

Grain-scale measurements of particle-fluid interaction in marine and aeolian sediment transport

Ken Kiger Department of Mechanical Engineering University of Maryland

KITP Workshop: Fluid Mediated Particle Transport in Geophysical Flows October 3, 2013

Work supported by the NSF and AFSOR

Measurement of dispersed two-phase flows

- Physics of collective fluid/particle coupling poorly understood
 - What are the effective sediment turbulence characteristics?
 - Is purely stochastic description adequate?
 - How do anisotropic flow structures influence net coupling?
- Primary variables of interest:
 - Velocity of suspending fluid
 - Velocity of particulates (sediment)
 - Concentration of particulates
 - Size distribution

Goals

- Simultaneous measurement of fluid and dispersed phase motion
 - Quantify fluid motion responsible for turbulent suspension of particles
 - Quantify nature of flow modification and particle/turbulence interaction

Overview

- Two-fluid framework and closure
- Experimental techniques
- Prototypical flow: fully developed channel flow
 - Solid-liquid suspension

- Complex applied flow: rotorcraft downwash
 - Solid-gas suspension

Problem Framework: Two-Fluid Equations

- Apply averaging operator to mass and momentum equations
 - Drew (1983), Simonin (1991)
 - Phase indicator function

 $\chi_k(x_i, t) = \begin{cases} 1 & \text{if } x_i \text{ inside phase } k \\ 0 & \text{if } x_i \text{ outside phase } k \end{cases}$

Averaging operator

$$\frac{\partial \chi_k}{\partial t} + u_{I,j} \frac{\partial \chi_k}{\partial x_j} = 0$$

- $\alpha_k = \langle \chi_k \rangle$, volume fraction $\alpha_k G_{k,ij} = \langle \chi_k g_{ij} \rangle$ $g'_{ij} = g_{ij} G_{2,ij}$
- Assume no inter-phase mass flux, incompressible carrier phase
 - Mass

$$\frac{\P}{\P t} \left(\partial_k \Gamma_k \right) + \frac{\P}{\P x_j} \left(\partial_k \Gamma_k U_{k,j} \right) = 0$$

 $\tau_{k,ij}$ = averaged viscous stress tensor in phase k

Momentum

 $I_{k,i}$ = Mean interphase momentum transport (less mean pressure contribution)

$$\mathcal{A}_{k} \mathcal{\Gamma}_{k} \underbrace{\underbrace{\widehat{\mathfrak{g}}}_{k} \underbrace{\P U_{k,i}}_{\P t} + U_{k,j} \frac{\P U_{k,i} \overset{\widehat{\mathbf{0}}}{\vdots}}{\P x_{j} \overset{\widehat{\mathbf{0}}}{\underline{\mathbf{0}}}} = -\mathcal{A}_{k} \frac{\P P_{1}}{\P x_{i}} + \mathcal{A}_{k} \mathcal{\Gamma}_{k} g_{i} + \frac{\P}{\P x_{j}} \Big(\mathcal{A}_{k} t_{k,ij} \Big) - \frac{\P}{\P x_{j}} \Big(\mathcal{A}_{k} \mathcal{\Gamma}_{k} \Big\langle u_{i}^{\mathfrak{c}} u_{j}^{\mathfrak{c}} \Big\rangle_{k} \Big) + I_{k,i} \mathcal{A}_{k} \mathcal{L}_{k} \mathcal{A}_{k} \mathcal{L}_{k} \mathcal{A}_{k} \mathcal{L}_{k} \mathcal{A}_{k} \mathcal{L}_{k} \mathcal{A}_{k} \mathcal{L}_{k} \mathcal{A}_{k} \mathcal{L}_{k} \mathcal{A}_{k} \mathcal{A}_{k} \mathcal{L}_{k} \mathcal{L$$

Two-Fluid Equations (cont)

