

A two-phase model based on unified formulation for continuum mechanics applied to sediment transport in geophysical flows: Application to sedimentation, consolidation and erosion. Study case- the Gironde Estuary (France)

K.D. Nguyen Laboratory Saint-Venant for Hydraulics, Université PARIS-EST, 78400 CHATOU, FRANCE

## Thanks to my co-workers

- Sylvain Guillou(1993-present)- University of Caen
- Damien Pham-Van-Bang (2008-present), Lab Saint-Venant, Université Paris-Est
- Nataly Barbry (Ph.D., 1996-2000, University of Caen)
- Julien Chauchat (Ph.D., 2003-2007, Post-Doc, 2008 in University of Caen)
- Duc Hau Nguyen (Ph.D. 2008-2011, University of Caen)
- Miguel Uh-Zapata, Post-Doc, 2011-present)
- < Shafuil Islam (Ph.D., 2012-present, Université Paris-Est)



### CONTEXT

Requirement from a lot of applications of sediment transport modelling: Turbidity maximum in estuaries, Dredging operation, silting and scouring process, ....

Scientific Challenges:

- Physical challenges: Rheology of sediments, very dense flows, fluid-bed interaction, liquid-like and solid-like of solid fraction, and turbulence ..
- Numerical challenges & parallelisation (MPI-CPU, CUDA-GPU)



FORMATION OF TURBIDITY MAXIMUM IN ESTUARIES



#### PROCESSING OF SEDIMENT TRANSPORT





# CONTENTS

#### REMARKS ON THE SIGNLE- and TWO-PHASE MODELS

#### TWO-PHASE MODELLING

- Description
- CFD Techniques for Advection and Poisson 's Equation

Test-cases:

- Sedimentation-Consolidation-
- Dredged sediment release in open sea water
- Water & Sediment Interfaces: Kelvin-Helmholtz instabilities
- Vertical Erosion Test: Unified formulation for continuum mechanics
- Gironde Application
- DISCUSSION & CONCLUSIONS



### **REMARKS ON SINGLE- AND TWO-PHASE MODEL**

#### Single-phase Models

- "Passive scalar" hypothesis
- No fluid-particles interactions. Fluid-bed interaction by empiric formulas for deposit and erosion fluxes
- Fictive-bed conception
- Extra models for consolidation of solid particles

Unphysical description for very dense flows (?) -Small computing cost Acceptable to engineering problems

#### < <u>Two-phase Models</u>

- No "passive scalar" hypothesis
- Fluid-particles interaction.
   Fluid-bed interaction by the models
- No fictive-bed conception
- Consolidation process included in the models

All interactions considered Correct physical description High computing cost



### **OBJECTIVES of THIS WORK**

- To develop a two-phase model that is able to simulate the main processes of sediment transport in estuarine and coastal zones, such as suspension, sedimentation, consolidation and erosion. (*The computing domain should cover from non-erodible beds to free water surfaces*).
- To propose efficient CFD and HPC techniques, which provide the high accuracy and the reduction of computing cost.



### DESCRIPTION FOR TWO-PHASE MODEL

- Two-phase (fluid & solid particles) model with unified formulation for continuum mechanics (Navier-Stokes and Navier Equations)
- < Non hydrostatic pressure
- /~ k-ε turbulence model (K<sub>f</sub>,  $ε_f$ , K<sub>s</sub> and K<sub>sf</sub>) , K-Ω and LES (in progress)
- Adaptative Eulerian mesh in Z and unstructured in (x,y)
- Projection method + Finite volume method
- 2-D Vertical Version completed (parallelised by MPI-CPU, CUDA-GPU)
- 3-D version development in progress (Summer 2014)



#### **GOVERNING EQUATIONS**

- Averaged equations

$$\frac{\partial (\alpha_k \rho_k B)}{\partial t} + \vec{\nabla} \cdot (\alpha_k \rho_k \vec{u}_k B) = 0$$
  
$$\frac{\partial (\alpha_k \rho_k \vec{u}_k)}{\partial t} + \vec{\nabla} \cdot (\alpha_k \rho_k \vec{u}_k \otimes \vec{u}_k) = \vec{\nabla} \cdot \left( -\alpha_k p_k \vec{I} + \alpha_k \vec{\tau}_k \right) + \alpha_k \rho_k \vec{g} + \vec{M}_k$$

