Turbulent particle-gas suspensions

V. Kumaran & P. S. Goswami

Department of Chemical Engineering Indian Institute of Science

Turbulent particle-gas suspensions - p.1/91

Practical applications:

- Atmospheric aerosols, dust storms.
- Pneumatic transport of solids.
- Fluidized & circulating beds.
- Clean coal separation.
- Cyclone separator.

Gas-particle suspensions:

Parameters:

- Terminal velocity $U_t = (mg/3\pi\mu d) \sim d^2$.
- Brownian diffusivity $D_B = (k_B T / 3\pi \mu d) \sim d^{-1}$.
- Peclet number (convection/Brownian diffusion) $Pe = (U_t d/D_B) \sim d^{-4}.$
- Reynolds number (fluid inertia/fluid viscosity) $Re = (\rho_g U_t d/\mu) \sim d^3.$
- Stokes number (particle inertia/fluid viscosity) $St = (\rho_p U_t d/\mu) \sim d^3.$

$$\rho_g = 1kg/m^3, \rho_p = 10^3 kg/m^3, \mu = 1.8 \times 10^{-5} kg/m/s,$$

 $T = 300K.$

Gas-particle suspensions:

 $U_t < 1.5 \times 10^{-5}.$ $D_B > 1.2 \times 10^{-11}.$

 $(U_t d/D_B) < 1.3.$

Reynolds number $Re < 8.5 \times 10^{-7} >$.

Stokes number $St < 8.5 \times 10^{-4}$.

Fluid viscosity dominant.

$$1.5 \times 10^{-5} < U_t < 1.5 \times 10^{-3}.$$

$$1.2 \times 10^{-11} < D_B < 1.2 \times 10^{-12}.$$

$$1.3 < (U_t d/D_B) < 1.3 \times 10^4.$$

Reynolds number $8.5 \times 10^{-7} Re < 8.5 \times 10^{-4} >$.

Stokes number $8.5 \times 10^{-4} < St < 8.5 \times 10^{-1}$.

Fluid viscosity dominant.

$1.5 \times 10^{-5} < U_t < 1.5 \times 10^{-3} m/s$ $1.2 \times 10^{-11} < D_B < 1.2 \times 10^{-12}.$ $1.3 \times 10^4 < (U_t d/D_B) < 1.3 \times 10^8.$	$8.5 \times 10^{-4} < \text{Re} < 8.5 \times 10^{-1}.$ $8.5 \times 10^{-1} < \text{St} < 8.5 \times 10^{2}.$
Suspension $10\mu m < d < 100\mu m$:	Balance: Particle inertia vs. Fluid viscosity

$1.5 \times 10^{-3} < U_t < 1.5 \times 10^{-1}$	
$1.2 \times 10^{-12} < D_B < 1.2 \times 10^{-13}.$	$8.5 \times 10^{-1} < \text{Re} < 8.5 \times 10^2.$
$1.3 \times 10^8 < (U_t d/D_B) < 1.3 \times 10^{12}.$	$8.5 \times 10^2 < \mathbf{St} < 8.5 \times 10^5.$
Fluid viscosity negligible. Dominated by particle inertia &	Granular material $d > 100 \mu$ m:
contact dissipation.	

Gas-particle suspensions:

Gas-particle suspensions:

Current 'two-fluid' models treat particle & fluid as two continuous phases, and write equations for the average density and velocities. Particle phase:

$$\frac{\partial \rho_p}{\partial t} + \nabla \mathbf{.} \mathbf{u}_p = 0$$

$$\rho(\partial_t \mathbf{u}_p + \mathbf{u}_p \cdot \nabla \mathbf{u}_p) = -\nabla p_p + \eta_p \nabla^2 \mathbf{u}_p + \mathbf{f}_f$$

Disadvantage:

Local rates of heat and mass transfer proportional to *local relative velocity between particle and fluid*, and not the man velocity difference.

Current 'two-fluid' models treat particle & fluid as two continuous phases, and write equations for the average density and velocities. Particle phase:

$$\frac{\partial \rho_p}{\partial t} + \nabla \mathbf{.} \mathbf{u}_p = 0$$

$$\rho(\partial_t \mathbf{u}_p + \mathbf{u}_p \cdot \nabla \mathbf{u}_p) = -\nabla p_p + \eta_p \nabla^2 \mathbf{u}_p + \mathbf{f}_f$$

Objective — take account of fluctuations in realistic way.

Particle velocity distribution.

Effect of turbulent fluid velocity fluctuations on particle phase.

Effect of particle velocity fluctuations on fluid turbulence.

Outline:

Turbulent particle-gas suspension with particle Reynolds number Re < 10, particle Stokes number St > 1000:

- Microscopic model for particle phase.
- Comparison with simulations/experiments.
- Incorporating turbulent fluctuations in continuum model.