- Interphase momentum transport
 - Dilute flow: no particle-particle interactions
 - For large particle/fluid density ratios, quasi-steady viscous drag is by far the dominant term
 - For small density ratios, additional force terms can be relevant
 - Added mass, Pressure term, Bassett history term etc.
 - For sediment, $\rho_2/\rho_1 \sim 2.5 > 1$ (*k*=1 for fluid, *k*=2 for dispersed phase)
 - Drag still first order effect, but other terms will likely also contribute

$$I_{2,i} = -I_{1,i} = -\alpha_k \left\langle \rho_1 \frac{3}{4} \frac{C_D}{d} | \mathbf{v}_r | \mathbf{v}_{r,i} \right\rangle_2$$
$$\mathbf{v}_{r,i} = u_{2,i} - u_{1,i} \qquad C_D = \frac{24 \left[1 + 0.15 \operatorname{Re}_p^{0.687} \right]}{\operatorname{Re}_p} \qquad \operatorname{Re}_p = \frac{\rho_1 | \mathbf{v}_r | d}{\mu_1}$$

Closure requirements

Closure is needed for:

- Particle fluctuations
- Particle/fluid cross-correlations
- Fluid fluctuations
- Simplest method is to use a gradient transport (mixing length) model
 - Shown to be inconsistent for many applications
- Alternative: Provide separate evolution equation for higher order terms
 - Particle kinetic stress equation
 - Particle/fluid covariance equation
 - Fluid kinetic stress equation
 - Will require third-moment correlations models to complete the closure

Experiments

- Simultaneous measurements of both fluid and particles are needed
 - Provides check for model developments
 - Can be performed under conditions not readily accessible to DNS/LES
 - Particles larger than the turbulent fluid scales, finite Rep

What is PIV? (single phase flow)

Particle Image Velocimetry (PIV):

Quantitative imaging method to infer local fluid motion from displacement of tracer particles

Slide from C. Poelma of TU Delft

Result of PIV interrogation

Particle Image Velocimetry (PIV)

- divide image pair in *interrogation regions*
- small region:
 uniform motion
- compute displacement
- repeat !!!

Slide from J. Westerweel of TU Delft

Difficulty with Two-Phase PIV

Coupled but distinct motion in different phases

- Need to separate the images of the phases
 - How to discriminate the sediment from the fluid? *Image characteristics*
- Strengths
 - Snapshot of flow structure (fluid velocity, sediment velocity, concentration)
- Limitations
 - Flow must be optically dilute (must see through it, volume fraction < 1%)
 - Usually prefer large size separation between tracer seed and dispersed phase
 - Difficult to reliably discriminate size
 - Dynamic range: 100 to 1 is typical, can be better, but challenging

Single camera Two-Phase PIV Implementation

- Simultaneous Velocity Measurement of both phases
 - Use median filtering technique to separate images
 - Particle tracking of dispersed phase
 - combine with size/intensity filter (Khalitov & Longmire, 2002)
 - Cross-correlation PIV of carrier fluid

Original Two-phase image (carrier + dispersed phase)

Tracer particle image

Dispersed Image

Dispersed phase measurement by sheet illumination

Sheet illumination considerations

• What is the effective sampling volume for a particle in a light sheet? Can't we just count particles?

- Works fine for small image regions far from boundaries, but in general one needs to account for:
 - Focusing & attenuation of sheet
 - Scattered illumination
 - Boundary reflections

Experimental Facility

Planar Horizontal Water Channel

- $4 \times 36 \times 488$ cm, recirculating flow
- Pressure gradient measurements
 - fully-developed by x = 250 cm
- Particles introduce to settling chamber outlet across span

Experimental Conditions

- Both single-phase and two-phase experiments conducted
- Carrier Fluid Conditions
 - Water, Q = 7.6 l/s
 - $U_c = 59 \text{ cm/s}, u_\tau = 2.8 \text{ cm/s}, Re_\tau = 570$
 - Flowrate kept the same for two-phase experiments
 - Tracer particles: 10 μ m silver-coated, hollow glass spheres, SG = 1.4

Dispersed Phase Conditions

- Glass beads: (specific gravity, SG = 2.5)
- Standard sieve size range: $180 < D < 212 \mu m$
- Settling velocity, $v_s = 2.2$ to 2.6 cm/s
- Corrected Particle Response Time, $\tau_p = 4.5$ ms
- $St^+ = \tau_p/\tau^+ \sim 4$
- Bulk Mass Loading: dM/dt = 4 gm/s, $M_p/M_f \sim 5 \times 10^{-4}$
- Bulk Volume Fraction, $\alpha = 2 \times 10^{-4}$

