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Kaidu river, 
chinese Tian-Shan
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Google Earth
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flow

bed

Parker [1978], Vigilar & Diplas [1997], Cao & Knight [1998], Eaton & Millar [2004], ... 

• What selects the shape of the cross-section ?

• What parameters control its size ?
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Laceyʼs law - sandy, single thread rivers
data from Brownlie [1981], Church & Rood [1983], Osterkamp & Hedman [1982], Vand den Berg [1995], 
Devauchelle et al [2010]

1/2
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Field measurements
• flow rate 
• morphology

• sediment transport 

• granulometry
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Field measurements
• flow rate 
• morphology

• sediment transport 

• granulometry

But ... 

1. direct observation of the physical processes is 
difficult,

2. parameters (discharge, grain size, ...) cannot be varied 
independantly.
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Field measurements
mosquitoes
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Field measurements
mosquitoes

dust storms
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Field measurements
mosquitoes

dust storms

swimming cows
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Laboratory rivers

90 cm

190 cm

plastic sand
ds = 250 mm
rs = 1.5 103 kg m-3

qa = 35°

water + sugar or glycerol
r = 1.2 103 kg m-3   
n = 15 10-6 m s-2

Re ≃10

liquid injection
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constant discharge
no sediment input

Experimental procedure
1 image every 10 minutes
duration 10 hours
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constant discharge
no sediment input

Experimental procedure
1 image every 10 minutes
duration 10 hours

no sediment transport 
at steady state !
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Measurements of flow depth 
and bed topography
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Laboratory rivers
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Laboratory rivers
width

ʻexperimental laceyʼs lawʼ

11



Zero-transport model

The equilibrium morphology is reached when sediment 
transport ceases.
 
At equilibrium, grains must be at the threshold of entrainment 
everywhere on the bed! 

[Glover & Florey, 1951; Henderson, 1961]
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Threshold of motion for a flat sediment bed
Coulombʼs law of friction ...

flow

drag force

weight

SEDIMENT TRANSPORT AND MORPHOLOGY OF ALLUVIAL
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1. Equations

∝ U2(1)

∝ U(2)

V ∝ Vs θ
1/2(3)

V ∝ Vs θ(4)

(5) V ∝ Vs θ

(6)
tangeantial force

normal force
= µ
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friction coefficient
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Threshold of motion for a flat sediment bed
... and Shields number

t = shear stress
ds = grain size
rs, rf = sediment 
     & fluid densities

[Shields, 1936]

 Shields number  

width =
π

µ2/3

�
9 ν ρf

4 g θt (ρs − ρf ) ds

�1/3
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n =
τs
τe

d2s (θ − θc) (11)

friction force = drag force (12)

particle velocity ∝ fluid velocity (13)

< y2 > = 2 �d x (14)

qs = nV (15)
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advection
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τ
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= θt (19)

shear stress

grain weight
= θt (20)

Shields stress θ

2

threshold Shields 
number

flow

drag force

weight

14



river slope

Threshold of motion for a channel
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15



river slope

gravity

drag force
Threshold of motion for a channel
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1

weight drag force

friction 
coefficient ≃ 0.7

streamwise slope

characteristic length ≈ grain size

river slope

Threshold of motion for a channel

[Seizilles et al., 2013]
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fluides géologiques, 1 rue Jussieu, 75238 Paris cedex 05, France

1

weight drag force

friction 
coefficient ≃ 0.7

streamwise slope

characteristic length ≈ grain size

river slope

Sediment transport and morphology of alluvial
rivers

E. Lajeunesse

1 Equations

∝ U2 (1)

∝ U (2)

V ∝ Vs θ
1/2 (3)

V ∝ Vs θ (4)

V ∝ Vs θ (5)

vanishing transport → tangeantial force

normal force
= µ (6)

• µ Coulomb friction coefficient

• θt critical Shields parameter

• ds sediment size

• ρs, ρw sediment and water density

�
∂D

∂y

�2

+
�
S D

L

�2

= µ2 (7)

L =
θt (ρs − ρf ) ds

µ ρf
(8)