Turbulent gas-particle suspensions:

Particle dynamics:

- Drag force.
- Inter-particle collisions.
- Buoyancy force.
- Lift force.
- Virtual mass effect.
- Basset force.

Air flow

Turbulent gas-particle suspensions:

Particle Reynolds number Re < 10: Particle Stokes number St > 1000:

- Drag force.
- Inter-particle collisions.
- Buoyancy force.
- Lift force.
- Virtual mass effect.
- Basset force.

Turbulent gas-particle suspensions:

Particle drag force: Re < 10:

$$\mathbf{a} = \frac{\mathbf{u} - \mathbf{v}}{\tau_v}$$

Viscous relaxation time: Stokes law:

 $\tau_v = (\rho d^2 / 18\mu)$

Inertial correction:

$$\tau_v = \frac{\rho d^2}{18\mu (1 + 0.15Re^{0.687})}$$

Turbulent particle-gas suspensions:

Time scales:

- Direct numerical simulations.
- Particle event-driven simulations.

$$m\frac{d\mathbf{u}_i}{dt} = \sum_i \mathbf{F}_i$$

Simulation advances in discrete time steps.

Flow equations

Navier-Stokes equation for fluid phase:

$$\nabla \cdot \mathbf{u}_i = 0$$

$$\frac{\partial \mathbf{u}_i}{\partial t} + \mathbf{u}_i \cdot \nabla \mathbf{u}_i = -\frac{1}{\rho} \nabla p_i + \nu \nabla^2 \mathbf{u}_i$$

Particle phase equation:

 \mathbf{v}_i

 $\frac{d\mathbf{x}_i}{dt}$

$$\frac{d\mathbf{v}_i}{dt} = \frac{\mathbf{u}_i\left(\mathbf{x}_{Pi}\right) - \mathbf{v}_i}{\tau_v} + \frac{1}{m_p} \sum_{i \neq j} \mathbf{F}_{ij}$$

Schematic of particle laden flow.

Validation of DNS: Couette flow.

(1996) (0)

Root mean square velocity fluctuation $\sqrt{\langle u_x'^2 \rangle}$, Komminaho et al. (1996) (*); $\sqrt{\langle u_z'^2 \rangle}$, Komminaho et al. (1996) (•); $\sqrt{\langle u_y'^2 \rangle}$ Komminaho et al. (1996) (•); $\sqrt{\langle u_x'^2 \rangle}$ present (--), $\sqrt{\langle u_z'^2 \rangle}$, present (--); $\sqrt{\langle u_y'^2 \rangle}$ present,(-.-); $\sqrt{\langle u_x'^2 \rangle}$ Bech et. al. (0)

Air mean velocity; $Re_c=1994$

(o) is from Mclaughlin(2001) at $Re_{\tau} = 125$.

Gas-phase root-mean-square velocity fluctuation

 $u_{x_{rms}}$ (—); $u_{y_{rms}}$ (-.-); $u_{z_{rms}}$ (–) are obtained from present DNS, $u_{x_{rms}}$ (\Box); $u_{y_{rms}}$ (\circ); $u_{z_{rms}}$ (\diamond), obtained from Mclaughlin (2001).

Turbulent particle-gas suspensions:

- 1. Fluid autocorrelation time small compared to particle relaxation & collision time.
- 2. Force due to fluid velocity decorrelates over time taken for particle to relax.
- 3. Consider force due to fluid as a delta function correlation in time.

$$\langle \mathbf{f}(t)\mathbf{f}(t')\rangle = \mathbf{D}(\mathbf{x})\delta(t-t')$$

Based on Brownian motion:

- Force on Brownian particle due to forces exerted by molecules in a liquid.
- Correlation time of force small compared to particle relaxation time.

$$\langle \xi(t)\xi(t')\rangle = A\delta(t-t')$$

Gaussian distribution for force components.

Brownian motion:

Langevin equation:

$$m\frac{du}{dt} = -3\pi\mu du + \xi$$

$$\langle u^2 \rangle = \frac{2}{\tau_v} \langle \xi^2 \rangle = \frac{k_B T}{2m}$$

$$\langle \xi^2 \rangle = \frac{k_B T}{m\tau_v}$$

$$\langle x^2 \rangle = \frac{2k_B T}{3\pi\mu d}$$

$$\frac{\partial\rho}{\partial t} = D\frac{\partial^2\rho}{\partial x^2}$$

$$\rho(x, t = 0) = \delta(x - x_0)$$

$$\rho = (4\pi Dt)^{-1/2} \exp(-x^2/4Dt)$$

$$\langle x^2 \rangle = \int_0^\infty dx (x^2 \rho(x)) = 2Dt$$

Diffusion equation:

Stokes-Einstein relation: $D = (k_B T / 3\pi \mu d)$.

