0) ≈ 25

4
ρp {νn (c )
νs (c ) }

ū 2

h2

σn ,eff.(z=0) = ρ (g h sinθ−κ ū 2 )−25
4
ρp νn (c )

ū2

h2

σ s
(b )
=max (ρ (g h cosθ−κ ū 2 )−25

4
ρp νn(c )

ū2

h2
, 0 )⏟

fluidization criterion

+
25
4
ρp νs (c )

ū 2

h2



What happens at fluidization (according to NIS)?

• If tan θ > m/(ν2 + ν3 ), dispersive pressure supports entire overburden, 

and pe = 0  ⇒  expansion.

• Where pe = 0, fluidization takes place throughout entire depth 
simultaneously.

• NIS model parameters must depend on density and particle 
properties, but model does not specify how.

• Assume flow-regime transitions to be rapid
⇒   Use algebraic instead of differential equation

to determine local depth-averaged density. 



Extension to variable density:

Theoretical calculations (Pasquarell et al., 1988) and numerical simulations 
(Campbell and Gong, 1986) of 2D stress tensor as a function of particle 
concentration may be approximated by

νn(c ) =Q c−q (c max−c )−r

νs (c ) = R⋅(1+S c−s ) νn(c )

with q , s ≈ 0.5 , r ≈ 1.5 ,
Q ≈ 10−4 , R ≈ 0.2 ,
S ≈ 1, c max ≈ 0.6.



If  (normal dispersive pressure)  >  (overburden):

Shear rate at the bed, flow depth and particle concentration are adjusted such 
that

Mass conservation

Momentum conservation

Normal-force balance

(Actually, the model is a little more complicated due to aerodynamic lift and air 
entrainment.)

h '⋅c ' = h⋅c
2
5
γ̇ ' h ' = ū = 2

5
γ̇h

ρp νn (c ' ) γ̇ ' 2
=ρ ' (g h ' cosθ +κ ū 2 )



Test run on 35° slope, with h0 = 1.0 m, μ = 0.5, no entrainment
(Note scales – not meant to be a realistic case!)



Comparison with measured avalanche at Vallée de la Sionne, 1999-02-10:
Dry friction μ = 0.50, aerodynamic lift coeff. CL = 1.7

Doppler radar

Meas. front velocity

Simulation 
w/fluidization

Simulation w/out 
fluidization



Comparison with observed avalanche at Bleie, Norway, 1994-01-27:
Dry friction μ = 0.50, aerodynamic lift coeff. CL = 2.0

Simulation 
w/fluidization

Simulation w/out 
fluidization



Testing the behavior of B2FR in regard to α-β relation

Simulations on synthetic profiles:

Parabolas with horizontal runout

300 m < xm < 4000 m,  10° < θm  < 70° randomly selected 
with uniform distribution

Release depth

2500 simulations each with no entrainment and 2 
different entrainment models (fixed 0.5 m, fixed 1.0 m, 
Eglit model)

Dry-friction coefficient fixed at μ = 0.5

xm

H

θm

h0 = 2.0 m⋅
0.291

sinθr−0.202cosθr

h0

xf



Fit to data after (Gauer et al.)

Relevant domain

Simulation of maximum velocities:



Simulation of distribution function of runout ratio:

Data of ~320 real avalanches
(from (Gauer et al., 2010))

Simulations with B2FR
on synthetic profiles

N.B. The two data sets have different ranges/distributions of H and β!



Simulation of α-β relationship:

±1 std. deviation (2.3°)
α = 0.96β −1.4 °

Avalanches did not start



Assessment of first attempt at modeling fluidization

● Block-model approach is too simplistic, but front behavior is reproduced.

● Fluidization does not progress to the assumed densities of the fluidized 
layer (30–100 kg/m3), but stops at 100–150 kg/m3.

● Very diverse avalanches can be reproduced well with small (and 
explainable) variations of μ (±10%) and aerodyn. lift coeff. CL (±20%).

● However, entrainment plays an important role!

● General trend                              is reproduced within observable range.

● Empirical correlation between α and β angle is not reproduced.

U max∝√g H drop



5. Erosion, entrainment and all that

Modeling entrainment is a long-standing, unresolved problem!

