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CONTEXT

Requirement from a lot of 
applications of sediment transport 
modelling: Turbidity maximum in 
estuaries, Dredging operation, 
silting and scouring process, ....

Scientific Challenges: 
Physical challenges: Rheology of 

sediments, very dense flows, fluid-bed 
interaction, liquid-like and solid-like of 
solid fraction, and  turbulence ..

Numerical challenges & 
parallelisation (MPI-CPU, CUDA-GPU) 
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FORMATION OF TURBIDITY MAXIMUM 
IN ESTUARIES
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PROCESSING OF SEDIMENT TRANSPORT
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REMARKS ON SINGLE- AND TWO-PHASE MODEL

Single-phase Models
“Passive scalar” hypothesis
No fluid-particles 

interactions. Fluid-bed 
interaction by empiric  
formulas for deposit and 
erosion fluxes

Fictive-bed conception
Extra models for 

consolidation of solid particles

Two-phase Models
No “passive scalar” 

hypothesis
Fluid-particles interaction. 

Fluid-bed interaction by the 
models 

No fictive-bed conception
Consolidation process 

included in the models

Unphysical description for very dense 
flows (?) -Small computing cost
Acceptable to engineering problems

All interactions considered
Correct physical description
High computing cost
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OBJECTIVES of THIS WORK

To develop a two-phase model that is able to 
simulate the main processes of sediment transport 
in estuarine and coastal zones, such as suspension, 
sedimentation, consolidation and erosion. (The 
computing domain should cover from non-erodible beds 

to free water surfaces).

To propose efficient CFD and HPC techniques, 
which provide the high accuracy and the reduction 
of computing cost.
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DESCRIPTION FOR TWO-PHASE MODEL

Two-phase (fluid & solid particles) model with unified 
formulation for continuum mechanics (Navier-Stokes and 
Navier Equations) 

Non hydrostatic pressure

k-ε turbulence model (Kf, f, Ks and Ksf) , K-Ω and LES (in 
progress)

Adaptative Eulerian mesh in Z and unstructured in (x,y)

Projection method + Finite volume method

2-D Vertical Version completed (parallelised by MPI-CPU, 
CUDA-GPU)

3-D version development in progress (Summer 2014)
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GOVERNING EQUATIONS

- Averaged equations

Effective Stress for solid phase

- Closure Laws 

Transfer laws
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Constitutive laws

Viscous Stresses

Particles Pressure
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CFD Techniques: Advection terms
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Flows, KITP, October 31, 2013 11

Advection equation

Numerical Scheme: ULSS+LED (Nguyen et al., C&F, 2013)
Test-case:
The computational domain is [-1; 1] x [-1; 1]x[ -1; 1] 
The initial condition is  an sphere of radius 0.25 with
The velocity field is a solid-body rotation flow field 



CFD Techniques: Poisson Equation
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CFD Techniques: Poisson Equation (2/3)
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CFD Techniques: Poisson Equation (3/3)
Errors & Accuracy
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Sedimentation and Consolidation 
of non-cohesive particles

Evolution of the water-sediment interface

Profile de volume fraction of the solid phase

Fluid-Mediated Particle Transport in Geophysical 

Flows, KITP, October 31, 2013

(Nguyen et al., Advances in Water Res., 2009, p 1187-1196)
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Sedimentation and Consolidation of cohesive particles 
(Kaolin)
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(Chauchat et al., JHR, 2003, 2013.768798 )
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Comparison of two-phase model results with experiments for initial concentrations αs = 1.2, 2.2 and 5.2%. ime evolution of 
the mud–clear water interface position (symbols: experiments; lines: model) and (b) solid volume fraction profiles (dashed 
blue lines :experiments; solid red lines: model)



Dredged Sediment Release in Open Sea

Fluid-Mediated Particle Transport in Geophysical 

Flows, KITP, October 31, 2013

(Nguyen et al., Advances in Water Res., 2012)

Fig. 1: Definition sketch: (upper) location of Optical Probes

(OP) for turbidity measurements; (lower) sediment release

(Boutin, 2000).