Effective Stress for solid phase

$$p_s = \tilde{p} + \sigma_e$$
 with  $\sigma_e = 50 \left( \frac{\alpha_s - \alpha_s^{gel}}{\alpha_s^{max} - \alpha_s} \right)$  For  $\alpha_s > \alpha_{gel}$ 

- Closure Laws

Transfer laws

$$\vec{M}_{k} = p_{ki} \vec{\nabla} \alpha_{k} - \vec{\vec{\tau}}_{ki} \vec{\nabla} \alpha_{k} + \vec{M'}_{k}$$
$$p_{si} = p_{fi} + H\sigma_{pi}$$
$$p_{fi} = p_{f} - \frac{1}{4} \rho_{f} \left| \vec{u}_{f} - \vec{u}_{s} \right|^{2}$$

$$\vec{\tau}_{si} = \vec{\tau}_{fi} = \beta \ \vec{\tau}_f$$
$$\vec{\tau}_f = \mu_f \ (\vec{\nabla} \ \vec{u}_f + (\vec{\nabla} \ \vec{u}_f)^T)$$
$$\vec{M}'_s = \vec{F}_D + \vec{F}_{vm} + \vec{F}_L + \vec{F}_F + \vec{F}_B$$
$$\vec{M}'_f = -\vec{M}'_s$$



#### **Constitutive laws**

#### Viscous Stresses

$$\vec{\nabla} \cdot \left(\alpha_{f} \overline{\tau_{f}}\right) = \frac{1}{B} \left[\vec{\nabla} \cdot \left(\mu_{ff} \overline{D_{f}}\right) + \vec{\nabla} \cdot \left(\mu_{fs} \overline{D_{s}}\right)\right] \qquad \mu_{ff} = \alpha_{f} \mu_{f} \qquad \mu_{ss} = \alpha_{s}^{2} \beta \mu_{f}$$

$$\vec{\nabla} \cdot \left(\alpha_{s} \overline{\tau_{s}}\right) = \frac{1}{B} \left[\vec{\nabla} \cdot \left(\mu_{sf} \overline{D_{f}}\right) + \vec{\nabla} \cdot \left(\mu_{ss} \overline{D_{s}}\right)\right] \qquad \mu_{fs} = \alpha_{s} \mu_{f} \qquad \mu_{sf} = \alpha_{s} \alpha_{f} \beta \mu_{f}$$

$$\vec{\nabla} \cdot \left(\alpha_{s} \overline{\tau_{s}}\right) = \frac{1}{B} \left[\vec{\nabla} \cdot \left(\mu_{sf} \overline{D_{f}}\right) + \vec{\nabla} \cdot \left(\mu_{ss} \overline{D_{s}}\right)\right] \qquad \mu_{fs} = \alpha_{s} \mu_{f} \qquad \mu_{sf} = \alpha_{s} \alpha_{f} \beta \mu_{f}$$

$$\vec{D_{k}} = \frac{1}{2} \left[\vec{\nabla} \otimes \left(\vec{u_{k}}B\right) + \left(\vec{\nabla} \otimes \left(\vec{u_{k}}B\right)\right)^{T}\right] \qquad \mu_{f\nabla} = -\mu_{f} \qquad \mu_{s\nabla} = \alpha_{s} \beta \mu_{f\nabla}$$

$$\beta = \frac{5}{2} + \frac{9}{4} \left[\frac{1}{1+h/d} \left[\frac{1}{(2h/d)} - \frac{1}{(1+2h/d)} - \frac{1}{(1+2h/d)^{2}}\right] \frac{1}{\alpha_{s}}$$

Particles Pressure

$$\vec{\nabla}(\alpha_s p_s) = \vec{\nabla}(\alpha_s p_{s,cin}) + \vec{\nabla}(\alpha_s p_{s,coll}) + \vec{\nabla}(\alpha_s p_f)$$
$$\vec{\nabla}(\alpha_s p_{s,coll}) = -G(\alpha_f) \vec{\nabla}\alpha_s$$
$$G(\alpha_f) = 10^{B_1 \alpha_f + B_2}$$
$$G(\alpha_f) = G_0 e^{-C(\alpha_f - \alpha^*)}$$