● First (depth-averaged) avalanche flow models with entrainment published 
around 1965 (Eglit, Grigorian and coworkers, Lomonossov MSU).

● Models used in practice in 2013 mostly disregard erosion/deposition.

● Models with erosion typically have a freely adjustable parameter.

Major difficulties:

● Experimental data still scarce (but improving) 

● Several relevant mechanisms

● Wide range of conditions (snow and flow properties)



Conjectured erosion mechanisms    (Gauer & Issler, 2004)

Scour and impact erosion

“Ripping”“Plowing”

Frontal mechanisms Mechanisms acting along bottom

non-erodible snow

erodible snow

“Eruption”

avalanche



Application to «consulting-grade» models:

Pursue three different lines of attack:

A) Take the block-model more seriously than it deserves:

– Assume uniform velocity profile

– Assume friction law w/out erosion remains valid with erosion

B) Uniform, quasi-stationary flow and simple rheology:

– Solve model analytically

– Study interaction between erosion and rheology

C) Uniform, non-stationary flow and range of rheologies:

– Solve model numerically (1D in bed-normal direction)

– Study how driving force is partitioned between erosion and acceleration



Assumptions in the present attempts:

• Consider only entrainment along flow bottom.

• Perfectly brittle behavior of bed material – breaks at stress τc.
No energy required to break the snow cover.
τc ~ 0.1...10 kPa.

• Bed material regarded as a continuum.

• Bed does not fail catastrophically if shear strength τc is exceeded.
(Implies essentially that τc grows with depth.)

Physical consideration:

Entrainment rate must be determined by rheology of GMF and shear 
strength τc of bed material. No free parameters!



A)   Analytic solution for sliding blocks

• Assume a bed (b) friction law of the form

Shear stress at top of bed:

• Jump condition for x-momentum across bed–flow interface:

Now immediately find the entrainment rate:

  

σ̂
b
+ ≡

σ
xz
(z=b+)

ρ
= f̂ (ū , h , ...)

σ̂b
−=τ̂c .

w e⋅(u (b
+ )−u (b−)) =w e ū = σ̂b

+−σ̂b
−= f̂ (ū ,h , ...)−τ̂c

qe =ρw e = {
0 if f (ū ,h , ...) ≤ τc ,
f (ū ,h , ...)−τc

ū
else.

bed

flow

σ̂b
−

b
σ̂b
+



For the Voellmy bed friction law:

 
with σn = normal stress on bed,

  δ   = bed friction angle (assume δ < θ)

 

Compare this with the popular entrainment assumption (e.g. RAMMS):

σ̂b
+ = sgn(ū ) (σ̂n tanδ+k ū 2 )

w e = c ū with c > 0 arbitrary

w e = { 0 if ∣ū∣≤ √ τ̂c−σ̂n tanδ

k
,

k ū −
τ̂c−σ̂n tanδ

ū
else.



Linear viscous fluid 
with Coulomb friction

Voellmy fluid



Entrainment relation derived from block-model considerations:

• Easy to implement in Voellmy and Coulomb-type models that assume 
sliding at the bed and no shearing in the flow body.

• Shear strength of the snow cover is decisive, need not be uniform in the 
entire path. Typical values are 0.5 2 kPa.‒

Differences compared to the “traditional” model implemented e.g. in 
RAMMS:

• Erosion threshold: bed shear stress > snow cover strength, σb = τc .

• Velocity dependence of erosion determined by velocity dependence of 
friction law.

• In case of Voellmy fluid: erosion coefficient fixed at c =k.



Ryggfonn avalanche 1993-03-27
Simulation with “traditional” entrainment relation we = 0.2 u,
μ = 0.4, k = 0.001

Max. flow depth Max. velocity Snow cover depth

release 
area



Ryggfonn avalanche 1993-03-27
Simulation with “traditional” entrainment relation we = 0.001 u,
μ = 0.4, k = 0.001

Max. flow depth Max. velocity Snow cover depth

release 
area



Ryggfonn avalanche 1993-03-27
Simulation with proposed entrainment relation, μ = 0.4, k = 0.001

Snow shear strength varies with altitude from 1 to 1.2 kPa.