Fluctuating force: Similarities to Brownian motion.

Fluid velocity fluctuations — near Gaussian?

 \circ Region A, * Region B, \diamond Region C.

Fluctuating force: Similarities to Brownian motion.

Fluid correlation time short? Decorrelation times in different reference frames.

(a) Stream-wise, (b) wall-normal Fixed Eulerian frame (-.-),
Moving Eulerian frame (--), Particle acceleration correlation (--)

Differences from Brownian motion:

Noise anisotropic.

 $\langle f_x^2 \rangle \neq \langle f_y^2 \rangle \neq \langle f_z^2 \rangle \neq$

Spatially inhomogeneous.Cross-correlation.

$$\langle f_x f_y \rangle \neq 0$$

Fluctuating force: Similarities to Brownian motion.

Lack of correlation between particle concentration and fluid velocity fluctuations?

 $\tau_v = 24.2$

 $\tau_v = 193.9$

Fluctuating force simulations:

Langevin equation:

$$\frac{d\mathbf{v}}{dt} = -\frac{(\mathbf{v} - \bar{\mathbf{u}})}{\tau_v} + \mathbf{F}(t)$$

Equivalent Fokker-Planck equation:

$$\frac{\partial f\left(\mathbf{v}'\right)}{\partial t} = \frac{1}{\tau_v} \frac{\partial (v'_i f(\mathbf{v}'))}{\partial v'_i} + D_{ij} \frac{\partial^2 f(\mathbf{v}')}{\partial v'_i \partial v'_j}.$$

Noise correlations: $\langle F_i(t)F_j(t)\rangle = 2D_{ij}\delta(t-t')$, Difference equation for velocity:

$$v_i(t + \Delta t) - v_i(t) = -\frac{(v_i - \bar{u}_i)\Delta t}{\tau_v} + F_i\Delta t$$

1

Turbulent particle-gas suspensions - p.30/91

Force calculation: Two random numbers ζ_1 , ζ_2 .

$$F_x = \frac{\sqrt{2D_{xx}}\zeta_1}{\sqrt{\Delta t}}$$

$$F_y = \frac{\sqrt{2D_{yy}}}{\sqrt{\Delta t}} \left(\frac{D_{xy}\zeta_1}{\sqrt{D_{xx}D_{yy}}} + \zeta_2 \sqrt{1 - \frac{D_{xy}^2}{D_{xx}D_{yy}}} \right)$$

Diffusion coefficient:

$$D_{ij} = \frac{\langle u_i'(0)u_j'(0)\rangle}{\tau_v^2} \int_0^\infty dt' \frac{\langle u_i'(t')u_j'(0)\rangle}{\langle u_i'(0)u_j'(0)\rangle}$$
$$= \frac{\langle u_i'(0)u_j'(0)\rangle}{\tau_v^2} \int_0^\infty dt' R_{ij}.$$

Diffusion coefficients:

Fluid integral time scale in moving Eulerian reference frame Filled symbols - moving with air mean velocity

open symbols - moving with particle mean

velocity

stream wise \circ , span wise \Box ,

wall normal \diamond .

Velocity space diffusion coefficient across the

width of the channel D_{xx} (---), D_{yy} (----), D_{zz} (---), D_{xy} (···)

Results:

Air mean velocity; $Re_c=1994$

(o) is from Mclaughlin(2001) at $Re_{\tau} = 125$.

Gas-phase root-mean-square velocity fluctuation

 $u_{x_{rms}}$ (—); $u_{y_{rms}}$ (-.-); $u_{z_{rms}}$ (–) are obtained from present DNS, $u_{x_{rms}}$ (\Box); $u_{y_{rms}}$ (\circ); $u_{z_{rms}}$ (\diamond), obtained from Mclaughlin (2001).

Results:

- Limit τ_v ≪ τ_c, φ = 9.44 × 10⁻⁵, Re = 1994
 Limit τ_c ≪ τ_v, φ = 7 × 10⁻⁴, Re = 1994.
 d_p = 39μm, change mass density to change τ_v.
- $\bullet 0.4 \le (d_p / \eta_K) \le 0.7.$

0

0.016

(b)

-0.016

 10^{2}

 10^{0}

 10^{-1} -0.032

$$\begin{aligned} \tau_v &= 177.7, \, \tau_{c_{pp}} = 1400.0 \, (\circ); \\ \tau_v &= 355.3, \, \tau_{c_{pp}} = 1650.3 \, (*); \\ \tau_v &= 533.0, \, \tau_{c_{pp}} = 1807.7 \, (\diamond). \end{aligned}$$