D =
µL

S
cos

�
S y

L

�
, (9)

1

grain sizethreshold 
Shields stress

sediment & 
fluid density

Threshold of motion for a channel

[Seizilles et al., 2013]
16



SEDIMENT TRANSPORT AND MORPHOLOGY OF ALLUVIAL
RIVERS

E. LAJEUNESSE

1. Equations

∝ U2(1)

∝ U(2)

V ∝ Vs θ
1/2(3)

V ∝ Vs θ(4)

(5) V ∝ Vs θ

(6)
tangeantial force

normal force
= µ

• µ Coulomb friction coefficient
• θt critical Shields parameter
• ds sediment size
• ρs, ρw sediment and water density

(7)

�
∂D

∂y

�2

+

�
S D

L

�2

= µ2

(8) L =
θt (ρs − ρf ) ds

µ ρf

(9) D =
µL

S
cos

�
S y

L

�
,

Institut de Physique du Globe - Sorbonne Paris Cité, Équipe de Dynamique des
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characteristic length ≈ grain size

longitudinal slopefriction coefficient

no adjustable parameter !

1

1

Zero-transport model
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characteristic length ≈ grain size

streamwise slopefriction coefficient

Zero-transport model

Channel characteristic depth and width scale as L / S !

The channel aspect ratio is constant.

18



theory 
experiments 

Comparison with experimental results

11

Figure 6. Schematic representation of a laboratory river. Both the depth D and the velocity U are
functions of the transverse coordinate y. The river is invariant in the streamwise direction x.

based on equation (6). This length, which depends on the sediment only, is of the order of the
grain size (except for almost buoyant materials). After equation (11), the typical scale of the
channel is L/S ; a small slope thus means a broad separation between the channel size and the
grain scale.

Note also that the banks are at the angle of repose, since the fluid friction vanishes when the
water depth vanishes. As illustrated by equation (11), a river at threshold embodies the two
end-members of a grain equilibrium : the force balance introduced by Shields at the center of
the channel (∂D/∂y = 0), and Coulomb’s equilibrium at the banks (D = 0).

The solution of the differential differential equation (11) is

D =
µL

S
cos

�
S y

L

�
, (13)

which predicts a channel of width,

W =
πL

S
, (14)

and maximum depth,

D0 =
µL

S
. (15)

Consequently, the channel aspect ratio (width over depth and width over average depth) is
constant,

W

D0
=

π

µ
and

W

< D >
=

π2

2µ
≈ 7 (16)
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experiments 
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Comparison with field sandy rivers

turbulent
flow

turbulent friction coef.
width =

π

µ2/3
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9 ν ρf

4 g θt (ρs − ρf ) ds

�1/3

× discharge1/3 (10)

width =
π

1.75

�
µ2Cf

gL

�1/4

× discharge1/2 (11)

n =
τs
τe

d2s (θ − θc) (12)

friction force = drag force (13)

particle velocity ∝ fluid velocity (14)

< y2 > = 2 �d x (15)

qs = nV (16)
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+D2 − µ

S



 = 0 (17)

Pe =
advection

diffusion
� 1 (18)

τ

(ρs − ρf )gds
= θt (19)

shear stress

grain weight
= θt (20)

Shields stress θ

qd = −ζD
∂n

∂y
(21)

ζD = �D V (22)

�D / ds (23)

�D ≈ 0.06 ds (24)

2

[Glover & Florey, 1951]
22



Comparison with field sandy rivers

turbulent
flow

turbulent friction coef.
width =

π

µ2/3

�
9 ν ρf

4 g θt (ρs − ρf ) ds

�1/3

× discharge1/3 (10)

width =
π

1.75

�
µ2Cf

gL

�1/4

× discharge1/2 (11)

n =
τs
τe

d2s (θ − θc) (12)

friction force = drag force (13)

particle velocity ∝ fluid velocity (14)

< y2 > = 2 �d x (15)

qs = nV (16)

D2

�
∂2D

∂y2
+D

�

− Pe




�
∂D

∂y

�2

+D2









����
�
∂D

∂y

�2

+D2 − µ

S



 = 0 (17)