Max. flow depth Max. velocity Snow cover depth

release 
area



Preliminary assessment:

• Shear strength of the snow cover is decisive, need not be uniform in the 

entire path. Typical values are 0.5 2 kPa.‒

• Results are markedly different from the “traditional” assumption
we = c u  with 0.2 ≤ c ≤ 1.

• Difference less pronounced if c = k chosen in the “traditional” model.

• Further tests (and snow-strength measurements!) are needed before the 

proposed model can be used prognostically.

• Open question whether we ~ 1/u in a Coulomb model gives plausible 
results.

• Consider implementing depth-dependent shear strength.



B)   An analytic toy model

• Models with uniform velocity profile are unrealistic and will eventually be 
superseded by (somewhat) more physical rheologies.

• Depth-averaged models typically assume velocity profile corresponding to 
equilibrium solution for simple-shear flow. Entrainment will modify the 
velocity profile, but how?

• How can the erosion rate be determined from the flow variables and the 
bed properties?

Start by studying the problem in the simplest setting (at the expense of 
realism...).



Infinitely long inclined plane

Steady flow, flow height h

Laminar Newtonian fluid, viscosity ν

Perfectly brittle bed material with shear 
strength

Flow height held constant by 
replenishing bed at the entrainment 
rate and skimming flow at same rate.

Momentum balance simplifies to

z

ux(z)

we

θ

h

( γ̇ ≡ d u /dz )

τc<τ0 ≡ ρg h sinθ

w
e
γ̇ = g sinθ +

1
ρ

dσ
xz

d z

= g sinθ +ν
d γ̇
d z



Procedure:

1. Assume entrainment velocity we to be given, solve ODE

2. Find appropriate boundary condition, determine physically consistent 
entrainment rate.

First-order ODE easy to solve for Newtonian (or Bingham) fluid, other 
rheologies lead to non-linear equations:

u (z ) =
g sinθ

w
e [z − ν

w
e

(1−e
−w

e
z /ν

) ]
τ (z ) =

ρ νg sinθ
w

e
(1−e

−(h−z )w
e
/ ν

)

d γ̇
d z

−
w

e

ν
γ̇ =−

g sinθ
ν

.



τ
c
=
ρνg sinθ

w e
(1−e

−h w
e
/ν

)

Boundary condition for bottom shear stress τb :

• τb  ≥ τc for erosion and entrainment to be possible.

• If τb < τc, erosion stops, τb rapidly increases to τ0 = r g h sin θ > τc ,
erosion resumes.

• If τb > τc , more mass is eroded but less excess shear stress available to 
entrain the eroded mass, so τb must decrease again.

           ⇒    Equilibrium value for the bottom shear stress is σb = τc.

           ⇒    Entrainment speed we can be determined (numerically) from

N.B. Similar b.c. proposed for aeolian transport by Owen (1964).



Shape of the velocity 
profiles is moderately 
modified by entrainment 
or deposition.

Excess shear stress is 
used for entraining the 
eroded material.

Entrainment reduces the 
equilibrium flow velocity, 
deposition increases it.



Does the model give realistic entrainment rates?

• Assume slope angle θ = 30°
              flow height h = 1 m
             density ρ = 200 kg m−3

              viscosity ν = 0.0556 m2 s−1

• This gives “gravitational traction” τ0 = 1000 Pa
surface velocity uh = 45.0 m s−1 without entrainment

• Then the entrainment rates and velocities are

  τc [Pa]  uh [m s−1]   we [m s−1] qe [kg m−2 s−1]

    500 28.2 0.089 17.8
    700 35.5 0.042   8.4
    900 41.9 0.012   2.4
  1000 45.0 0.0   0.0



What can we learn from this model?

• Entrainment modifies the velocity profile.

• EntraInment and rheology are intimately coupled.

• The boundary condition at the bed interface plays a decisive role.

• The erosion rate is determined by physical parameters only.

What are the shortcomings of this model?

• Flow height artificially held constant.

• Applies only to (quasi-)stationary situations

• No analytic solutions found for non-linear rheologies.

• Need to solve non-linear equation at each step and node.



