

Advection of Active Particles

N.T. Ouellette Mechanical Engineering & Materials Science Yale University

Density Difference

Swimmers

- Microorganisms in quiescent fluids
- Hydrodynamic interactions and structure formation
- Propulsion mechanisms

Lauga & Powers, Rep. Prog. Phys. (2009)

Drescher et al., PRL (2009)

What happens to swimmers in nontrivial flow fields?

Durham, Kessler, & Stocker, Science (2009)

Model Flow

2D oscillating cellular flow Simple, well characterized Hamiltonian

$$\psi(x, y, t) = \frac{U}{k} \sin[k(x + B \sin \Omega t)] \sin ky$$

Solomon & Gollub, Phys. Rev. A (1988)

Swimmer Model

- Swimmer speed is vector sum of flow speed and intrinsic velocity
- Swimmers rotate with vorticity
- One-way coupling

Torney & Neufeld, PRL (2007)

Steady Flow, Fluid Particle

Steady Flow, Swimmer

Steady Flow, Swimmer

 $v_{s} = 0.08$

 $v_{s} = 0.20$

Oscillating Flow, Fluid Particles

$$\psi(x, y, t) = \frac{U}{k} \sin[k(x + B\sin\Omega t)] \sin ky$$

B = 0.12

 $\Omega = 6.28$

Oscillating Flow, Swimmers

 $v_{s} = 0.05$

Swimmers break transport boundaries

Transport?

 $v_{s} = 0$ $v_{s} = 0.01$ $v_{s} = 0.1$ $v_{s} = 1$

Long-time dynamics are diffusive

Chaotic Diffusion

Single Swimmer Dynamics

 $v_{s} = 0.01$

Period 3 islands are gone

Overdensity around period I island

"Sticky" Regions

Time

Trapping

Traps form in newly accessible regions

 $v_s = 0$

 $v_{s} = 0.01$

Escape Times

Additional Complexities

Add true stochasticity → model imperfect response

Vary particle shape

- → allow coupling to strain field
- → permit formation of attractors

N. Khurana & NTO, Phys. Fluids 2012

Include particle/particle interactions N. Khurana & NTO, Use a 3D, turbulent flow *New J. Phys.* 2013

Ellipsoidal Swimmers

$$\dot{x} = \frac{\partial \psi}{\partial y} + v_s \cos \theta$$

$$\dot{y} = -\frac{\partial\psi}{\partial x} + v_s \sin\theta$$

$$\dot{\theta} = \alpha \left[\frac{1}{2} \left(\frac{\partial^2 \psi}{\partial y^2} - \frac{\partial^2 \psi}{\partial x^2} \right) \cos 2\theta - \frac{\partial^2 \psi}{\partial x \partial y} \sin 2\theta \right] - \frac{1}{2} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right)$$

Ellipsoidal Swimmers

N. Khurana & NTO, Phys. Fluids (2012)

N. Khurana & NTO, Phys. Fluids (2012)

N. Khurana & NTO, Phys. Fluids (2012)

Encounter Rates?

Summary (so far)

Swimming breaks flow transport barriers

Transport may not be enhanced

Swimmers interact with flow structures

Particle shape plays a major role in dynamics

http://leviathan.eng.yale.edu

Erosion and Sediment Transport

Complex flow interacting with granular material

What factors are most important?

Role of bed structure?

with C. O'Hern (Yale), M. Shattuck (CCNY), D. Jerolmack (Penn)

Complementary Experiments and Numerics

Loosely packed

Densely packed

