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Background

Cape Cod Beach

“Headless” Submarine Canyons: Tens of kilometers

Florida Sapping Canyons: Hundreds of meters



Erosion over a Granular Surface Bed

1m x 1m box

Our granular material: Glass beads



Erosion patterns caused by water sapping

JFM (2004)



Experimental outcomes



Phase diagram



Erosion is driven by subsurface flow

• Darcy flow + incompressibility 

• ∇2p = 0 in the sand.

• pressure p is hydrostatic at the inlet.

• p vanishes at the free surface (or capillarity is imposed).

• normal velocities vanish at boundaries.



The modified shields criterion considering the inclination of the 
pile and the angle of the seepage force 
h is the flowing liquid thickness
a ~ 0.5



Phase diagram

JGR 109, F04010 (2004).



Laser Aided Tomography



Erosion of a single channel obtained by laser aided topography

Increasing slope



Erosion of a single channel obtained by laser aided topography







JGR 112, F03S12 (2007).



Erosion onset and bed-load transport 

• Need to understand the relationship between hydrodynamic stress and surfical 

granular flow from microscopic (grain)  level 

Viscous shear stress

Normal stress
Shields parameter (θ)  =

(θ > θc) for fluid to erode the granular bed

θc: Critical shields parameter

• Previous observation and experimental work: Shields (1936), Vanoni (1977), 

Charru et al (2004), Paphitis & Collins (2005), Loiseleux et al. (2005)

- Large scatter in the values of θc

- Lack of controlled experimentation: turbulent vs laminar flows, ambiguous 

definitions



Buffington and Montgomery (1997)



Erosion onset and bed-load transport 

Granular flux (qg) by fluid forcing

qg α (θ - θc)
1.5

--- Meyer-Peter & Muller (1948); with correction by Wong & 

Parker (2006)

--- Charru, Mouilleron & Eiff (2004, 2009); Aussillous et al (2013) 

[experiments measuring onset and velocity profiles of moving layer 

above onset]

--- Derksen (2011) [simulations] 

Empirical relation among others using 

sampling experiments



Experimental system

Index matching experiments

Particles : glass beads (d = 0.7 mm)

Liquid (HC oil) : ρf ∼ 1 g/cc, ν ∼ 22 cS

Fluorescent dye : Pyromethene 597

Fluid flow rate (Q) : 60 - 2500 cm3/min

Channel filled with particles and 

liquid with same refractive index



Experimental technique to investigate properties away from side walls

Particles : glass beads (d = 0.7mm)

Liquid (HC oil) : RI ∼ 1.52, ν ∼ 22 cS

Same container filled with glass beads 

and a liquid with the same refractive 

index

Tsai et al (2003)

Index matching technique used commonly to study colloids with confocal microscopy

Container filled with glass beads



Bed height/Fluid gap measurements

Fluid in

(d = 0.7 mm)

Granular bed

245 mm

Fluid out

Laser sheet90 mm

Image

region

Q = 1000 cm3/min

� Images acquired every

second interval

� Edge detecting algorithm to

obtain flowing layer surface

Bed initialization



Bed evolution

Approach to rest height (hr)

hf (t, Q)

rest height at 
long times

� Gradual decrease of shear stress in time (approaches threshold from  

above)

� Final fluid gap (rest height, hr) increases with flow rate applied

Q = 3000 cm3/min

Q = 500 cm3/min



Threshold bed erosion
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C: 0.5d, Qr: 15.0 cm3/min

Critical Shields parameter (θc) : 0.3

Differences in the flow near 

smooth and porous 

boundary

Offset C

A. Lobkovsky, A. Orpe, R. Molloy, A.Kudrolli, and D. Rothman, JFM (2008).



Graph compiled by Aussilious, Guazzelli, Peysson, in Erosion of Geomaterials (2012) 

Our data

point



Correcting for side wall effects 

Consider the flow in a rectangular pipe (Cornish, 1928)

- Experiments were performed over longer times (2 hours) to ensure that 

erosion had indeed stopped

- Performed with a more viscous fluid to further ensure laminar flow

- Anyu Hong

a = width

b = height

Top view 

a



Critical Shields Number Versus Particle Reynolds Number

- Critical Shields Number increases with particle Rep because of the way it is 

defined



PIV to image fluid motion at interface



Complementary measurements using a conical “rheometer”

Torque Sensor

Air bearing

Container with fluid 

and granular bed

Motor

Conical spinning 

top plate

Constant shear 

over the surface

γ = ν ω



Below onset 



Around onset 



Above onset 



Onset 

Glass beads: 0.7 mm

Liquid: Glycerol – Water mixture

Density: 1207 kg/m3

Dynamic viscosity: 0.0478 Ns/m2

Measuring onset using a “rheometer”



Granular flux measurements

Fluid flow

25d

x

z

Region of interest 

(+/- 0.3d)

Top view

x

y

Digital images acquired at 1-250 Hz 

Q = 1000 cm3/min

∫= dzvq xbx φρ



Flow rule

Einstein Number: q∗ = qg/(γgd3)1/2

• λ ~ 1.89 somewhat higher than accepted value of 1.5

• Strong influence of θc on λ



Conclusions

• Critical parameter to have onset of erosion: Shields number ~ 0.3 for 

laminar flow

• Shields number increases with flow rate

• Possible role of armoring 

• Used index matching technique to measure the granular flux as a function 

of fluid flow

qg α (θ - θc)
λ, λ = 1.75 ± 0.25

http://physics.clarku.edu/~akudrolli


