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colorado 2003, USGS !

debris flows, 
pyroclastic flows,
rock avalanches...,



Questions:

continuum description 
of granular media     

==> phenomenology 

understanding the microscopic dynamics.   

In this talk: 
a fluid mechanics point of view



1) Rheology of dry granular flow

2) Rheology of immersed granular flow

3) dragging objects in a granular medium...



Dry granular flows



Lois et al 2005
Da Cruz et al, PRE 05
GdR Midi, Eur. Phys. J 04

plane shear under controlled normal stress 
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One imposes  P and      

Shear stress τ?
Volume fraction φ?

A single dimensionless number 
(inertial number) 

(Savage 84, 
Ancey et al 99)
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µ(I) = µs +
µ2 −µs

I0 /I +1



3D generalisation of the friction law : 
granular flows as a viscoplastic fluid

(Jop et al Nature 06)

Pressure dependent viscosity



rolls waves



394 P.-Y. Lagrée, L. Staron and S. Popinet
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FIGURE 8. Comparison between the µ(I) continuum model (red line) and contact dynamics
simulations (grains) for an aspect ratio a = 0.5 at different times (non-dimensionalized
by

p
H0/g). The grains are coloured in the initial heap, which allows one to track the

displacement (see Staron & Hinch 2005). The parameters of the µ(I)-rheology are µs = 0.32,
1µ = 0.28 and I0 = 0.4.
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FIGURE 9. Comparison between the µ(I) continuum model (red line) and contact dynamics
simulations (grains) for an aspect ratio a = 1.42 at different times (non-dimensionalized byp

H0/g). The parameters of the µ(I)-rheology are µs = 0.32, 1µ = 0.28 and I0 = 0.4 .

occurring in the bulk of the flow, grains at the periphery and in the centre were
initially coloured in black and act as tracers. For the same values of aspect
ratios, continuum simulations applying Gerris and the µ(I)-rheology were performed.
For all three cases, the value of the rheological parameters is the same, namely
µs = 0.32, 1µ = 0.28 and I0 = 0.4. Systematic comparison with discrete simulations
was carried out; the results are displayed in figures 8–10. The continuum simulations
are represented by two red lines showing the time evolution of the shape of the outline
as well as the shape of the inner volume. We observe that in all cases the agreement

Lagree et al 2011 
lajeunesse et al 2005 

granular collapse

Gerris code..



flow in a silo

103301-3 Staron, Lagrée, and Popinet Phys. Fluids 24, 103301 (2012)

density (W = 90d in the following, with W the silo’s width) through the relation µ = µs + !µ
1+I0/I ,

where µs, !µ, and I0 are constants.20, 23

Following Ref. 23, !µ and I0 were set, respectively, to 0.28 and 0.4 and not varied. The value
of the static coefficient of friction µs was set to 0.32, 0.2, and 0.1 in order to study its role in the
silo discharge. Moreover, simulations with a constant friction model, i.e., without dependence on I,
were also performed (Sec. V).

The silo is flat-bottomed, of width W , filling height H, and with an outlet of size L (see Figure 1).
The width W is divided in 64 computation cells in the bulk, refined to 256 at the bottom, so that
the outlet is defined using 16 to 72 computation cells. In the forthcoming analysis, all quantities are
normalized as follows: silo height H̄ = H/W , outlet size L̄ = L/W , volume of material left in the
silo V̄ = V/W 2, flow rate Q̄ = Q/W

√
gW , time t̄ = t/

√
W/g, and pressure P̄ = P/ρgW .

A no-slip boundary condition is imposed at the side-walls and at the bottom-wall; additional
simulations with a free-slip boundary condition at the side-walls show that the aspects discussed in
this paper remain unchanged. A zero pressure condition is imposed at the top-wall and at the outlet.