Pe =
advection

diffusion
� 1 (18)

τ

(ρs − ρf )gds
= θt (19)

shear stress

grain weight
= θt (20)

Shields stress θ

qd = −ζD
∂n

∂y
(21)

ζD = �D V (22)

�D / ds (23)

�D ≈ 0.06 ds (24)

2

[Glover & Florey, 1951]
22



Comparison with field sandy rivers

turbulent
flow

turbulent friction coef.
width =

π

µ2/3

�
9 ν ρf

4 g θt (ρs − ρf ) ds

�1/3

× discharge1/3 (10)

width =
π

1.75

�
µ2Cf

gL

�1/4

× discharge1/2 (11)

n =
τs
τe

d2s (θ − θc) (12)

friction force = drag force (13)

particle velocity ∝ fluid velocity (14)

< y2 > = 2 �d x (15)

qs = nV (16)

D2

�
∂2D

∂y2
+D

�

− Pe




�
∂D

∂y

�2

+D2









����
�
∂D

∂y

�2

+D2 − µ

S



 = 0 (17)

Pe =
advection

diffusion
� 1 (18)

τ

(ρs − ρf )gds
= θt (19)

shear stress

grain weight
= θt (20)

Shields stress θ

qd = −ζD
∂n

∂y
(21)

ζD = �D V (22)

�D / ds (23)

�D ≈ 0.06 ds (24)

2

[Glover & Florey, 1951]

factor 10

22



Comparison with field sandy rivers

11

Figure 6. Schematic representation of a laboratory river. Both the depth D and the velocity U are
functions of the transverse coordinate y. The river is invariant in the streamwise direction x.

based on equation (6). This length, which depends on the sediment only, is of the order of the
grain size (except for almost buoyant materials). After equation (11), the typical scale of the
channel is L/S ; a small slope thus means a broad separation between the channel size and the
grain scale.

Note also that the banks are at the angle of repose, since the fluid friction vanishes when the
water depth vanishes. As illustrated by equation (11), a river at threshold embodies the two
end-members of a grain equilibrium : the force balance introduced by Shields at the center of
the channel (∂D/∂y = 0), and Coulomb’s equilibrium at the banks (D = 0).

The solution of the differential differential equation (11) is

D =
µL

S
cos

�
S y

L

�
, (13)

which predicts a channel of width,

W =
πL

S
, (14)

and maximum depth,

D0 =
µL

S
. (15)

Consequently, the channel aspect ratio (width over depth and width over average depth) is
constant,

W

D0
=

π

µ
and

W

< D >
=

π2

2µ
≈ 7 (16)
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Comparison with field sandy rivers

The zero transport model captures the 1/2 exponent 
of the width vs discharge relationship but 
underestimates the aspect ratio of natural rivers!
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functions of the transverse coordinate y. The river is invariant in the streamwise direction x.
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Rivers do transport sediment !

Urümqi He, chinese Tian-Shan
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streamwise flux
induced by the flow
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streamwise flux
induced by the flow

cross-stream flux
induced by gravity 
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transverse gravity flux   ➔   bank erosion

streamwise flux
induced by the flow

cross-stream flux
induced by gravity 
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ʻstable channel paradoxʼ 
Parker [1978]

A river transporting sediment cannot be stable unless 
we find an effect which compensates for the gravity flux.

streamwise flux
induced by the flow

cross-stream flux
induced by gravity 
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Experimental channel

10 cm

flow

sediment feeder

water injection

plastic sediment

camera
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Experimental channel

10 cm

flow

sediment feeder

water injection

plastic sediment

constant flow discharge
constant sediment discharge steady-state

camera
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Experimental channel

10 cm

flow

sediment feeder

water injection

plastic sediment

camera

• The sediment bed is flat !

