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Leveed deposits

A wide variety of deposits that:

⋅ Are on smooth topography at a shallow incline

⋅ Have an elongated, levee-bounded, (possibly �ngered?) morphology

⋅ Have a steep, rounded distal termination

By what mechanism are these deposits emplaced?



USGS Debris Flow Flume

⋅ Flume is 95m long, 2m wide

⋅ Inclined at 31○

⋅ Release of 10m3 of water-saturated sediment

⋅ Sediment is water-saturated sand and gravel,
size-range predominantly 0.0625–32mm

⋅ Flume opens onto �at runout area



Flow Tracking



Debris Flow Runout

⋅ Flow runs out onto near-horizontal surface (∼ 2.4○ incline)

⋅ Forms elongated deposit



Debris Flow Runout

⋅ Flow deposits continuously into stationary levees

⋅ Levees restrict �ow width, except close to the �ow front



Debris Flow Runout
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Debris Flow Runout
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Surface Tracers
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Surface particle paths



USGS Debris Flow Flume

⋅ Flow steady in a frame moving with the front
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Natural debris flow

Source: Costa & Williams, USGS Open File Report 84-606 (1984)



Natural debris flow

Source: Costa & Williams, USGS Open File Report 84-606 (1984)



Moving-frameModelling

For modelling, construct a �ow depth and depth-integrated velocity �eld that
resemble the experimental �ows:

h(ξ, y) = y0 (1 − ŷ2n)
hū = (ψy ,−ψξ) with

ψ(ξ, y) = y30 (Aŷ−1 − Bŷ2n+1 − Cŷ2m+1 + Dŷ2n+2m+1)
y0(ξ) =

√
tanh(−ξ), ŷ = y/y0 .
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Moving-frameModelling
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⋅ Assume a constant vertical velocity pro�le: (u, v)(ξ, y, z) = ū(ξ, y) f (z/h)
⋅ For example, linear velocity pro�les with basal slip: (u, v) = ū (α + (1 − α) 2z

h )
⋅ Vertical velocity w determined by mass conservation: ∇ ⋅ u = 0



Moving-frameModelling
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Momentum in the flow head

uf

Levee

Steady, uniform flow

Head region

V

u

Momentum conservation: ρ ( ∂u
∂t

+ (u ⋅ ∇)u) = ∇ ⋅ σ + f

Assume steady in a moving frame, integrate over volume V moving with the front:

− ∫∂V [(u − u f ) ⋅ n]u dA
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Momentum advected into head

+ ∫x=u f t
(σ ⋅ n)x dA

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pressure force

+ g sin θ ∫V ρ dV
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Gravity

= − ∫z=0(σ ⋅ n)x dA
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Basal friction/
viscous resistance

Extra momentum advected into head due to lateral shape pro�le.
Must be balanced by additional basal friction / viscous resistance in head.



Particle Size Segregation
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Particle Size Segregation
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⋅ Infer a typical rise rate of ∼ 3.5cm s−1



SegregationModelling

In �ume experiments, continuum particle size distribution forms three classes:

⋅ Gravel (> 8mm), segregates upwards

⋅ Sand (0.0625–8mm), segregates downwards

⋅ Mud and �ne sand (< 0.0625mm) (∼ 2%), advected with pore �uid

Bidisperse particle segregation model of Gray &�ornton (Proc. R. Soc. 461)

⋅ Large (gravel) and small (sand) particle volume fractions ϕ l and ϕs

⋅ Assume incompressible �ow ϕ l + ϕs = 1

⋅ Large particles move with velocity vl = u + qϕsk, concentration governed by

∂ϕ l

∂t
+∇ ⋅ (ϕ lvl) = 0, where

⋅ u is the prescribed bulk velocity �eld

⋅ q is a segregation speed (≈ 3.5 cm s−1)



SegregationModelling
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SegregationModelling
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Particle paths in a segregating flow front

Coarse material:

⋅ Segregates to the surface
⋅ Is transported to the front

⋅ Recirculates with a spiral path within the �ow head

⋅ Is transported laterally, into the levees

(Johnson et al., JGR Earth Surface 117 (2012))



Mass balance in the flow head

uf

Levee

Steady, uniform flow

Head region
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u

Large particle conservation:
∂ϕ l

∂t
+∇ ⋅ (ϕ lvl) = 0

Assume steady in a moving frame, integrate over volume V moving with the front:

∫∂V [ϕ l (u − u f )] ⋅ ndA = 0

Flux of large particles advected into �ow head at the surface of the channelised �ow
must balance �ux of large particles leaving head in levees.



Depth-integratedModelling

Wish to encapsulate vertical structure into a two-dimensional depth-averaged model.

⋅ Integrate three-dimensional equation

∂ϕ l

∂t
+∇ ⋅ (ϕ l (u + qϕsk)) = 0

between z = 0 and z = h.

⋅ Project ϕ l(x , y, z, t) onto a ‘�rst moment’ function ϕ l(z) = f (z, ϕ̄ l(x , y, t)).

Assuming instantaneous segregation (Gray & Kokelaar, jfm 652), obtain

∂η
∂t

+∇h ⋅ [ηū(α + (1 − α) η
h
)] = 0

⋅ η(x , y) = hϕ̄ l is the height of the interface between segregated small and large
particles

⋅ �e depth-integrated model captures just the enhanced transport of large
particles at the surface



Depth-integratedModelling
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Depth-integratedModelling

ϕ̄ l = 0.2: Large particles transported away from �ow front in levees



Depth-integratedModelling

ϕ̄ l = 0.3: Large particles accumulate in �ow head







Shallow-water & depth-integrated segregation model

Model depth-integrated:

⋅ Mass conservation of each species

⋅ Momentum conservation

⋅ E�ect of large particle concentration
on friction

∂h
∂t

+∇h ⋅ [hū] = 0

∂η
∂t

+∇h ⋅ [ηū(α + (1 − α) η
h
)] = 0

∂
∂t

(hū) +∇h ⋅ [hūū + gh2

2
] = i sin θ + µ

ū
∣ū∣

µ = µ(h, ∣ū∣, η/h)

(Woodhouse et al., JFM 709 (2012))