III. A CONSTANT DISCHARGE RATE

Figure 1 shows the time evolution of a continuum granular silo of initial filling height H̄ = 0.9,
and outlet size L̄ = 0.125; the static friction is set to µs = 0.32 (with !µ = 0.28 and I0 = 0.40). The
color scale represents the pressure field. We observe that the pressure field strongly differs from what
would be expected in the hydrostatic case, and is non-uniform in the transverse direction. The region
above the outlet coincides with a low pressure cavity surrounded by two high-pressure dome-like
areas: the pressure jump at the outlet overcomes the frictional yield stress, creating a large shear
and a low viscosity area. Meanwhile, pressure gradients decrease in the bulk, and a highly viscous
mass forms above the outlet. The fact that the yield stress is frictional, and depends on the pressure,
implies that it readapts throughout the discharge, thereby probably allowing the cavity to survive
until the end of it. When the material left in the silo stops flowing, it remains at equilibrium with a
shape depending on the yield stress, i.e., depending on the coefficient of friction µ.

Figure 2(a) shows the volume of material remaining in the silo in the course of time for the same
system. We observe a linear evolution throughout the discharge for the granular fluid, revealing
a constant flow rate as in real discrete granular silos. We measure the value of the viscosity in

FIG. 1. Pressure field during the discharge of a plastic silo of width W , normalized outlet size L̄ = 0.125 and normalized
filling height H̄ = 0.9 (normalized by W ) at t̄0 = 0, t̄1 = 0.8, t̄2 = 7.6, t̄3 = 11.5, and at t̄4 the final state (normalized by√

W/g). The color scale varies from one picture to the other to ensure maximum contrast: the highest bound (red color) is
set to P̄ = 0.6 for t̄0, t̄1 and t̄2, to P̄ = 0.36 for t̄3, and to P̄ = 0.12 for t̄4 (normalized by ρgW ).
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Staron et al 2012
typically only a few particles high and connects the edges of the opening. Once a particle passes through this hypothetical
arch, it enters free-fall and becomes gas-like. A granular material element within the free-fall arch would realistically have a
smaller packing fraction, but still support compressive stresses through internal random particle collisions. The elasto-plas-
tic model, however, does not include gas-like effects. Such dilation would be assigned to the elastic deformation, causing the
elastic moduli to vanish.

Our interest is not in the details within the immediate vicinity of the orifice, rather the bulk material behavior within the
greater silo apparatus. However, with a zero-traction condition at the opening, the situation described above destabilizes the
simulation prematurely. While free surfaces are usually taken care of by adding a slight amount of artificial compression, this
remedy will not suffice here because the applied pressure has too much of an effect on the evolution of the outflow rate.

We are left with the alternative of using kinematic boundary conditions at the orifice. It would be overreaching to assign
any particular velocity profile at the orifice. Instead, we fix the total flux out the orifice and let the material response deter-
mine the shape of the flow profile. To match the outflux in Rycroft’s simulation,

Qout=2 ¼
Z

Righthalf-opening
"vyðx; y ¼ 0Þdx ¼ 2:19% 10"3 m2

s

was instituted at the orifice, encoded as an equation constraint in ABAQUS.
Not far from the opening, large inhomogeneous deformation occurs at small length-scales, necessitating many small ele-

ments to maintain accuracy. A grand total of 9750 elements were used in modeling the half-silo. To minimize discretization
error, the orifice was modeled with a half-width of 15 elements. The adjacent silo floor was modeled 60 elements wide. The
silo height was modeled with 130 elements. The element width was constant within the orifice, but bias was used along the
other boundaries to maintain smooth changes in element sizes throughout. Elements shrink vertically as a sole function of
distance from the silo bottom. The element width is uniform at the top surface, but moving downward, elements crowd the
center so the floor region has a smooth transition from wider elements near the wall to narrower elements adjacent to the
orifice.

Due to the high number of elements and small minimal element size to system size ratio, this flow is too computationally
intensive for one processor. Instead, the 12-node Truesdell cluster of the MIT Solid Mechanics Group was employed to solve
the problem in parallel. Using domain-level parallelization, the cluster split the half-silo into 12 spatial regions.