• Close to the entrainment threshold !
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slow down movie 
(1second = 0.1 second)

Bedload transport : rolling, jumping & sliding 

The motion of an individual particle is stochastic!

dyed particles

Particle trajectories

1 cm
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surface concentration
of moving particles

average velocity 
of the particles

transport
rate

Particle trajectories

1 cm

Sediment transport and morphology of alluvial
rivers

E. Lajeunesse
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1
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flow

bedload layer

static bed

Erosion-deposition model 
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flow

bedload layer

static bed

erosion deposition

steady-state
uniform flow

excess Shields stress

grain size

Sediment transport and morphology of alluvial
rivers

E. Lajeunesse

Vx ∼ ds
∂u

∂z
∼ Vs θ (1)

n ∝ (θ − θt)

d2s
(2)

1 Equations

∝ U2 (3)

∝ U (4)

V ∝ Vs θ
1/2 (5)

V ∝ Vs θ (6)

V ∝ θ Vs (7)

vanishing transport → tangeantial force

normal force
= µ (8)

• µ Coulomb friction coefficient

• θt critical Shields parameter

• ds sediment size

• ρs, ρw sediment and water density

1

concentration 
of moving particles [Charru et al., 2004; 

Lajeunesse et al., 2010]

Erosion-deposition model 
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[Charru et al., 2004; 
Seizilles et al., in press]

flow

bedload layer

static bed

grain size

average particle velocity

Sediment transport and morphology of alluvial
rivers

E. Lajeunesse

Vx ∼ ds
∂u

∂z
∼ Vs θ (1)

n ∝ θ − θt
d2s

(2)

1 Equations

∝ U2 (3)

∝ U (4)

V ∝ Vs θ
1/2 (5)

V ∝ Vs θ (6)

V ∝ θ Vs (7)

vanishing transport → tangeantial force

normal force
= µ (8)

• µ Coulomb friction coefficient

• θt critical Shields parameter

• ds sediment size

• ρs, ρw sediment and water density

1

shear rate stoke velocity

Erosion-deposition model 
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[Charru et al., 2004; 
Seizilles et al., in press]

Erosion-deposition model 
Sediment transport and morphology of alluvial

rivers

E. Lajeunesse

Vx ∼ ds
∂u

∂z
∼ Vs θ (1)

n ∝ (θ − θt)

d2s
(2)

qs ∝ n Vx ∝ θt Vs

d2s
(θ − θt) (3)

1 Equations

∝ U2 (4)

∝ U (5)

V ∝ Vs θ
1/2 (6)

V ∝ Vs θ (7)

V ∝ θ Vs (8)

vanishing transport → tangeantial force

normal force
= µ (9)

• µ Coulomb friction coefficient

• θt critical Shields parameter

• ds sediment size

• ρs, ρw sediment and water density

1

At leading order

excess Shields stress
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(1) qs ∝ n V

(2) �d
∂q

∂x
= V × nsat − q

(3)
V

Vs
∝

�√
τ ∗ −

�
τ ∗c

�

(4) V ∝ (u∗ − u∗,c)

(5) td ∝
D

Vs

(6) nD
2 ∝ (τ ∗ − τ ∗c )

(7)
nD

2

φ
∝ (τ ∗ − τ ∗c )

(8)
V

Vs
= α

�
τ ∗1/2 − τ ∗1/2c

�
+ β

(9) td = cd
D

Vs

(10) nsat = c× τ − τc
D2

�d = V td(11)

td = cd
D

Vs
(12)

V

Vs
= α

�
τ ∗1/2 − τ ∗1/2c

�
+ β(13)

nsat = c
(τ ∗ − τ ∗c )

D2
(14)

(15) c, cd,α, β = f(Res, S,H/D)
1

ʻstable channel paradoxʼ 
Parker [1978]

streamwise flux
induced by the flow

cross-stream flux
induced by gravity 
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(5) td ∝
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(10) nsat = c× τ − τc
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�d = V td(11)

td = cd
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(12)

V

Vs
= α

�
τ ∗1/2 − τ ∗1/2c

�
+ β(13)

nsat = c
(τ ∗ − τ ∗c )

D2
(14)

(15) c, cd,α, β = f(Res, S,H/D)
1

What opposes the cross-stream gravity-induced flux ?