Turbulent particle-gas suspensions - p.35/91

0.032

Particle acceleration distribution $\tau_v < \tau_c$

(a) Stream-wise, (b) wall-normal, and (c) span wise components $f(a'_i)$ (o), $f(u'_i/\tau_v)$ at particle positions (*), $f(v'_i/\tau_v)$ (\diamond), and $f(u'_i/\tau_v)$ at the fluid grid points (\times).
Particle velocity and concentration, $(\tau_v < \tau_c)$

Stream-wise mean velocity of the particle phase

Normalized particle concentration

$$\tau_{v} = 177.7, \tau_{c_{pp}} = 1400.0, \tau_{c_{pw}} = 925.9, \text{DNS (o), FFS (-.-);}$$

$$\tau_{v} = 355.3, \tau_{c_{pp}} = 1650.3, \tau_{c_{pw}} = 990.1, \text{DNS (*), FFS (--);}$$

$$\tau_{v} = 710.6, \tau_{c_{pp}} = 1999.0, \tau_{c_{pw}} = 1016.4, \text{DNS (\diamond), FFS (--)}$$

Air velocity profile (· · ·).

Particle velocity fluctuation ($\tau_v < \tau_c$ **)**

$$\tau_{v} = 177.7, \tau_{c_{pp}} = 1400.0, \tau_{c_{pw}} = 925.9, \text{DNS (o), FFS (-.-);}$$

$$\tau_{v} = 355.3, \tau_{c_{pp}} = 1650.3, \tau_{c_{pw}} = 990.1, \text{DNS (*), FFS (--);}$$

$$\tau_{v} = 710.6, \tau_{c_{pp}} = 1999.0, \tau_{c_{pw}} = 1016.4, \text{DNS (o), FFS (--)}$$

Air velocity profile (···).

Particle velocity fluctuation ($\tau_v < \tau_c$)

particle velocity distribution

Variation of the second moment $\langle v'_x v'_y \rangle$ of the particle velocity distribution

60

80

100

$$\tau_{v} = 177.7, \tau_{c_{pp}} = 1400.0, \tau_{c_{pw}} = 925.9, \text{DNS (o), FFS (-.-);}$$

$$\tau_{v} = 355.3, \tau_{c_{pp}} = 1650.3, \tau_{c_{pw}} = 990.1, \text{DNS (*), FFS (--);}$$

$$\tau_{v} = 710.6, \tau_{c_{pp}} = 1999.0, \tau_{c_{pw}} = 1016.4, \text{DNS (\diamond), FFS (--)}$$

Air velocity profile (···).

Particle velocity distribution ($\tau_v < \tau_c$ **)**

(a) Stream-wise, (b) wall-normal, and (c) span wise components at positions A, DNS (◊), FFS (−−);
B, DNS (*), FFS (−);
C, DNS (○), FFS (−.−).

Particle velocity and concentration, ($\tau_c < \tau_v$)

Stream-wise mean velocity of the particle phase

$$\begin{aligned} \tau_v &= 675.6, \tau_{c_{pp}} = 617.4, \tau_{c_{pw}} = 777.6, \text{DNS (o), FFS (-.-);} \\ \tau_v &= 1351.1, \tau_{c_{pp}} = 774.3, \tau_{c_{pw}} = 846.2, \text{DNS (*), FFS (--);} \\ \tau_v &= 2026.6, \tau_{c_{pp}} = 912.0, \tau_{c_{pw}} = 939.6, \text{DNS (o), FFS (--);} \end{aligned}$$

Particle velocity fluctuation ($\tau_c < \tau_v$)

$$\begin{aligned} \tau_v &= 675.6, \tau_{c_{pp}} = 617.4, \tau_{c_{pw}} = 777.6, \text{DNS (o)}; \\ \tau_v &= 1351.1, \tau_{c_{pp}} = 774.3, \tau_{c_{pw}} = 846.2, \text{DNS (*)}; \\ \tau_v &= 2026.6, \tau_{c_{pp}} = 912.0, \tau_{c_{pw}} = 939.6, \text{DNS (\diamond)} \end{aligned}$$

Particle velocity fluctuation ($\tau_c < \tau_v$ **)**

Variation of the second moment $\langle v_z'^2 \rangle$ of the particle velocity distribution

Variation of the second moment $\langle v'_x v'_y \rangle$ of the particle velocity distribution

$$\begin{aligned} \tau_v &= 675.6, \tau_{c_{pp}} = 617.4, \tau_{c_{pw}} = 777.6, \text{DNS (o)}; \\ \tau_v &= 1351.1, \tau_{c_{pp}} = 774.3, \tau_{c_{pw}} = 846.2, \text{DNS (*)}; \\ \tau_v &= 2026.6, \tau_{c_{pp}} = 912.0, \tau_{c_{pw}} = 939.6, \text{DNS (\diamond)} \end{aligned}$$

Particle velocity distribution ($\tau_c < \tau_v$)

(a) Stream-wise, (b) wall-normal, and (c) span wise components at positions A, DNS (◊), FFS (−−);
B, DNS (*), FFS (−);
C, DNS (○), FFS (−.−)

Particle fluctuations: Streamwise diffusion.

