Erosion of a granular bed by fluid flow

Arshad Kudrolli
Department of Physics, Clark University
Acknowledgements: Ashish Orpe, Ryan Molloy, Anyu Hong, Vikrant Yadav, Alex Lobkovsky, Daniel Rothmam (EAPS, MIT)

Supported by the Department of Energy and the National Science Foundation

Background

"Headless" Submarine Canyons: Tens of kilometers

Cape Cod Beach

Florida Sapping Canyons: Hundreds of meters

Erosion over a Granular Surface Bed

1m x 1m box

Our granular material: Glass beads

Erosion patterns caused by water sapping

JFM (2004)

Experimental outcomes

a) $h_W = 13.8 \text{cm}$, s = 11%, t = 28 min

c) $h_W=15.8$ cm, s=10%, t=18 min

b) h_W=16.2cm, s=11%, t=18 min

d) $h_W = 13.4 \text{cm}$, s = 16%, t = 2 min

Phase diagram

The onset of channelization occurs when the Shields number

$$au = rac{ ext{tangential hydrodynamic forces}}{ ext{normal force}} > au_c$$

• τ is calculated by numerical solution of $\nabla^2 p = 0$, computation of the seepage flux, and calculation of the shear stress.

Erosion is driven by subsurface flow

- Darcy flow + incompressibility ⇒
- $\nabla^2 p = 0$ in the sand.
- pressure *p* is hydrostatic at the inlet.
- p vanishes at the free surface (or capillarity is imposed).
- normal velocities vanish at boundaries.

$$\tau^* = \frac{(h/d + a)\sin\theta}{(\rho_s/\rho - 1)\cos\theta + a\,\partial_z\psi}.$$

The modified shields criterion considering the inclination of the pile and the angle of the seepage force h is the flowing liquid thickness $a \sim 0.5$

Phase diagram

Criteria for fluidization and slumping follow Iverson and Major (1986):

- Fluidization occurs when seepage force exceeds granular weight.
- Slumping occurs when the effective inclination angle—modified by the seepage force—exceeds the maximum angle of stability.

JGR 109, F04010 (2004).

Laser Aided Tomography

Erosion of a single channel obtained by laser aided topography

Increasing slope

Erosion of a single channel obtained by laser aided topography

Effective equation for surface height h(x, y, t)

- ightharpoonup Erosion rate \dot{h} is a function of local water and sand fluxes
- ▶ Granular surface changes slowly \Rightarrow water fluxes slaved to h
- Channel evolves in a roughly self-similar manner ⇒ fluxes are functions of local topography & global scale factor h₀
- Simplify: evolution of transects

$$\dot{h} = \nu h_{xx} + \lambda h_x^2 + \delta |h_x| + \mu \Theta (h/h_0 - f)$$

- ightharpoonup Diffusion constant ν
- ▶ Advection speeds λ and δ
- \blacktriangleright Erosion rate μ and fractional driving depth f

Encode driving as well as granular dynamics

Validate model with data

Strategy:

- ▶ Measure h(x, y, t)
- ▶ Compute \dot{h} , h_X , etc, in a window
- Fit data cloud to evolution equation $\dot{h} = \nu h_{xx} + \lambda h_x^2 + \delta |h_x| + \mu \Theta (h/h_0 f)$

Predicted vs. measured transect shapes

JGR **112**, F03S12 (2007).

Erosion onset and bed-load transport

• Need to understand the relationship between hydrodynamic stress and surfical granular flow from microscopic (grain) level

Shields parameter (
$$\theta$$
) = $\frac{\text{Viscous shear stress}}{\text{Normal stress}}$

 $(\theta > \theta_c)$ for fluid to erode the granular bed

 θ_c : Critical shields parameter

- Previous observation and experimental work: Shields (1936), Vanoni (1977), Charru et al (2004), Paphitis & Collins (2005), Loiseleux et al. (2005)
 - Large scatter in the values of θ_c
 - Lack of controlled experimentation: turbulent vs laminar flows, ambiguous definitions

Plate 1. Shields curve for empirical data that represent initial motion of the bed surface material. All mixture-based values have known $\sigma_{gm} \leq 0.5$. Circled triangles are values reported for Oak Creek by Parker and Klingeman [1982], Diplas [1987], Wilcock and Southard [1988], Parker [1990], and Wilcock [1993]; these values are variations of the same data set (that of Milhous [1973]) analyzed using Parker et al.'s [1982] definition of incipient motion. The reference-based subcategory of protruding grains indicates significant grain projection and exposure sensu Kirchner et al. [1990].