ʻstable channel paradoxʼ 
Parker [1978]

streamwise flux
induced by the flow

cross-stream flux
induced by gravity 
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Bedload transport

view from above
slow down movie

Trajectories are not straight lines!

bed roughness ➔ deviations along the cross stream direction

Samson et al. [1998], Lajeunesse et al. [2010],  Roseberry et al. [2012]
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Particle trajectories

Qw = 2.05 L/min, 
Qs = 6.10-2 g/min

translated so that their initial starting point coincide

random walk in the cross-stream direction ?

cross-stream
variance

�
S

L

�2

ζd
∂n

∂y

D2

����
�
SD

L

�2

+

�
∂D

∂y

�2
= nV

∂D

∂y
(25)

variance of y ∝ x ?

3

spreading along the cross-stream direction
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Random walk
Qw = 2.05 L/min, 
Qs = 6.10-2 g/min
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[Seizilles et al., sub.] 
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Random walk
Qw = 2.05 L/min, 
Qs = 6.10-2 g/min
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width =
π

µ2/3

�
9 ν ρf

4 g θt (ρs − ρf ) ds

�1/3

× discharge1/3 (10)

n =
τs
τe

d2s (θ − θc) (11)

friction force = drag force (12)

particle velocity ∝ fluid velocity (13)

< y2 > = 2 �d x (14)

2

width =
π

µ2/3

�
9 ν ρf

4 g θt (ρs − ρf ) ds

�1/3

× discharge1/3 (10)

n =
τs
τe

d2s (θ − θc) (11)

friction force = drag force (12)

particle velocity ∝ fluid velocity (13)

< y2 > = 2 �d x (14)

2

diffusion lengthvariance of y

7

FIG. 6. Mean streamwise velocity (Vx/Vs, filled triangles) and cross-stream velocity variance (Vy/Vs,
empty triangles) as a function of the number of moving particles, nd2s. Symbols and colors changes with
water discharge.

where yi(x) is the trajectory of the i-th particle in the horizontal plane. The trajectories are
shifted so that they all start from zero (yi(0) = 0). The variance σ2

y represents the average
spreading of a particle as a function of the downstream distance, regardless of travel time.
We find that the variance increases linearly with the downstream distance (figure 7), which

defines a diffusion length �d such that

σ2
y = 2 �d x . (14)

For instance, �d = 9.5±0.8µm in figure 7, that is, about 0.028 ds. Repeating the same procedure
for all experimental runs, we observe that the diffusion length �d is independent of the surface
density of moving particles, within the range explored here (figure 8). The average value of �d
over all experiments is

�d
ds

= 0.030± 0.004. (15)

Replacing the sediment with larger particles (ds = 631 µm) does not change significantly the
ratio �d/ds (figure 8).

C. Random walk

The linear dependence of the particle dispersion with respect to the travel distance evokes a
random walk. To elaborate on this analogy, let us represent the bedload particle as a walker
which takes a random step of length δy in the cross-stream direction each times it travels
downstream over a distance δx. A more physical picture, perhaps, is to consider that moving
particles deflect off immobile particles as they are entrained downstream. Accordingly, we expect
both δx and δy to be of the order of the grain diameter.
The walker’s trajectory is a sum of successive steps, the variance of which reads

σ2
y =

δ2y
δx

x (16)

data
linear fit

[Seizilles et al., sub.] 
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From random walk ....
• single particle = random walker

 

cr
os

s-
st

re
am

downstream

Each time the particle takes one step in the streamwise direction, it also takes one random 
step either to the left or to the right in the cross-stream direction.
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• many random walkers 

... to diffusion

downstream
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• many random walkers 