Two-Phase Flow: Mean Concentration Profile

- Concentration follows a power law
 - Equivalent to Rouse distribution for infinite depth

$$\frac{C(y)}{C(y_o)} = \left(\frac{h-y}{y}\frac{y_o}{h-y_o}\right)^a \cong \left(\frac{y_o}{y}\right)^a$$

$$a = \frac{v_s}{\kappa u_\tau} = \frac{2.44 cm/s}{(0.40)(2.95 cm/s)} = 2.07$$

 Based on mixing length theory, but still gives good agreement

Mean Velocity

- Particles alter mean fluid profile
 - Skin friction increased by 7%; qualitatively similar to effect of fixed roughness
- Particles lag fluid over most of flow
 - Observed in gas/solid flow (much large Stokes number... likely not same reasons)
 - Particles on average reside in slower moving fluid regions?
 - Reported by Kaftori et al, 1995 for $\rho_p / \rho_f = 1.05$ (current is heavier ~ 2.5)
 - Organization of particles to low speed side of structures a la Wang & Maxey (1993)?
- Particles begin to lead fluid near inner region transport lag across strong gradient

Two-Phase Flow: Reynolds Stress

- Fluid Reynolds stress maximum displaced further from wall by particle distortion
- Particle Reynolds stress less than fluid close to the wall, greater than the fluid away from the wall.

Particle Slip Velocity, $\overline{u}_f - \langle u_p \rangle_p = \langle u_f - u_p \rangle_p$

- Streamwise direction
 - Particle-conditioned slip (+) is generally small in outer flow
 - Mean slip (•) and particle conditioned slip are similar in near wall region
- Wall-normal direction
 - Mean slip (•) is negligible
 - Particle-conditioned slip (+) approximately 40% of steady-state settling velocity (2.4 cm/s)

Effective settling velocity

- Direct measure of settling velocity shows hinder effects
 - $W/w_0 \sim 0.4$

G. H. Good, S. Gerashchenko and Z. Warhaft

- Noted in sediment community by Murray(1970), Nielsen(1993), Kawanisa & Shiozaki (2008)
 - Enhancement: "fast-tracking" Maxey & Corrsin (1986)
 - *Hindered: non-linear drag Ho, vortex trapping, loitering*

Two-Phase Flow: Particle/Fluid Correlation

- Particle/Fluid motion highly correlated in outer wall region
 - R_{fp} is high, approximately 1 for y⁺> 60
 - Particles adjust to local flow conditions rapidly

Particle Conditioned Fluid Velocity Profiles

• Average fluid motion at particle locations:

- Upward moving particles are in fluid regions moving slower than mean fluid
- Downward moving particles are in fluid regions which on average are the same as the fluid
- Indicates preferential structure interaction of particle suspension

Suspension and Sedimentation: Quadrant Analysis

- Conditionally sampled fluid velocity fluctuations
 - Upward moving particles primarily in quadrant II
 - Downward moving particles are almost equally split in quadrant III and IV

- Persistent behavior
 - Similar quadrant behavior in far outer region
 - Distribution tends towards axisymmetric case in outer region

Event structures: Quadrant II hairpin

- Similar structures found
 - Appropriate spacing
 - Not as frequent
 - Re effects? ($Re_{\theta} = 1183$)
 - Smaller field of view?
- Evidence suggests packets contribute to particle suspension

Particle Kinetic Stress

- Turbulence budget for particle stresses
 - (Wang, Squires, Simonin, 1998)

$$\stackrel{\text{\acute{e}}}{\stackrel{\text{\acute{e}}}{=}} + U_{2,m} \frac{1}{\|x_m \stackrel{\text{\acute{u}}}{\stackrel{\text{\acute{e}}}{=}} (u_{2,i} \stackrel{\text{\acute{e}}}{=} N_{2,ij} + D_{2,ij} + P_{2,ij}^d + P_{2,ij}^p + P_{2,ij}^d + P_{2,ij}^p + P_{2,ij}^d + P_{2,ij}^p + P_$$

• Production by mean shear

$$P_{2,ij} = -\left\langle u_{2,i} u_{2,m} \right\rangle \frac{\P U_{2,j}}{\P x_m} - \left\langle u_{2,j} u_{2,m} \right\rangle \frac{\P U_{2,i}}{\P x_m}$$