Extension of the toy model to real-world situations

Extension to non-stationary situations based on the following 
approximation:

• Try to estimate entrainment rate for flow depth h and non-equilibrium 
speed u on slope with inclination θ.

• Consider a fictitious equilibrium flow with same h and u on a slope 
inclined at θ'.

• Choose θ' such that equilibrium speed u' on θ' matches u.

• Fictitious equilibrium flow has same physical conditions at erosion 
front as real non-equilibrium flow.

• Use equilibrium erosion speed we'(θ') for non-equilibrium we(θ).



Use scaling:

After some non-trivial manipulations one gets the non-linear equation

(Issler and Jóhannesson, NGI Technical Note 20110112-00-1-TN)

Bed shear strength τc = ψc⋅ρg h sinθ
Flow yieldstrength τ y = ψy⋅ρg h sinθ

Velocity u (z ) = υ(z /h )⋅g h2 sinθ
2ν

Erosion speed w e = χ⋅
ν
h

( υ(1)2
+
ψc

χ )⋅ (1−e−χ+
ψy

υ(1)/2+ψc /χ ) = ψc−ψy



Also obtain an expression for the flow acceleration:

Fictitious slope angle θ' must be less than 90°. This implies

Next slide: Dependence of we on u(h) for different values of τy and τc.
Slope angle 30°, h = 1 m.

Viscosity ν is chosen such that equilibrium value of u(h) = 20 m/s.

d ū
dt

= g⋅sinθ⋅ (1− ψc )−
υ(1)

2
χ

υ(1)
2

χ − ψc <
1

sinθ



unphysical divergence



Practical considerations:

• Need to solve non-linear transcendental equation
for every node and every timestep
  Computationally too costly.

• Possible solution:
Tabulate solutions in three-dimensional look-up table
(in terms of dimensionless parameter values).

• Extendability to realistic rheologies is questionable
(no analytic solution found yet for differential
equation for shear rate).



C)  Uniform non-stationary numerical model

• Infinite-slope approximation

• 1D model to compute evolution of velocity profile and erosion front.

• Momentum balance equation in variable domain 0 ≤ z ≤ b(t).

• Initial condition:    b(t0) = b0,    u(z,t0) = u0(z).

• Boundary conditions:   u(b(t),t) = 0,   σ(0,t) = 0,   σ(b(t),t) = τc.

• Entrainment speed we = −db/dt must be determined by local conditions at 

interface, i.e., by shear stress gradient.

• Rheology connects shear stress to shear rate gradient.

(Issler & Pastor, 2013. Annals Glaciol. 52(58), 143−147)

∂t u = g sinθ + ∂z σ̂



b(t)



• Velocity at time t + dt of particles eroded at time t:

• Shear rate at erosion front must be critical shear rate: 

u (b (t ) , t +dt ) = 0+(g sinθ+∂z σ̂ )dt .

γ̇ (b ,t ) =
u (b ,t +dt )−0

dz
=

(g sinθ +∂z σ̂ (b , t ))dt

w e (t )dt
=

!
γ̇c where f ( γ̇c ,b )=τc

w e (t ) =
g sinθ + ∂z σ̂ (γ̇c ,b , ...)

γ̇c


b(t)

zz

b(t+dt)

Time t Time t+dt

dz = we dt

u u

du = a dt =    γcdz
.



Newtonian vs. Bagnoldian fluid: Time evolution of depth-averaged velocity 
and acceleration

In both cases slope angle 30º, same initial flow height.
Different initial velocities and bed shear strengths.
Result: Same asymptotic acceleration a = 2.5 m/s2 !



Newtonian vs. Bagnoldian fluid: Time evolution of flow depth and erosion rate

In both cases: Erosion rate tends towards asymptotic value
(at flow depths hardly occurring in nature).



Newtonian vs. Bagnoldian fluid: Time evolution of shear stress and velocity 
profiles

In both cases: Linear velocity profile except near surface.
Shear stress profile nearly linear near surface.

Different: Near-surface velocity profile depends on rheology.



Can we understand the numerical results?