### CFD Techniques: Advection terms



Figure 1.8: Solution of the three-dimensional advection problem with a solid-body rotation flow field as velocity field at times t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 for N = 64. Advection equation  $\frac{\partial(\alpha_k \rho_k u_k)}{\partial t} + \nabla . (\alpha_k \rho_k u_k u_k) = 0 \quad \Rightarrow \quad \frac{\partial \emptyset}{\partial t} + \nabla . (\emptyset u) = 0$ 

Numerical Scheme: ULSS+LED (Nguyen et al., C&F, 2013) Test-case:

The computational domain is  $[-1; 1] \times [-1; 1] \times [-1; 1]$ The initial condition is an sphere of radius 0.25 with The velocity field is a solid-body rotation flow field

| Ν   | Peak values | Maximun Absolute | Order |
|-----|-------------|------------------|-------|
| 16  | 0.121       | 0.635            | -     |
| 32  | 0.414       | 0.559            | 0.813 |
| 64  | 0.844       | 0.142            | 1.987 |
| 128 | 0.979       | 0.017            | 3.052 |



Table 1.2: Errors, peak values and numerical orders of accuracy of the three-dimensional advection problem after one full revolution at the time t = 1.0.

Figure 1.9: Convergence analysis for the threedimensional advection problem after one full revolution. The \*-marks denotes the results from the approximation, and the lines represent the ideal order of accuracy.



### **CFD Techniques:** Poisson Equation

#### Poisson equation:

$$\frac{\partial}{\partial x} \left( \alpha_k \frac{\partial \delta p_k}{\partial x} \right) + \frac{\partial}{\partial y} \left( \alpha_k \frac{\partial \delta p_k}{\partial y} \right) + \frac{\partial}{\partial z} \left( \alpha_k \frac{\partial \delta p_k}{\partial z} \right) = \frac{\rho_k}{\Delta t} \left[ -\frac{\partial \alpha_k}{\partial t} + \nabla \cdot \left( \alpha_k \mathbf{u}_k^* \right) \right]$$

where  $\delta p = p^{n+1} - p^n$ .

$$x^* = x, \quad y^* = y, \quad \sigma = \frac{z+h}{\eta+h}, \quad t^* = t$$

where  $\eta$  is the water surface level and h is the bottom depth.





### CFD Techniques: Poisson Equation (2/3)

The Poisson equation is approximated given a right-hand side profile and compared with its corresponding analytical solution using Γ = 1.

**Right-hand side profile** :  $f(x, y) = 3\pi^2 \sin(\pi x) \sin(\pi y) \sin(\pi \sigma)$ **Analytical solution** :  $\phi(x, y) = \sin(\pi x) \sin(\pi y) \sin(\pi \sigma)$ 

• The first example has been solved over a box domain  $[-1,1] \times [-1,1] \times [-1,1]$  using three different types of grid:







### CFD Techniques: Poisson Equation (3/3) Errors & Accuracy

Exact solution, approximation and errors using the grid type 2:



Maximum absolute errors and order of accuracy:

| Ν   | Grid type 1           | Order | Grid type 2           | Order | Grid type 3           | Order |
|-----|-----------------------|-------|-----------------------|-------|-----------------------|-------|
| 16  | $0.18 \times 10^{-1}$ | +     | $0.80 \times 10^{-2}$ | -     | $0.19 \times 10^{-1}$ | -     |
| 32  | $0.44 \times 10^{-2}$ | 2.03  | $0.19 \times 10^{-2}$ | 2.08  | $0.56 \times 10^{-2}$ | 1.78  |
| 64  | $0.10 \times 10^{-2}$ | 2.03  | $0.46 \times 10^{-3}$ | 2.06  | $0.11 \times 10^{-2}$ | 2.05  |
| 128 | $0.26 \times 10^{-3}$ | 2.03  | $0.11 \times 10^{-3}$ | 2.02  | $0.28 \times 10^{-3}$ | 2.03  |







#### Sedimentation and Consolidation of non-cohesive particles

(Nguyen et al., Advances in Water Res., 2009, p 1187-1196)

Expérience réalisée au LMSGC [Pham Van Bang et al., 2006]

- Particules : billes de polystyrène
  - $D_p = 290 \pm 30 \ \mu m$ •  $\rho_s = 1.05 \ kg.m^{-3}$
  - α<sub>s</sub>=0,48
- Fluide : huile de silicone
  - $\mu_f = 20.10^{-3} kg.m^{-1}.s^{-1}$ •  $\rho_f = 0.95 \text{ kg}.m^{-3}$