- Transport by fluctuations
- $D_{2,ij} = -\frac{1}{\partial_2} \frac{\P}{\P x_m} \Big[\partial_2 \Big\langle u_{2,i}^{\mathbb{C}} u_{2,j}^{\mathbb{C}} u_{2,m}^{\mathbb{C}} \Big\rangle_2 \Big]$
- Momentum coupling to fluid
 - (destruction)
- Momentum coupling to fluid
 - (production)

$$\mathsf{P}_{2,ij}^{d} = -\left\langle \frac{\Gamma_1}{\Gamma_2} \frac{3}{2} \frac{C_d}{d} |\mathbf{v}_r| u_{2,i}^{\complement} u_{2,j}^{\circlearrowright} \right\rangle_2$$

$$\mathsf{P}_{2,ij}^{p} = \left\langle \frac{\Gamma_{1}}{\Gamma_{2}} \frac{3}{4} \frac{C_{d}}{d} | \mathbf{v}_{r} | \left[u_{1,i}^{c} u_{2,j}^{c} + u_{1,j}^{c} u_{2,i}^{c} \right] \right\rangle_{2}$$

Streamwise Particle Kinetic Stress Budget

- Streamwise Particle/Fluid Coupling: $\Pi^{d}_{2,11}$, $\Pi^{p}_{2,11}$
 - Compare results to Wang, Squires, & Simonin (1998)
 - Gas/solid flow ($\rho_2 / \rho_1 = 2118$), Re_{τ} = 180, No gravity, St⁺~700
 - Computations, all 4 terms are computed; Experiments, all but D_{2,ii}computed

 $(\longrightarrow) D_{2,ij}; (\longrightarrow) \Pi^{d}_{2,ij}; (\longrightarrow) \Pi^{p}_{2,ij}; (\longrightarrow) P_{2,ij}; (\circ) \text{ sum}$

- Interphase terms are qualitatively similar Similar general shapes, $\Pi^{a}_{11} > \Pi^{p}_{11}$
- Quantitative difference
 - Magnitudes different: $\Pi_{11}^{a} / \Pi_{11}^{p} \sim 1.3$ vs 3, overall magnitudes are 10 to 20 times greater
 - Interphase terms are expected to increase with incresed fluid density and decreased St+
 - Dominant interphase transfer (Π) greatly diminishes importance of mean shear (P)
 - Turbulent transport (D) has opposite sign because of small shear production (P)

Model Approximations

- Model 1 (Simonin, Deutsch & Boivin, 1995)
 - In limit of small Re_p << 1, $\tau^{F}_{12} = \tau_{p_{1}}$ which is constant $\tau^{F}_{12} = \frac{\rho_{2}}{\rho_{1}} \frac{4}{3} \frac{d}{\langle C_{D} \rangle} \frac{1}{\langle |\mathbf{v}_{r}| \rangle}$ $\Pi^{d}_{2,ij} = -\left\langle \frac{\rho_{1}}{\rho_{2}} \frac{3}{2} \frac{C_{d}}{d} |\mathbf{v}_{r}| u^{"}_{2,i} u^{"}_{2,j} \right\rangle_{2}$
 - For finite Re_p , try to separating τ^{F}_{12}

Particle Stress Model Comparison

• Model 1

- Π^{ρ}_{ij} agrees within 5% for y⁺>50, overestimates ~30% near wall
- *Π*^d₁₁ agrees within 10% or better, consistently underestimates near the wall
- Model 2
 - OK in outer region where Re_p is small
 - Up to 30% underestimate relative to Model 1 near wall

Part II: Dust suspension by impinging jets

Interesting detail...

Photograph by Zoltan Szoboszlay of NASA Ames Flight Research Center

Experimental Set up

- Mimic rotorcraft in ground effect with simple prototype flow
 - Forced impinging jet
 - Maintain intense vortex structure embedded within stagnation flow
 - Does not retain helical nature of rotorcraft wake

Current Imaging Planes

Laser Sheet width ~ 1.5 mm

Three vertical planes (PIV)

- Vortex ring trajectory
- Vortex ring development
- Vortex ring breakdown
- Stacked horizontal planes (Stereo PIV
 - Measure breakdown at different heights on the vortex ring
- Data Collection
 - 4 MP sensor
 - 37 phase angles
 - 50 image pairs per phase angle
 - (high order statistics not fully converged)

Chosen Waveform Imaging

Single phase characterization

- 13.3 ms sine wave pulse, repeated at 2 Hz interval, $V_{jet} \sim 10$ m/s
- $h/D_j = 1 \ (D_j = 10 \ \text{cm})$

