KITP and Fluid Mechanics Seminar

October 30, 2013

Segregation in dense, inclined flows: binary mixtures of spheres

Michele Larcher

Department of Civil, Environmental and Mechanical Engineering

University of Trento

Jim Jenkins

School of Civil and Environmental
Engineering
Cornell University

Why Bother?

Differences in particle size influence the flow, and particle segregation itself is of interest, but may be undesirable

How to Do It?

Simplest theory for segregation of spheres that differ little in size and mass

Extended kinetic theory for the dense, collisional flow of the mixture

Ingredients

Steady, uniform, dense, inclined flow
Binary mixture (De Haro, Cohen \& Kincaid 1983)
Small differences in diameters and masses (Arnarson \& Jenkins 2004)

Extended kinetic theory (Jenkins 2007)
Very dissipative collisions (Garzo \& Dufty 1999)

Numerical Simulations

Tripathi and Khakhar, Phys. Fluids 3, 113302 (2011)

Variables

Radii: $r_{A}, r_{B} d=r_{A}+r_{B} \quad$ Masses: m_{A}, m_{B}

$$
\delta r=r_{A} / r_{B}-1 \quad \delta m=\left(m_{A}-m_{B}\right) /\left(m_{A}+m_{B}\right)
$$

Number densities:
$n_{A}, n_{B} \quad n=n_{A}+n_{B}$
Number fraction, species A:

$$
f_{A}=N_{A} / N
$$

Mass densities: $\rho_{i}=m_{i} n_{i} \quad \rho=\rho_{A}+\rho_{B}$
Volume fractions: $c_{i}=n_{i}(4 / 3) \pi r_{i}^{3} \quad c=c_{A}+c_{B}$

Variables

Mixture velocity: $u=\left(\rho_{A} u_{A}+\rho_{B} u_{B}\right) / \rho$

Granular temperature:

$$
T_{i}=\frac{m_{i}\left\langle C_{i}^{2}\right\rangle}{3} \quad i=A, B
$$

Mixture temperature: $T=\frac{n_{A} T_{A}+n_{B} T_{B}}{n}$

Segregation

Species momentum in normal direction:

$$
0=-\frac{d p_{A}}{d y}-\rho_{A} g \cos \phi+\Phi \quad 0=-\frac{d p_{B}}{d y}-\rho_{B} g \cos \phi-\Phi
$$

Sum:

$$
0=-\frac{d p}{d y}-\rho g \cos \phi \quad \quad p=p_{A}+p_{B} \quad \rho=\rho_{A}+\rho_{B}
$$

Weighted difference:

$$
-\rho_{B} \frac{d p_{A}}{d y}+\rho_{A} \frac{d p_{B}}{d y}+\rho \Phi=0
$$

Segregation

Partial pressures:

$$
p_{A}=n_{A}\left(1+K_{A A}+K_{A B}\right) T \quad K_{A j}=\frac{1}{2} c_{j}\left(1+r_{A} / r_{j}\right)^{3} g_{A j} \quad j=A, B
$$

Radial distribution functions:

$$
g_{i j}=g_{i j}\left(r_{A}, r_{B}, c_{A}, c_{B}\right), \quad j=A, B
$$

Particle interactions:

$$
\Phi=K_{A B} n_{A} T\left\{\frac{m_{B}-m_{A}}{m_{B}+m_{A}} \frac{d}{d y}(\ln T)+\frac{d}{d y}\left[\ln \left(\frac{n_{A}}{n_{B}}\right)\right]\right\}
$$

Small Differences δr and δm

$$
\begin{array}{ll}
\frac{d x}{d y}=-\frac{1-4 x^{2}}{2}\left[-\frac{1}{T} \frac{d T}{d y}\left(R_{1} \delta r+\Gamma_{1} \delta m\right)+\frac{g}{2 T}\left(R_{2} \delta r+\Gamma_{2} \delta m\right) \cos \phi\right] \\
\frac{d I}{d y}=\frac{1}{h} \frac{2 \bar{c} x}{(1+2 x)\left(\overline{n c}_{A} / \bar{n}_{A}+\overline{n c}_{B} / \bar{n}_{B}\right)} & x \equiv \frac{1}{2} \frac{n_{A}-n_{B}}{n} \\
I(y)=\frac{1}{h}_{0}^{y} \frac{2 \bar{c} x()}{1+2 x()\left(\bar{n} \bar{x} x_{A} / \bar{n}_{A}+\bar{n} \bar{c}_{B} / \bar{n}_{B}\right)} d & I(0)=0, I(h)=\frac{N_{A}}{N}-\frac{1}{2}
\end{array}
$$