Preliminary inferences from the numerical simulations:

After initial phase, independent of rheology,

• the flow accelerates uniformly at ≈ ½ g sin θ, 

• the erosion rate is constant, the flow depth grows linearly,

• the velocity profiles are quite flat near the bed.

 This looks almost like a granular flow with Coulomb friction!

Recent statistical reanalysis of ~ 300 extreme dry-snow avalanches (Gauer et 
al., 2010; Gauer, 2013) indicates

➢ Coulomb model with strongly slope-dependent friction coefficient gives 
best fit for both runout distance and front velocity,

➢ maximum velocity grows as ~ (drop height)½.



Seek asymptotic solution to point-mass equations with the following 
properties:

Then, equation of motion                                         transforms into

 

Simple algebra yields

h (t ) = h0+w e t , ū (t ) = ū 0+ā t , w e , ā = cst.

d (h ū )
dt

= h g sinθ−τ̂c

˙̄u (t ) = g sinθ−
τ̂c

h (t )
−ū (t )

ḣ (t )
h (t )

= g sinθ−
( τ̂c+w e ū 0)+w e ā t

h0+w e t⏟
must beindep.of t

=
!

ā

ā =
g sinθ

2
, w e =

1
ū 0

( 12 g h0 sinθ−τ̂c )



Perhaps somewhat surprising...

… but in nearly perfect agreement with the simulations!

(Less than 1% discrepancy – due to setting entrainment rate to 99% of 

theoretical value to avoid oscillations.)

N.B. Both relations are independent of rheology! However, rheology 

determines relation between h0 and ū0 as well as velocity profile.

Open question: Need better understanding of stability and domain of 

attraction of this solution. (It appears to be rather stable!)



Use of the 1D depth-resolved erosion model with depth-
averaged flow models

Key point:  Non-dimensionalize equations of the 1D model and tabulate the 
corresponding erosion rates in look-up tables for the depth-averaged model

Relevant dimensionless parameters for NIS-type models:
ω = we / u
Fr = u / (g h sin θ)1/2(Froude number)
Cb = tan θ / μ
Ba = k / h2

ψ = τc / (g h sin θ)

Need a 4D look-up table with O(106) elements!

Populating this table is in progress, but is not trivial.



Conclusions concerning erosion modeling:

1. Erosion function depends crucially on flow rheology. This makes 
validation of erosion models difficult.

2. Consistent erosion functions have no adjustable parameters.

3. Stress boundary condition at bed flow‒  interface is central. Perfectly 
brittle behavior is an interesting candidate for snow avalanches.

4. Bottom erosion by scour should be complemented by frontal erosion by 
plowing or eruption.

5. May need to obtain data on shear-strength profile of new-snow layers 
and to implement this in numerical flow models.



6. Transformation of the flowing material

Photo A. Errera, 2010.



Progressive break-up of the flow material may be decisive in 
certain situations:

Snow avalanches:

• General wisdom: Break-up of original slab usually is fast and need not be 
modeled explicitly.

• In small avalanches, break-up sometimes does not progress sufficiently 
and sliding stops on steep slopes.

• However, even in big avalanches, small particles may still be ground down 
to grain size.

• In granular materials in the collisional flow regime:

i.e., at constant shear stress, shear rate and velocity increase strongly 
with progressive comminution!

 

σxz∝ γ̇
2 d 2



Quick-clay slides:

• Sensitive marine clays, frequent in Scandinavia, eastern Canada, Alaska 
and northern Siberia near the coast.

• Salt that holds them stable (flocculated), may be leached out after 
isostatic rebound and exposure to rain, etc.

• When shear strength is exceeded, remolding sets in and shear strength, 
viscosity drop by several orders of magnitude.

• Potential for disastrous slides without visible precursor signs.

• Release area may be a gentle slope, run-out angle can be extremely low, 
slide volume often several million cubic meters.

• Progression of remolding in the initial phase is decisive for extent of 
slide.



Quick-clay slide at Rissa 
(Norway), 1978.

From (L'Heureux et al., 
2012).

For a commented 
amateur video of the 
event, see
http://www.ngi.no/en/Ar
eas-of-research-and-
development/Soil-and-
rock-slides/The-Quick-
Clay-Landslide-at-Rissa---
1978/.
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