... to diffusion
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right

moving grains homogeneously distributed   

➔ no net flux along the cross-stream direction

39



• many random walkers 

... to diffusion

downstream

cr
os

s-
st

re
am

left

right

gradient of concentration of moving grains   

40



• many random walkers 

... to diffusion

downstream

cr
os

s-
st

re
am

left

right

gradient of concentration of moving grains   

40



• many random walkers 

... to diffusion

downstream
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am

left

right

gradient of concentration of moving grains   

➔ net sediment flux  
• directed toward the less populated areas
• proportional to the gradient of the number of particles
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Bedload diffusion

width =
π

µ2/3

�
9 ν ρf

4 g θt (ρs − ρf ) ds

�1/3

× discharge1/3 (10)

width =
π

1.75

�
µ2Cf

gL

�1/4

× discharge1/2 (11)

n =
τs
τe

d2s (θ − θc) (12)

friction force = drag force (13)

particle velocity ∝ fluid velocity (14)

< y2 > = 2 �d x (15)

qs = nV (16)

D2

�
∂2D

∂y2
+D

�

− Pe




�
∂D

∂y

�2

+D2









����
�
∂D

∂y

�2

+D2 − µ

S



 = 0 (17)

Pe =
advection

diffusion
� 1 (18)

τ

(ρs − ρf )gds
= θt (19)

shear stress

grain weight
= θt (20)

Shields stress θ

qd = −ζD
∂n

∂y
(21)

ζD = �D V (22)

�D / ds (23)

ζD = �D V ≈ 0.03 ds V (24)

2

diffusive 
length

particle 
velocity

[Seizilles et al., in press]

diffusive 
flux

diffusion 
coef.

concentration of 
moving particles

�D ≈ 0.03 ds (25)

�
S

L

�2

ζd
∂n

∂y

D2

����
�
SD

L

�2

+

�
∂D

∂y

�2
= nV

∂D

∂y
(26)

variance of y ∝ x ?

�qs = n �V (27)

�qd = −ζD �∇⊥n (28)

�qd = −ζD �∇⊥n (29)

3

velocity distributions 
& correlation time 
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Bedload transport :
the complete picture ! 

bedload transport,  advection 

direction of 
tangential force

�D ≈ 0.03 ds (25)

�
S

L

�2

ζd
∂n

∂y

D2

����
�
SD

L

�2

+

�
∂D

∂y

�2
= nV

∂D

∂y
(26)

variance of y ∝ x ?

�qs = n �V (27)

�qd = −ζD �∇⊥n (28)

�qd = −ζD �∇⊥n (29)

3

transverse flux, diffusion 

tra
ns
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e

Sediment transport and morphology of alluvial
rivers

E. Lajeunesse

�qb = n �V (1)

V ∝ ds
∂u

∂z
∝ Vs θ (2)

n ∝ (θ − θt)

d2s
(3)

qs ∝ n V ∝ θt Vs

d2s
(θ − θt) (4)

D̃ =
S

L
D (5)

Pe =
L

�d

1

S
(6)

Pe =
L

�d

1

S
∼ ds

10−2 ds

1

10−2
∼ 104 (7)

1

Pe
(8)

1 Equations

∝ U2 (9)

∝ U (10)

V ∝ Vs θ
1/2 (11)

V ∝ Vs θ (12)

1
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Do gradients of bedload particles 
exist in nature ?

Urumqi He, Tian-Shan, China
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Do gradients of bedload particles 
exist in nature ?

Urumqi He, Tian-Shan, China

gravity induced flux

bedload 
diffusion

 What would be the shape of a river in which 
 the  gravity-induced flux  and the diffusion flux  
 would balance each-other?
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Equilibrium with sediment transport
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Equilibrium with sediment transport

44

where β is a coefficient depending on the laminar or turbulent nature of the flow (table II) and
Θ is the generalized Shields stress,

Θ =
|�ft|
|�fn|

=

�
sin2 φ+ (µθ/θt)2

cosφ
=

�
D̃2 + D̃�2 (105)

Assuming that the stress exerted on the sediment bed is close to the threshold of motion, the
average particle velocity, V , is constant wether the flow is laminar or turbulent (table II).