Coefficients

$$
\begin{gathered}
R_{1}=\frac{5}{58}\left[2+\frac{c(3-c)}{2-c}-\frac{12}{5} G\right]+2 G\left[3+\frac{c(3-c)}{2-c}\right]-\frac{12 c H(1+4 G)}{1+4 G+4 c H} \\
R_{2}=-\frac{12 c H}{1+4 G+4 c H}, \quad \Gamma_{1}=\frac{179}{29} G+\frac{105}{116}, \quad \Gamma_{2}=2 \\
G(c) \equiv c g_{0}(c), \quad g_{0}(c)=5.69 \frac{c_{M}-0.49}{c_{M}-c}, \quad H \equiv \frac{d G}{d c}
\end{gathered}
$$

Dense, Dissipative Mixture

Mixture density:

$$
\rho=(1+2 x \delta m) m_{A B} n / 2=\text { constant }
$$

Mixture pressure:

$$
p=(1+e) m_{A B} n G T=\rho g(h-y) \cos \phi
$$

Mixture temperature:

$$
T=\frac{1}{2(1+e) G}(h-y) g \cos \phi(1+2 x \delta m)
$$

Dense, Dissipative Mixture

Mixture shear stress:

$$
\begin{aligned}
& \mathrm{s}=\frac{4 J}{5 \pi^{1 / 2}} m_{A B} n r_{A B} G T^{1 / 2} \frac{d u}{d y} \\
& \quad J=\frac{1+e}{2}+\frac{\pi}{4} \frac{(3 e-1)(1+e)^{2}}{24-(1-e)(11-e)}
\end{aligned}
$$

Collisional dissipation:

$$
\gamma=\frac{6}{\pi^{1 / 2}} \frac{m_{A B} n G}{L}\left(1-e^{2}\right) T^{3 / 2}[1-x(\delta r+\delta m]
$$

Extended Kinetic Theory

Assume:

$$
\frac{L}{r_{A B}}=-\frac{1}{2} \alpha G^{1 / 3} \frac{u^{\prime}}{T^{1 / 2}}
$$

Mixture energy balance:

$$
s u^{\prime}-\gamma=0
$$

Obtain:

$$
\left(\frac{r_{A B} u^{\prime}}{T^{1 / 2}}\right)^{3}=\frac{15}{J} \frac{\left(1-e^{2}\right)}{\alpha G^{1 / 3}}[1-2 x(\delta r+\delta m)]
$$

Results

$$
G=\left\{\frac{4 J}{5 \pi^{1 / 2}} \frac{1}{1+e}\left[\frac{15}{J} \frac{\left(1-e^{2}\right)}{\alpha}\right]^{1 / 3} \frac{1}{s / p}\right\}^{9}
$$

$$
u=\frac{5 \pi^{1 / 2}}{4 J r_{A B}}\left(\frac{1+e}{2 G} g \cos \phi\right)^{1 / 2}\left[h^{3 / 2}-(h-y)^{3 / 2}\right] \frac{s}{p}(1-x \delta r)
$$

$\underline{s}=\tan \phi$
p

$$
c=\frac{c_{M} G}{G+5.69\left(c_{M}-0.49\right)}
$$

Dense Flow Volume Fraction

Different Size, Same Material

Predicted mixture velocity u, local concentration fraction c_{A} / c of the larger spheres, and mixture concentration c, for $e=0.65, r_{A} / r_{B}=1.5, m_{A} / m_{B}=$ $(1.5)^{3}, \alpha=0.50$ and $f_{A}=0.23\left(V_{A} / V=0.5\right)$ at four angles of inclination.

Same Size, Different Material

Predicted mixture velocity u, local concentration fraction c_{A} / c of the more massive spheres and mixture concentration c when $e=0.65, r_{A} / r_{B}=1, m_{A} /$ $m_{B}=3, \alpha=0.50, c_{M}=0.58$, and $f_{A}=0.50$ (equivalent to $V_{A} / V=0.5$) for four angles of inclination.

Different Size, Different Materials

Predicted mixture velocity u, local concentration fraction c_{A} / c of the larger spheres, and mixture concentration c, for $r_{A} / r_{B}=1.5, e=0.65, \alpha=0.50, \phi=$ 25° and $V_{A} / V=0.5\left(f_{A}=0.23\right)$ at two values of the density ratio.

Special Case: No Segregation

$$
\frac{d x}{d y}=\frac{1-4 x^{2}}{4(1-y)}\left[\left(R_{1} \delta r+\Gamma_{1} \delta m\right)-2\left(R_{2} \delta r+\Gamma_{2} \delta m\right)(1+e) G\right]
$$

$$
\frac{\delta m}{\delta r}=\frac{R_{1}-2 R_{2}(1+e) G}{2 \Gamma_{2}(1+e) G-\Gamma_{1}}
$$

Special Case: No Segregation

Conclusion

A rough amalgamation of two theories: one for segregation, and one for dense, dissipative inclined flow, reproduces qualitative features and provides some quantitative agreement with the results of numerical simulations.
jim.jenkins@cornell.edu