Isocontour map of the vertical-velocity lag between the fluid and

solid phases (ws-wf= -wsett).
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Comparison between  single- and two-phase models
Case of sediment release in open sea

Two-phaseSingle-phase

19



Dredged sediment release in open sea
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Water-Sediment Interface: 
Kelvin-Helmholtz Instability (1/3)

Fluid-Mediated Particle Transport in Geophysical 

Flows, KITP, October 31, 2013

Non-cohesive cohesive
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Caulfield and Peltier, JFM 2000

Compartmentalization of the flow into core (dotted 
rectangle), eyelid (dashed rectangle) and braid 
regions (dot-dashed rectangle)
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Kelvin-Helmholtz Instability: 
Solid and Fluid velocity and voticity differences (3/3)
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A two-phase, soil and liquid, model based 
on a unified formulation for continuum 

mechanics: application to a dredging jet

CETMEF

Fluid-Mediated Particle Transport in Geophysical 
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Overview

 Part 1: Experimental investigation (Prof. P. Gondret, FAST)

 Part 2: Numerical modelling (NSMP, two-phase model)

2.1  Governing equations

2.2  Specific Treatment for stress analysis of soil

 Part 3: Simulation results 

3.1  Numerical and physical parameters

3.2  Preliminary results 

 Conclusions
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Flows, KITP, October 31, 2013 25



26

Part 1 : Experimental investigation

Jet

Fluidization

H
=

4
9

.5
cm

H
b

W=20cm

L

D

H

L

S. Badr, 

G. 

Gauthier,

P. Gondret

THESIS’13

Craters and dunes resulting 

from a dynamic equilibrium

• Formation of crater by jet induced 

erosion

• Eroded grains create a dense 

suspension

• Deposition of particles at preferential 

locations

• Granular avalanches produced at the 

sandpile’s surface

REGIME 1 

« Cratère circulaire »

REGIME 2

« Double cratère »

REGIME 3

« Cratères imbriqués »

Porous flow within the 

granular bed

Flow conditions at the 

bottom boundary (previous 

configuration)
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Geometry of craters (vertical submerged jet) as controlled by the Erosion parameter, Ec (U0 mean velocity at the 
nozzle outlet; b dimension of the nozzle, L distance to the initial bed, d sediment grain size, s density ratio 

between solid and liquid). Depending on Ec value, the jet could be either weakly (a, b) or strongly (c,d) deflected: 

redrawn from Aderibigbe & Rajaratnam [16]; figures c) and d) from Giez & Souiler [17].

Fluid-Mediated Particle Transport in Geophysical 

Flows, KITP, October 31, 2013

Strongly

deflected
Weakly

deflected

0.2 0.35cE  0.35 2.0cE a)

b)

c)

d)

0( / ) ( 1)cE U b L gd s 
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Two fluid pathology

Fluid-Mediated Particle Transport in Geophysical 
Flows, KITP, October 31, 2013

S. Badr, 

G. 

Gauthier,

P. Gondret

THESIS’13

Part 2 : Numerical modelling (NSMP, two-phase model)
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Part 2 : Numerical modelling (NSMP, two-phase model)

Non-Newtonian, 

(concentration)

Momentum 

exchange 

between 

Phases

(drag,lift, vmf)

Governing equations [Nguyen et al (2009)]

 . 0k k k k
k k k

D
u

Dt t

   
 


  



 .k k k
k k k k k

D u
T g M

Dt

 
    

Modeling strategy:

An unified formulation for fluid 

and solid phase (liquid-like and 

solid-like) based on continuum 

mechanics (no coupling) 

The FLUID and the SOLID 

phase are calculated by using 

the FV method in the SAME 

computational grid

Extension of the two-fluid 

approach into a fluid-soil model 
Deviation in rheological behavior 

between granular flow and quasi-static 

sandpile

 Newtonian or Non-Newtonian 

Viscosity for the granular flow   

(Liquid-like)

 Elasticity and/or Plasticity (friction’s 

law) for the sand heap                

(Solid-like)
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Implementation in NSMP

C.J. Greenshields

& H.G. Weller : 

Int. J. Numer. Meth. 