Erosion onset and bed-load transport

Granular flux (q_g) by fluid forcing

 $q_g \alpha (\theta - \theta_c)^{1.5}$ Empirical relation among others using sampling experiments

- --- Meyer-Peter & Muller (1948); with correction by Wong & Parker (2006)
- --- Charru, Mouilleron & Eiff (2004, 2009); Aussillous et al (2013) [experiments measuring onset and velocity profiles of moving layer above onset]
- --- Derksen (2011) [simulations]

Experimental system

Experimental technique to investigate properties away from side walls

Index matching technique used commonly to study colloids with confocal microscopy

Container filled with glass beads

Particles : glass beads (d = 0.7mm)

Liquid (HC oil) : RI \sim 1.52, $\nu \sim$ 22 cS

Same container filled with glass beads and a liquid with the same refractive index

Tsai et al (2003)

Bed height/Fluid gap measurements

Bed initialization

- Images acquired every second interval
- Edge detecting algorithm to obtain flowing layer surface

 $Q = 1000 \text{ cm}^3/\text{min}$

Bed evolution

Approach to rest height (h_r)

- Gradual decrease of shear stress in time (approaches threshold from above)
- Final fluid gap (rest height, h_r) increases with flow rate applied

Threshold bed erosion

Shields parameter (
$$\theta$$
) = $\frac{\text{Viscous shear stress}}{\text{Gravitational normal stress}}$

$$\theta = \frac{6QV}{W\gamma gdh^2}$$

2d laminar flow between infinite smooth parallel plates (W >> h)

Channel Reynolds No : $3Q/Wv \approx 1$ (Q = $1000 \text{ cm}^3/\text{min}$)

 γ (density contrast): $(\rho_g/\rho_f-1), \ \nu$: Fluid viscosity

$$h_r = d\sqrt{\frac{Q}{Q_r}}$$

 $\theta = \theta_c$ (Critical Shields parameter)

h = h_r (Fluid gap after erosion ceases)
$$Q_r = \theta_c \frac{W \gamma g d^{-3}}{6 \nu}$$

Rest height

Flow rate dependence

A. Lobkovsky, A. Orpe, R. Molloy, A. Kudrolli, and D. Rothman, JFM (2008).

Figure 8.5. (a) Critical Shields number θ^c versus the particle Reynolds number $\dot{\gamma}d^2\rho_f/\eta$: experimental data of White [WHI 40] quoted by Loiseleux et al. [LOI 05] (+), of White 1970 quoted by Mantz [MAN 77] (\square), of Mantz [MAN 77] (\times), of Yalin and Karahan [YAL 79] (Δ), of Pilotti and Menduni [PIL 01] (\circ), of Charry et al. [CHA 04] (\blacktriangle), of Loiseleux et al. [LOI 05] (\bullet), of Ouriemi et al. [OUR 07] (*), of Lobkovsky et al. [LOB 08] (\blacksquare) and of Malverti et al. [MAL 08] (\Diamond). The horizontal line represents value $\theta^c = 0.12$; (b) same figure but only representing the most recent data where the threshold is clearly defined

Graph compiled by Aussilious, Guazzelli, Peysson, in Erosion of Geomaterials (2012)

Correcting for side wall effects

- Anyu Hong

Consider the flow in a rectangular pipe (Cornish, 1928)

$$Q = -\frac{4}{3} \cdot \frac{ab^3}{\mu} \cdot \frac{dp}{dz} \left\{ 1 - \frac{192}{\pi^5} \cdot \frac{b}{a} \left(\tanh \frac{\pi a}{2b} + \frac{1}{3^5} \cdot \tanh \frac{3\pi a}{2b} + \dots \right) \right\}$$

- Experiments were performed over longer times (2 hours) to ensure that erosion had indeed stopped
- Performed with a more viscous fluid to further ensure laminar flow

Critical Shields Number Versus Particle Reynolds Number

- Critical Shields Number increases with particle Re_p because of the way it is defined

PIV to image fluid motion at interface

Complementary measurements using a conical "rheometer"

Below onset

Around onset

Above onset

Measuring onset using a "rheometer"

$$\theta_c = \frac{3T}{2\pi (\rho - \rho_l)g d R^3} \longrightarrow \theta_c \approx 0.32$$

Granular flux measurements

Digital images acquired at 1-250 Hz

Flow rule

Einstein Number: $q^* = q_g/(\gamma g d^3)^{1/2}$

- λ ~ 1.89 somewhat higher than accepted value of 1.5
- Strong influence of θ_c on λ

Conclusions

- Critical parameter to have onset of erosion: Shields number ~ 0.3 for laminar flow
- Shields number increases with flow rate
- Possible role of armoring
- Used index matching technique to measure the granular flux as a function of fluid flow

$$q_g \alpha (\theta - \theta_c)^{\lambda}, \lambda = 1.75 \pm 0.25$$

http://physics.clarku.edu/~akudrolli