Particle fluctuations: Cross-stream diffusion.

- Cross-stream fluctuations mean square velocity $D_{yy}\tau_v$.
- Velocity fluctuation in cross-stream direction $\sqrt{D_{yy}\tau_v}$.

• Distance moved
$$\tau_v \sqrt{D_{yy}\tau_v}$$
.

Particle fluctuations: Cross-stream diffusion.

- Cross-stream fluctuations mean square velocity $D_{yy}\tau_v$.
- Velocity fluctuation in cross-stream direction $\sqrt{D_{yy}\tau_v}$.
- Distance moved $\tau_v \sqrt{D_{yy}\tau_v}$.
- Difference in velocity

$$\dot{\gamma}\tau_v\sqrt{D_{yy}\tau_v}$$

Fluctuation generation $(\dot{\gamma}\tau_v)^2(D_{yy}\tau_v).$

$$\langle v_x^2 \rangle \sim \mathbf{St}_{\gamma}^2(D_{yy}\tau_v).$$

Particle fluctuations: Collisions due to shear.

 Difference in mean velocity γd.
 Collision frequency (nd²)(γd) ~ (φγ).

- Difference in mean velocity $\dot{\gamma}d$.
- Collision frequency $(nd^2)(\dot{\gamma}d) \sim (\phi\dot{\gamma}).$
- Distance in horizontal direction $(\dot{\gamma}d\tau_v)$; velocity difference $(\dot{\gamma}\tau_v)(\dot{\gamma}d)$.
- Streamwise fluctuating velocity generation $(\phi \dot{\gamma})(\dot{\gamma} d)^2 \mathrm{St}_{\gamma}^2$.
- Dissipation $(\langle v_x^2 \rangle / \tau_v)$.

 $\ \ \, \blacksquare \ \, \langle v_x^2\rangle \sim \phi(\dot{\gamma}d)^2 {\rm St}_\gamma^3$

$ au_v$	St _r	$(\tau_v D_{xx})$	$(\tau_v D_{yy})$	$(\tau_v D_{yy})St_\gamma^2$	$(\dot{\gamma}d)^2$	$\phi(\dot{\gamma}d)^2St_{\gamma}^3$	T_{xx}					
(a) At position A $(y^+ = 5.8 - 17.3)$												
177. 66	44.31	2.0	0.026	51.57	0.234	1.927	8.05					
355.32	54.50	1.0	0.013	39.0	0.089	1.355	8 .3 8					
532.98	6 3.70	0. 6 7	0.009	35.52	0.054	1.314	5.33					
710. 6 4	6 8.13	0.50	0.007	30.48	0.035	1.035	4.25					
(b) At position B $(y^+ = 34.7 - 46.2)$												
177.66	10.08	1.10	0.074	7.57	0.012	1.17×10^{-3}	4.38					
355.32	15.30	0.55	0.037	8.73	0.007	2.37×10^{-3}	2.96					
532.98	17.75	0.36	0.025	7.57	0.004	$2.21 imes 10^{-3}$	2.32					
710. 6 4	23. 66	0.27	0.019	10.43	0.002	$2.96 imes 10^{-3}$	1.88					
(c) At position C ($y^{+} = 104.0 - 115.5$)												
177.66	1.056	0.196	0.040	0.045	$1.33 imes 10^{-4}$	1.48×10^{-8}	1.83					
355.32	1.331	0.098	0.020	0.035	$5.29 imes 10^{-8}$	1.18×10^{-8}	1.74					
532.98	1.535	0.065	0.013	0.031	3.13×10^{-5}	1.07×10^{-8}	1.57					
710 64	1 5 9 7	0.040	0 01 0	0.025	1.90×10^{-5}	7.32×10^{-9}	141					

Particle fluctuations: Cross-stream

Source of particle fluctuations:

Τυ	Str	$(\tau_v D_{yy})$	$(\dot{\gamma}d)^2$	$\phi(\dot{\gamma}d)^2St_{\gamma}$	T_{xx}	$\phi(T_{zz}^{1/2}\tau_v/d)T_{zz}$	T_{yy}				
(a) At position A $(y^+ = 5.8 - 17.3)$											
177.7 355.3 533.0 710. 6	44.31 54.5 63.7 54.82	0.02 6 0.013 0.009 0.007	0.235 0.089 0.054 0.022	9.81×10^{-4} 4.57×10^{-4} 3.24×10^{-4} 1.16×10^{-4}	8.05 6.36 5.33 4.25	0.197 0.277 0.319 0.303	0.159 0.153 0.152 0.150				
(b) At position B $(y^+ = 34.7 - 46.2)$											
177.7 355.3 533.0 710.6	10.08 15.30 17.75 23. 66	0.074 0.037 0.025 0.019	0.012 0.007 0.004 0.002	1.15×10^{-8} 1.01×10^{-8} 7.0×10^{-6} 5.29×10^{-6}	4.38 2.96 2.32 1.88	0.079 0.088 0.091 0.089	0.242 0.195 0.180 0.163				
(c) At position C ($y^+ = 104.0 - 115.5$)											
177.7 355.3 533.0 710.6	1.05 6 1.331 1.535 1.597	1.33×10^{-4} 5.29×10^{-5} 3.13×10^{-5} 1.90×10^{-5}	6.25×10^{-8} 1.73×10^{-4} $3.13 \times 10 - 5$ 1.36×10^{-8}	1.33×10^{-8} 6.64×10^{-9} 4.53×10^{-9} 2.87×10^{-9}	1.83 1.74 1.57 1.41	0.021 0.020 0.017 0.014	0.175 0.160 0.156 0.145				

Summary

- Distributions are highly non-Gaussian near the center of the channel, event though fluctuating force is Gaussian.
- Distributions are closer to a Gaussian at the locations away from the channel center, especially in regions where the variances of the fluid velocity fluctuations are a maximum.
- Time correlation of the particle acceleration fluctuations is close to the time correlations of the fluid velocity in a 'moving Eulerian' reference moving with the mean fluid velocity.
- Quantitative agreement between distributions from DNS and fluctuating force simulations with one-way coupling.
- Source of fluctuations complicated involves streamwise and cross-stream diffusion and collisions.

Experiments on particle laden Channel flow

Experimental setup

Sectional view

Photograph of setup

Experimental setup

Components of PIV

- CCD Camera
- Nd:YAG pulsed Laser
- Timing control module for synchronization of the laser and camera
- Seeding arrangements
- Image processing software
- Laser sheet forming collimating lens

Image processing

Composite image of particles and fluid tracer

Only particles

Only tracer Turbulent particle-gas suspensions – p.58/91

Gas-phase mean velocity profile from experiment and DNS; Re_c =20221.14.

(o) PIV, (—) DNS, × Niederschulte et al. (1990), Re_c = 3221.5.

Gas-phase turbulent intensity obtained from experiment and DNS (\circ) u_{rms} , PIV; (\diamond) v_{rms} , PIV; (-) u_{rms} , DNS; $--v_{rms}$, DNS; \times and *Niederschulte et al. (1990) Turbulent particle-gas suspensions – p.59/91

Mean stream-wise velocity of the particle.

(•), mean particle velocity (V_x) ; (•), mean air velocity (U_x) ; (--), U_x , FFS; (\Box), V_x , $e_n = 1.0$,

 $e_t = 0.7; (\times), V_x, e_n = 0.7, e_t = 0.7;$

Intensity of particle phase velocity fluctuation (\circ) u_{rms} , Experiment; (\diamond) v_{rms} , Experiment; $-u_{rms}$, FFS; (-) v_{rms} , FFS

Particle size distribution, \circ , number based distribution ; --, volume based distribution.

. . .

Particle size distribution, \circ , number based distribution ; --, volume based distribution.

Particle size distribution, \circ , number based distribution ; --, volume based distribution. which increases particle fluctuations.

g

g

Particle size distribution, \circ , number based distribution ; --, volume based distribution. Polydispersity in fluctuating force simulations.

 \bigcirc

Ο

- Particle-particle collisions elastic — energy dissipation due to viscous drag larger than that due to particle collisions.
- Particle-wall collisions inelastic.
- Energy flux to the wall.
- Simple model:

$$\begin{aligned} v_n' &= -e_n v_n \\ v_t' &= e_t v_t \end{aligned}$$

Low particle loading. Volume fraction $\phi = 9 \times 10^{-5}$ Mass loading 0.225 kg/kg.

Time scale $\tau_v < \tau_c$.

Simulations vs. Experiments: $(\tau_v < \tau_c) \phi = 9 \times 10^{-4}$

Gas phase:

Gas phase turbulence intensities for particle laden and unladen flows
(○) u_{rms}, Particle laden; (◇), v_{rms}, Particle laden;
(-) u_{rms}, unladen; (--) v_{rms}, unladen

Second moment of gas phase velocity fluctuation for particle laden and unladen flows

Simulations vs. Experiments: $\tau_v < \tau_c \phi = 9 \times 10^{-5}$:

Particle phase:

Mean stream-wise velocity of the particle. (•), mean particle velocity (V_x) ; (•), mean air elocity (U_x) ; (--), U_x , FFS; (\Box), V_x , $e_n = 1.0$, $e_t = 0.7$; (×), V_x , $e_n = 0.7$, $e_t = 0.7$; Intensity of particle phase velocity fluctuation (•), $\sqrt{\langle v'_x{}^2 \rangle}/Vc$, experiment; (•), $\sqrt{\langle v'_y{}^2 \rangle}/Vc$, experiment; (□), $e_n = 1.0$, $e_t = 0.7$; (\diamond), $e_n = 0.7$, $e_t = 0.7$; (∇), $e_n = 1.0$, $e_t = 0.7$; (+), $e_n = 0.7$, $e_t = 0.7$. Turbulent particle-gas suspensions – p.68/91

Simulations vs. Experiments: $\tau_v < \tau_c \phi = 9 \times 10^{-5}$:

Particle phase:

Moderate particle loading. Volume fraction $\phi = 7 \times 10^{-4}$ Mass loading 2 kg/kg.

Time scale $\tau_c < \tau_v$.

Simulations vs. Experiments: $\tau_c < \tau_v \phi = 7 \times 10^{-4}$:

Gas phase statistics:

Mean gas velocity for (o)particle laden flow; (—) and unladen flow.

Simulations vs. Experiments: $\tau_c < \tau_v \phi = 7 \times 10^{-4}$:

Gas phase statistics:

Second moment of the gas phase velocity fluctuation for particle laden and unladen flows. (o), particle laden; (—), unladen flow.

Particle phase concentration & mean velocity:

Particle concentration across the channel. (•), Experiment; (—), $e_n = e_t = 1.0$, FFS; (- · -), $e_n = 1.0, e_t = 0.7$, FFS;

(●), mean particle velocity (V_x), experiment, (♦), mean air velocity (U_x), experiment, (—), V_x,
e_n = e_t = 1.0; (- · -), V_x, e_n = 1.0, e_t = 0.7.

Particle rms fluctuating velocity:

 $\langle v'_{\mathfrak{o}y'}^2 \rangle /$ $\langle v'_x{}^2\rangle/V_{c,V_c}$ 0.1 $\langle v'_x v'_y \rangle / V_c^2$ 0.2 0.4 0.6 0.8 y/δ (•), $\sqrt{\langle v'_x^2 \rangle}/V_c$, experiment; (0), $\sqrt{\langle v'_y^2 \rangle}/V_c$, -0.2^L 0.5 1.5 2 y/δ experiment; (—×), $\sqrt{\langle v'_x^2 \rangle}/V_c$, $e_n = e_t = 1.0$, (•), experiment; (—) $e_n = e_t = 1.0$, FFS; (- · -) FFS; (—), $\sqrt{\langle v'_y{}^2 \rangle}/V_c$, $e_n = e_t = 1.0$, FFS; $e_n = 1, e_t = 0.7$, FFS; $(-\cdot -), \sqrt{\langle v'_y^2 \rangle} / V_c, e_n = 1.0, e_t = 0.7, \text{FFS};$

Experiments:

High particle loading. Volume fraction $\phi = 3.2 \times 10^{-3}$ Mass loading 8 kg/kg.

High particle loading experiments:

Particle Statistics

(•) Particle velocity, Experiment; (*) Air velocity, Experiment;

Intensity of particle phase velocity fluctuation (o) u_{rms} , Experiment; (\diamond) v_{rms} , Experiment; $--u_{rms}$, FFS; (---) v_{rms} , FFS

3

²2.5

>0.5

 $\langle v_y'^2 \rangle$

) Particle velocity, FFS ; -- Air velocity, FFS

High particle loading experiments:

Gas phase Statistics

Mean gas velocity for particle laden and unladen flows.

Gas phase turbulence intensities for particle laden and unladen flows. (\circ) u_{rms} , Particle laden; (\diamond), v_{rms} , Particle laden;

 $(-) u_{rms}$, unladen; $(--) v_{rms}$, unladen

Summary

- Low loading solid volume fraction $\phi = 9 \times 10^{-5}$, mass loading = 0.225, $\tau_v < \tau_c$.
 - Experimental results show good agreement with FFS simulation using polydispersed particles.
- Moderate loading solid volume fraction $\phi = 7 \times 10^{-4}$, mass loading = 2, $\tau_c < \tau_v$.
 - Significant turbulence modification.
 - Experimental results show good agreement with FFS simulation using polydispersed particles, depend on particle-wall coefficient of restitution.
- At high solid volume fraction $\phi = 3.2 \times 10^{-3}$, (mass loading about 8), particle and gas velocities are correlated. Random forcing approximation not valid.

Theoretical development: Particle phase.

Kinetic theory for granular flows:

• Velocity distribution $f(\mathbf{x}, \mathbf{v})d\mathbf{x}d\mathbf{v}$.