Combining (103), (104) and (105) leads to

V
��

D̃2 + D̃�2 − µ
�
D̃� − Sζd

L

D̃2

�
D̃2 + D̃�2

∂
�
D̃2 + D̃�2

∂ỹ
= 0 (106)

which can be further simplified into

LV

Sζd

��
D̃2 + D̃�2 − µ

�
D̃� − D̃2

D̃2 + D̃�2

�
D̃ + D̃��

�
D̃� = 0 (107)

and finally leads to

Pe
��

D̃2 + D̃�2 − µ
� �

D̃2 + D̃�2
�
− D̃2

�
D̃ + D̃��

�
= 0 (108)

where we introduce the dimensionless Péclet number,

Pe =
LV

Sζd
(109)

Equation (108) is a non linear second order equation expressing the balance between the cross-

stream components of bedload transport and bedload diffusion. It cannot be integrated analyti-
cally. To solve it, we need two boundary conditions :

1. D̃(0) = D̃0, i.e. we impose the flow depth at the center of the channel,

2. D̃�(0) = 0 i.e. we are looking for symmetric channels.

The solutions of equation (108) depend therefore on two parameters : (1) the Peclet number, Pe,
which expresses the ratio of the advective to the diffusive bedload flux, (2) the central channel
depth, D̃0. Figure 31 shows several numerical solutions obtained with the same channel depth,
D̃0, but for various values of Pe. For a fixed value of D̃0, increasing Pe increases the channel
width. Above some critical value of the Peclet number, the curvature of the mathematical
solution of (108) exhibits a negative curvature so that it cannot correspond to a “physical”
river.

5. Phase portrait of the equilibrium condition

Also useful, the numerical resolution of (108) does not allow us to evidence its general properties.
The appropriate approach to get a better insight is to plot its phase portrait. This is done by
noting that equation (108) is equivalent to the vectorial formulation

d

dỹ

�
D̃
D̃�

�
= �f(D̃, D̃�) (110)

Peclet number = advective / diffusive bedload

dimensionless depth

Sediment transport and morphology of alluvial
rivers

E. Lajeunesse

V ∝ ds
∂u

∂z
∝ Vs θ (1)

n ∝ (θ − θt)

d2s
(2)

qs ∝ n V ∝ θt Vs

d2s
(θ − θt) (3)

Pe =
L

�d

1

S
(4)

1 Equations

∝ U2 (5)

∝ U (6)

V ∝ Vs θ
1/2 (7)

V ∝ Vs θ (8)

V ∝ θ Vs (9)

vanishing transport → tangeantial force

normal force
= µ (10)

• µ Coulomb friction coefficient

• θt critical Shields parameter

1
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1 Equations
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∝ U (7)

V ∝ Vs θ
1/2 (8)

V ∝ Vs θ (9)

V ∝ θ Vs (10)

vanishing transport → tangeantial force

normal force
= µ (11)

• µ Coulomb friction coefficient

1
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Numerical solution

Pe = 2

cosine solution for the 0 transport case

channel depth

2 explicit parameters : Pe and channel depth
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Numerical solution

2 explicit parameters : Pe and channel depth
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Numerical solution

The theoretical solution depends explicitly on Pe and 
the channel depth ....

whereas we are interested in the evolution of the river 
morphology as a function of the flow and sediment 
discharges!
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Phase space

Sediment transport and morphology of alluvial
rivers
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1 Equations
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vanishing transport → tangeantial force

normal force
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1 Equations
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The surface concentration of moving particles is obtained by by calculating the generalized
Shields stress from equation (105) for the flow depth in the central region (115) and using
equation (104),

n =
β

d2s
(Θ− µ) =

β

d2s

µ

Pe
(119)

It follows that the sediment flux is equal to

Qb = w̃ Q∗
b (120)

where w̃ = wS/L is the dimensionless width of the central part of the channel and Q∗
s is a

characteristic sediment transport rate (number of grains per unit river width per unit time),

Q∗
b = β

V

d2s
µ �d (121)

depending only on the properties of the sediment bed.