Engng 2005; Vol. 64, 

pp1575-1593

Generalised Hooke’s law
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Smooth transition between Liquid-Like and Solid-Like behavior

f(s)

s

s,up=0.555

s,down=0.37

Dense suspension Loose bed

Solid LikeLiquid-Like

s,cri=0.465

=0.5

d=d-=0.05

[Komatsu et al. (2001)]
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f(αs)=f(αs,sh,shc)

Shc – Critical Shields number
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Parameters

 Grid:  251x101 (dz=2 mm,dx=1-2 
mm)

 Initial conditions

• Granular bed (s=0.55, h=10cm)

• Quiet water    (s=0.0) otherwise

 Boundary conditions

• impermeable : left, right of 
domain                            

and jet outlet

• Impermeable : top of the domain

• Permeable : bottom of the 
domain

• Poiseuille profile (jet outlet)

 Time step dt=2.10-5s

MPI version is used on IBM BlueGene P

GPU-CUDA version is under development

Elastic parameters:

Young Modulus (E) =6MPa

Poisson coefficient () = 0.5

 Shear Modulus (G) =2MPa

‘pseudo-viscosity’

(2Gdt)=80Pa.s

‘effective pseudo-viscosity’

=80.10-3 m2/s

Part 3 : Simulation Results

5 points

jet  width: 10mm 

Fluid-Mediated Particle Transport in Geophysical 
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Fluid – Soil unified model

L=2cm, Maximum velocity =0.5m/s, Average velocity =0.425m/s

• We obtain a dynamic equilibrium of the solutuion.

• Bottom of the crater has nearly the same position than that of 

Shields number field  .

Fluid-Mediated Particle Transport in Geophysical 
Flows, KITP, October 31, 2013

Above black line F=0 and below F=1 
Initial Condition                       at t=0.5 sec                   Shields Number Map  
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Evolution of the crater

Fluid-Mediated Particle Transport in Geophysical 
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*

*

Numerical results
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Numerical Results

Fluid-Mediated Particle Transport in Geophysical 
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y = 0,6083ln(x) + 1,1047
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CONCLUSIONS

 Introduction of the proposed unified formulation gives

promising results:

• Solid-like behaviour for solid bed is obtained.

• Stabilised shape of the crater is obtained.

• Quantitatively, the dimensions (H,D) of crater in good                                                                                                                      

agreement with experimental observation.

 Perspectives:

• More studies required on the f-function and its parameters.

• Extension for other configurations (inclined, horizontal jet).

• 3D (massively parallelized ) version, application to 

scouring around structures, dike break.

CETMEF
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APPLICATION TO THE GIRONDE 
ESTUARY
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Coupling technique

Fluid-Mediated Particle Transport in Geophysical 

Flows, KITP, October 31, 2013

1 confluence zone (node)/3 branches

Continuity and momentum equations 

integrated over the jth layer of the 

confluence area:
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Contour map of turbidity in spring tide from 
the two-phase model

Fluid-Mediated Particle Transport in Geophysical 

Flows, KITP, October 31, 2013

at LW+2 at HW+2
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CONCLUSION

Needing of two-phase approach

- interactions fluid-particles, particles-particles 
ignored in the single phase model

- interaction fluid-bed              only one domain

Good behavior of the models to simulate  free 

surface and non-hydrostatic flows and different 

processes of sediment transport

New generation for modeling sediment transport ?
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Flows, KITP, October 31, 2013 42
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