#### Paramètres numériques

- Maillage : 11 × 91
- $\Delta t = 5.10^{-4} \text{ s}$



Evolution of the water-sediment interface





# Sedimentation and Consolidation of cohesive particles (Kaolin)



Comparison of two-phase model results with experiments for initial concentrations  $\alpha s = 1.2$ , 2.2 and 5.2%. ime evolution of the mud–clear water interface position (symbols: experiments; lines: model) and (b) solid volume fraction profiles (dashed blue lines :experiments; solid red lines: model)





#### **Dredged Sediment Release in Open Sea**



Isocontour map of the vertical-velocity lag between the fluid and solid phases ( $w_s$ - $w_f$ = - $w_{sett}$ ).



L=72m 1m 5m 17cm OP2 OP1 15cm H=1m D £Ж  $H_d$  $H_r$ 15cm OP3  $\leftrightarrow$ 0 R<sub>d</sub> R х

Fig. 1: Definition sketch: (upper) location of Optical Probes (OP) for turbidity measurements; (lower) sediment release (Boutin, 2000).



#### Comparison between single- and two-phase models Case of sediment release in open sea

#### Single-phase

#### Two-phase





### Dredged sediment release in open sea





### Water-Sediment Interface: Kelvin-Helmholtz Instability (1/3)

#### Non-cohesive

#### cohesive





Modèle diphasique et méthode analyse Modélisation diphasique Rejets de dragage par clapage en mer Stabilité de la crème de vase sous écoulement

### Étude de sensibilité au maillage







#### Caulfield and Peltier, JFM 2000

Compartmentalization of the flow into core (dotted rectangle), eyelid (dashed rectangle) and braid regions (dot-dashed rectangle)

| Maillage                | G     | M     | F<br>17.00 |  |
|-------------------------|-------|-------|------------|--|
| $t_1(s)$                | 25.50 | 20.00 |            |  |
| $t_2(s)$                | 32.50 | 24.50 | 20.50      |  |
| $(t_2 - t_1)(s)$        | 7.00  | 4.50  | 3.50       |  |
| t <sub>PC</sub> (jours) | 1     | 3     | 15         |  |

### Kelvin-Helmholtz Instability: Solid and Fluid velocity and voticity differences (3/3)

Modèle diphasique et méthode analyse Modélisation diphasique Rejets de dragage par clapage en mer Stabilité de la crème de vase sous écoulement

#### Cas de référence : Ri = 0.113, W = 3, F(2)



















Liberté • Égalité • Fraternité RÉPUBLIQUE FRANÇAISE

Ministère de l'Écologie, de l'Énergie, du Développement durable et de l'Aménagement du territoire CETMEF LABORATORY FOR HY DR AULLICS















### **Part 1 : Experimental investigation**

S. Badr, G. Gauthier. P. Gondret **THESIS'13** 











#### Porous flow within the granular bed

Flow conditions at the bottom boundary (previous configuration)



#### Craters and dunes resulting from a dynamic equilibrium

- Formation of crater by jet induced • erosion
- Eroded grains create a dense suspension
- Deposition of particles at preferential locations
- Granular avalanches produced at the sandpile's surface



Geometry of craters (vertical submerged jet) as controlled by the Erosion parameter, *E<sub>c</sub>* (*U<sub>0</sub>* mean velocity at the nozzle outlet; *b* dimension of the nozzle, *L* distance to the initial bed, d sediment grain size, *s* density ratio between solid and liquid). Depending on *Ec* value, the jet could be either weakly (a, b) or strongly (c,d) deflected:

redrawn from Aderibigbe & Rajaratnam [16]; figures c) and d) from Giez & Souiler [17].