The flow rate, Qw, is obtained by summing the contributions of the banks, Qbank, and of the
central part of the channel, Qcenter. If the flow is laminar, the contribution of the cosine banks
is given by (18),

Qbank =
4

9
µ3 g

ν

L4

S3
(122)

and that of the center of the channel is

Qcenter = wDU =
1

3
w

g

ν
S D3 =

w̃

3
µ3 g

ν

L4

S3
(123)

where we use Pe � 1. Finally, one gets

Qw = µ3 4

9

g

ν

L4

S3

�
1 +

3

4
w̃

�
(124)

Equations (120), (124), (115) and (126) allow us to establish how the channel width, slope and
aspect ratio depend on the flow and sediment discharges :

S =

�
4gµ3L

9ν

�1/3

LQ−1/3
w

�
1 +

3

4

Qb

Q∗
b

�1/3

(125)

W = π

�
4gµ3L

9ν

�−1/3

Qw
1/3

�
1 +

1

π

Qb

Q∗
b

�1/3 �
1 +

3

4

Qb

Q∗
b

�−1/3

(126)

W

D0
=

π

µ

�
1 +

1

π

Qb

Q∗
b

�
(127)

Equations (125) and (126) hold for a laminar flow. In the limit of vanishing sediment transport
(Qb � Q∗

b), we recover the results (19) and (20) established for a river at the threshold of
sediment transport.

For a laminar flow :
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Equations (125) and (126) hold for a laminar flow. In the limit of vanishing sediment transport
(Qb � Q∗

b), we recover the results (19) and (20) established for a river at the threshold of
sediment transport.
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ʻflat riverʼ approximation 

48

The surface concentration of moving particles is obtained by by calculating the generalized
Shields stress from equation (105) for the flow depth in the central region (115) and using
equation (104),

n =
β

d2s
(Θ− µ) =

β

d2s

µ

Pe
(119)

It follows that the sediment flux is equal to

Qb = w̃ Q∗
b (120)

where w̃ = wS/L is the dimensionless width of the central part of the channel and Q∗
s is a

characteristic sediment transport rate (number of grains per unit river width per unit time),

Q∗
b = β

V

d2s
µ �d (121)

depending only on the properties of the sediment bed.

The flow rate, Qw, is obtained by summing the contributions of the banks, Qbank, and of the
central part of the channel, Qcenter. If the flow is laminar, the contribution of the cosine banks
is given by (18),

Qbank =
4

9
µ3 g

ν

L4

S3
(122)

and that of the center of the channel is
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where we use Pe � 1. Finally, one gets
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Equations (120), (124), (115) and (126) allow us to establish how the channel width, slope and
aspect ratio depend on the flow and sediment discharges :
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Equations (125) and (126) hold for a laminar flow. In the limit of vanishing sediment transport
(Qb � Q∗

b), we recover the results (19) and (20) established for a river at the threshold of
sediment transport.
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Laboratory rivers

90 cm

190 cm

sediment feeder

liquid injection

•constant discharge
•constant input sediment rate steady-state
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Experiments

flow 

12 cm

Qw = 1L/min
Qs = 0.7g/min
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12 cm

Experiments
Qw = 1L/min

Qs = 0

Qs = 0.7 g/min

Qs = 1.5 g/min
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12 cm

Experiments

Qw = 1L/min
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12 cm

Experiments

Qw = 1L/min

good qualitative agreement !
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Summary

•Bedload transport generates transverse diffusion.

streamwise
cr

os
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st
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am

diffusion coefficient
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diffusion coefficient

gravity induced flux

bedload 
diffusionnu

m
be
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Summary

•Equilibrium shape of rivers is selected by the balance 
between bedload diffusion and gravity induced flux. 

•Bedload transport generates transverse diffusion.
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diffusion coefficient

Summary

•Bedload transport generates cross-stream diffusion.

•Equilibrium shape of rivers is selected by the balance 
between bedload diffusion and gravity induced flux. 

•The width to depth ratio of the river increases with the 
sediment discharge.
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diffusion coefficient

Summary

•Bedload transport generates cross-stream diffusion.

•Equilibrium shape of rivers is selected by the balance 
between bedload diffusion and gravity induced flux. 

•The width to depth ratio of the river increases with the 
sediment discharge.
•Experimental (in)validation in progress !
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How does this physical framework 
compare to field data ? 
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Field data

single thread gravel-bed rivers
Data compiled by Métivier & Barrier [2011] 
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