Fluctuating velocity $\mathbf{c} = \mathbf{v} - \mathbf{V}$

Kinetic theory for granular flows:

Boltzmann eq

 $\frac{\partial_c \rho f}{\partial t} = \iint_{\mathbf{k}} \iint_{\mathbf{c}^*} \left(f(\mathbf{c}') f(\mathbf{c}^{*'}) - f(\mathbf{c}) f(\mathbf{c}^*) \right) \left((\mathbf{u} - \mathbf{u}^*) \cdot \mathbf{k} \right)$ Turbulent particle-gas suspensions – p.80/91

Turbulent suspensions:

Fokker-Planck-Boltzmann equation:

Turbulent suspensions: FPB equation.

$$\frac{\partial f}{\partial t} + (\bar{v}_i + v'_i) \frac{\partial f}{\partial x_i} - \frac{\partial ((v'_i + \bar{v}_i - \bar{u}_i)f)}{\tau_v \partial v'_i} \\ - \frac{\partial U_i}{\partial x_j} \frac{\partial (v'_i f)}{\partial v'_j} - D_{ij} \frac{\partial^2 f(\mathbf{v}')}{\partial v'_i \partial v'_j} = \frac{\partial_c f}{\partial t}$$

Equilibrium (no gradients) $\frac{\partial_c f}{\partial t} = 0$ Solution — Maxwell-Boltzmann distribution $f_0 = (2\pi T/m)^{-3/2} \exp(-mv_i^{'2}/2T)$

Temperature determined by balance between source due to shear, collisions, turbulent fluctuations and dissipation due to drag.

Turbulent suspensions: FPB equation.

$$\frac{\partial f}{\partial t} + (\bar{v}_i + v'_i) \frac{\partial f}{\partial x_i} - \frac{\partial ((v'_i + \bar{v}_i - \bar{u}_i)f)}{\tau_v \partial v'_i} \\ - \frac{\partial U_i}{\partial x_j} \frac{\partial (v'_i f)}{\partial v'_j} - D_{ij} \frac{\partial^2 f(\mathbf{v}')}{\partial v'_i \partial v'_j} = \frac{\partial_c f}{\partial t}$$

Anisotropic Brownian motion with drag:

$$-\frac{\partial(v'_i f)}{\tau_v \partial v'_i} - D_{ij} \frac{\partial^2 f(\mathbf{v}')}{\partial v'_i \partial v'_j} = 0$$

Solution — Anisotropic Gaussian distribution:

$$f_0 = (2\pi \text{Det}\mathbf{T})^{-3/2} \exp\left(-(1/2)mv'_i T_{ij}^{-1}v'_j\right)$$

Conservation equations: Chapman-Enskog procedure.

$$f = f_0(1 + \epsilon \phi_1 + \epsilon^2 \phi_2 + \ldots)$$

Multiply FPB equation by mass, momentum, energy, and integrate over velocities to obtain conservation equations. Mass conservation:

$$\frac{\partial \rho}{\partial t} + \nabla .(\rho \mathbf{V}) = 0$$

Conservation equations:

Momentum conservation:

$$\rho \frac{DV}{Dt} = \nabla . \sigma - \frac{\rho (\mathbf{U} - \mathbf{V})}{\tau_v}$$

$$\sigma = -p\mathbf{I} + \mu(\nabla \mathbf{V} + (\nabla \mathbf{V})^T) + (\mu_b - 2/3\mu)\mathbf{I}\nabla \cdot \mathbf{V} - \mathbf{E}$$

$$E_{ij} = \frac{5(D_{ij} - (\delta_{ij}/3)D_{kk})}{8\sqrt{\pi}T^{1/2}}$$

Conservation equations:

Energy conservation:

$$\rho C_v \frac{DT}{Dt} = -p \nabla . \mathbf{V} + \rho D_{ii} - \rho E_{ik} S_{ki} + 2\mu S_{ik} S_{ki}$$
$$+ \mu_b (\nabla . \mathbf{V})^2 - 2\rho C_v T / \tau_v - \nabla . \mathbf{q}$$

$$\mathbf{q} = -K\nabla T$$

Consequences of fluctuating force:

Fluidised bed:

- Two-fluid models, in which the particle drag depends on local concentration, predict that the uniformly fluidised state is always unstable (Jackson 1966).
- Fluctuating force stabilises uniform state due to homogenisation of fluctuations.

Consequences of fluctuating force:

Turbophoresis:

- Non-monotonic variation of concentration across channel.
- Correlates with the variation of the fluctuating force amplitude.

Summary

Future work:

- Reverse coupling effect of particle force on fluid turbulence.
- Incorporate coupling in particle/fluid fluctuations into continuum models.
- Transport rates.

Thank You

Turbulent particle-gas suspensions - p.91/91