Non-Newtonian, (concentration)

**Momentum** 

<u>exchange</u>

<u>between</u>

Phases

<u>(drag,lift, vmf)</u>

### Part 2 : Numerical modelling (NSMP, two-phase model)

Governing equations [Nguyen et al (2009)]

$$\frac{D\alpha_k \rho_k}{Dt} = \frac{\partial \alpha_k \rho_k}{\partial t} + \vec{\nabla} \cdot \left(\alpha_k \rho_k \vec{u_k}\right) = 0$$
$$\frac{D\alpha_k \rho_k \vec{u_k}}{Dt} = \vec{\nabla} \cdot \left(\alpha_k \vec{T_k}\right) + \alpha_k \rho_k \vec{g} + \vec{M_k}$$

#### Extension of the two-fluid approach into a fluid-soil model

Deviation in rheological behavior between granular flow and quasi-static sandpile

Newtonian or Non-Newtonian Viscosity for the granular flow (Liquid-like)

Elasticity and/or Plasticity (friction's law) for the sand heap
 (Solid-like)

#### Modeling strategy:

→An unified formulation for fluid and solid phase (liquid-like and solid-like) based on continuum mechanics (no coupling)

→ The FLUID and the SOLID phase are calculated by using the FV method in the SAME computational grid



### Implementation in NSMP

LABORATORY FOR HYDRAULICS

SAINT-VENANT

SAINT-VENANT



30



#### Smooth transition between Liquid-Like and Solid-Like behavior







### **Part 3 : Simulation Results**

#### **Parameters**

- Grid: 251x101 (dz=2 mm,dx=1-2 mm)
- Initial conditions
  - Granular bed ( $\alpha_s$ =0.55, h=10cm)
  - Quiet water ( $\alpha_s$ =0.0) otherwise
- Boundary conditions
  - impermeable : left, right of domain

and jet outlet

- Impermeable : top of the domain
- Permeable : bottom of the domain
- Poiseuille profile (jet outlet)
- **Time step** dt=2.10<sup>-5</sup>s

#### Elastic parameters:

Young Modulus (E) =6MPa

Poisson coefficient (v) = 0.5

→ Shear Modulus (G) =2MPa

Fluid-Mediated Particle Transport in Geophysical Flows, KITP, October 31, 2013



MPI version is used on IBM BlueGene P GPU-CUDA version is under development

'pseudo-viscosity'

(2Gdt)=80Pa.s

→ 'effective pseudo-viscosity'

=80.10<sup>-3</sup> m<sup>2</sup>/s





### Evolution of the crater







**Numerical Results** 



crater depth-Ec; b) crater diameter-Ec











Ministère de l'Écologie, de l'Énergie, du Développement durable et de l'Aménagement du territoire



### CONCLUSIONS

- Introduction of the proposed unified formulation gives promising results:
  - Solid-like behaviour for solid bed is obtained.
  - Stabilised shape of the crater is obtained.
  - Quantitatively, the dimensions (H,D) of crater in good agreement with experimental observation.

#### Perspectives:

- More studies required on the *f*-function and its parameters.
- Extension for other configurations (inclined, horizontal jet).
- 3D (massively parallelized ) version, application to scouring around structures, dike break.





# APPLICATION TO THE GIRONDE ESTUARY



### **Coupling technique**

1 confluence zone (node)/3 branches

Continuity and momentum equations integrated over the jth layer of the confluence area:

$$(\alpha_k \varphi)^{n+1} = (\alpha_k \varphi)^n - \frac{1}{\Omega} \sum_{\ell=1,3} F_\ell - \frac{1}{dz} (F_{j+1} - F_j) + S \quad \text{flux } \ell$$



Equations
$$\Phi$$
FiFjSContinuity $\alpha_{k,no}$  $\alpha_k B_\ell u_k$  $\alpha_{k,no} W_{k,no}$  $0$ Momentum $W_{k,no}$  $\frac{\alpha_k}{\rho_k} \left[ p_k - \rho_k u_k w_k - \mu_{ks} \frac{\partial w_s}{\partial x} - \mu_{kf} \frac{\partial w_f}{\partial x} \right]_\ell B_\ell dt$  $\frac{\alpha_k}{\rho_k} \left[ p_{k,no} + \rho_k w_{k,no} - \mu_{ks} \frac{\partial w_{s,no}}{\partial z} \right]_d t$  $\frac{1}{\rho_k} M_{kz} - \alpha_k g$ 



# Contour map of turbidity in spring tide from the two-phase model









### CONCLUSION

Needing of two-phase approach

- interactions fluid-particles, particles-particles ignored in the single phase model

Good behavior of the models to simulate free surface and non-hydrostatic flows and different processes of sediment transport

New generation for modeling sediment transport ?





### THANK YOU FOR YOUR ATTENTION



11th ISRS, Cap-Town, South-Africa, September 2010