Ensemble Average Velocity

Vorticity Contours

- Vortex formation highly repeatable up to point of destabilization during wall interaction
- Nominal strength, $\Gamma \sim 0.7 \text{ m}^2/\text{s}$, Re = $\Gamma/\nu \sim 50,000$

Secondary Vortex Instability

 Azimuthally unstable wrapping of the secondary vortex

Harris, Miller, and Williamson, Phys. Fluids 2010

Luton and Ragab, Phys. Fluids 1997

Walker & Smith J., Fluid Mech. 1987

Instantaneous Breakdown Imaging

- Consistent structures of out-of-plane velocity
- Azimuthally unstable
- Instantaneous snapshots:

1mm above ground plane

Axial Fence Introduction

Naturally occurring radial fence. Sediment collisional instability?

- Wrapping instigated by examing the influence of small radial "fence"
 - Small height: d/D_{vortex} ~ 0.05
 - Length, I/D_{vortex} ~ 1
- Current data extracted from z/R = 0.025 only
- Fence-like structures occur in brownout flow

Time-Average Radial Velocity Fields

AA and BB illustrate the high- and low-speed streak region

Average Radial Velocity Fields

- Peak radial velocity similar in early near-wall flow, up to +15% downstream for fence
- High-speed streak 25% greater than low-speed region in early wake, similar downstream

Near-wall Evolution

- Near wall primary & secondary vortex signature
 - Wall-normal velocity and wall-normal vorticity

Periodic vs. Stochastic Radial Stress

- Periodic stresses are up to order of magnitude larger
- Stochastic variations become dominant past r/R > 3

Reynolds Shear Stresses

Radial stresses are up to 2.5 times larger than Reynolds stresses

Profiles of Turbulent Stress

Observations:

- Radial normal stress $(v_r v_r)$ typically 3 to 10x *r*-*z* shear stress $(v_r v_z)$
 - Near wall location restricts v_z magnitude, also normal stress is + only
- Presence of fence temporarily enhances time-average of fluctuating stress
- Coherent stress dominates for r/R < 3 (closest approach r/R~2)
- Stress in high-speed region can be 2x that in low-speed region

Table 1 Flow Conditions and particle characteristics	
Nozzle radius, R (cm)	5
Mean jet exit velocity, V_0 (ms ⁻¹)	4.1
Forcing frequency, n (Hz)	50
Velocity fluctuation amplitude, $\Delta V (ms^{-1})$	±4
Fluid density, ρ_f (kgm ⁻³)	1.2
Kinematic Viscosity, v (m ² s ⁻¹)	1.56×10 ⁻⁵
Particle density, ρ_p (kgm ⁻³)	2500
Particle mean diameter, d_p (µm)	50
Size range (µm)	45-63
Thickness of the sediment bed (cm)	1.2
Standoff height (cm)	10
Stokes number based on vortex core size	15

$$St = \frac{\tau_p}{\tau_f} \qquad \qquad \tau_p = \frac{\rho_p}{\rho_f} \frac{d_p^2}{18\nu}$$

Two-phase conditions: Fluid Velocity

- Ensemble-averaged two-phase flow is similar to single-phase
 - Increased variablity in vortex-wall interaction
 - Secondary vortex is not visible (but may be present)
 - Mean flow is in form of strong wall jet

Particle Concentration & Slip vector

- The evolution of the suspended load
 - Predominantly radial scouring along the ground in upstream plane
 - Concentration is highest at the point of closest vortex approach
 - Slip velocity $\langle u_f u_p \rangle$ is directed radially outward in outer flow and radially inward close to the ground
 - Greater suspension heights in downstream plane
 - Slip magnitude is larger in downstream plane

Vertical Flux

Unsteady transport into/within suspended load

Horizontal Flux

- Evolution of suspended/saltating flow
 - observed by change in transported horizontal mass flow rate:

- Sediment waves forced by strong vortical surface flow
- Suspension strongest following first crest

Bed form evolution

• Following evolution:

- Two ripples quickly form and deepen, and move downstream
- Erosion rate starts high, and then gradually relaxes
- What controls the wavelength?

Bed forms with larger particles

Repeat with 150 micron...

- More gradual evolution (expected)
- Wavelength similar, but only 1 ripple... decelerating wall jet

Bed forms important to suspension

Flat bed

Small bedforms

[mm

[mm]