Fig. 6. (a) The flat-bottomed silo setup. In (b) and (c), a comparison of elasto-plastic velocity results (—) to DEM data (- -) c/o Rycroft (Rycroft et al., 2009).
(b) The y velocity component as a function of x at heights y ¼ 5d;10d;30d. (c) Trajectories predicted by the elasto-plastic model alongside the DEM
trajectories. (Container outline provided for ease of viewing.)

182 K. Kamrin / International Journal of Plasticity 26 (2010) 167–188

Kamrin 2010



Particles + liquid
in a dense regime  

Difficulties: 

multi body problem with :

3)Hydrodynamic interactions
4)+
5)Contact between grains

 
colorado 2003, USGS



Ovarlez et al., J. Rheol. 2006

Bonnoit et al., J. Rheol. 2009

the big picture of suspensions

-Non brownian rigid spheres
-incompressible and 
newtonian fluid
-no cohesion, no attractive 
forces...



Ovarlez et al., J. Rheol. 2006

Bonnoit et al., J. Rheol. 2009

A brief history of viscous suspensions

0

dilute 
suspension

dense 
suspension

jamming

time1906 1970,72 1988 =>... 2007 =>...



Ovarlez et al., J. Rheol. 2006

Bonnoit et al., J. Rheol. 2009

A very brief history of viscous suspensions

Einstein Batchelor
Green

0

Brady, Bossis
Nott, Morris,..

Olson teiltel07,    Tighe et al 09, 
Heussinger,  Andreotti et al 10,12 

Wyart 12,    Berthier12,...

dilute 
suspension

dense 
suspension

jamming

Single
particle

hydrodynamic
interactions steric/elastic

interactions

Pair 
interaction

towards 
Constitutive

equations

understanding 
the divergence

time1906 1970,72 1988 =>... 2007 =>...



Ovarlez et al., J. Rheol. 2006

Bonnoit et al., J. Rheol. 2009

link with granular media?



One imposes  P and      

Shear stress τ?
Volume fraction φ?

If inertia is negligible...

The granular approach of suspensions!!



580 µm and 1mm polystyrene beads in viscous fluid
(Polyethyline glycol-n) of the same density (1.05g/cm3) 

Prasad & Kytomaa (1995)
François Boyer’s Phd...
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Expérience dans des suspensions à contrainte normale imposée 
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a friction law µ(Iv) : different viscosities, 
pressure, shear rate, particle size,..
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a phenomenological
rheology: 



imposed pressure                         volume imposed

(Morris and Boulay 99)

Or

Link with the rheology of dense suspensions :

µ

φ

Particles push on the wall

the wall pulls on water



Link with dense suspensions??

-1



Link with dense suspensions??

Deboeuf et al PRL 2010



the pressure imposed rheology is interesting :

1) From a rheological point of view:
easy to be close to the maximum volume fraction : 
precise measure of      , study of the divergence...

2) the natural description for some configurations:

-submarine avalanches -sediment transport
Ouriemi, Aussillous, Guazzelli et al 08,09
Pailha et al, 12



1) Quasistatic flows (shear band, finite size effect….)
A need for non local approach…

2) Normal stress differences 

3) Transient flows when preparation plays a crucial role:

For both dry and immersed granular media, a 
visco-plastic description is relevant and captures 
the first order of the viscous nature of the flows. 

Beyond           ...



Role of the preparation on submarine avalanches:  
Dam break problem (L. Rondon Phd).



Loose



dense

6X



Slope time



Pore Pressure feedback argument
(Iverson Rev. Geo. 97, JGR 05)

Loose case Dense case

Unsteady flows  => variation of
=> relative motion between grains and fluids
=> additional stress...



Dilatancy angle:

A shear rate dependent critical state theory

The granular pressure: 



the steady 
granular rheology 
+
 dilatancy 
effects

in a depth averaged model 

=> semi-quantitative predictions!



dense initial state

Loose initial state



final slope of the deposit

Time of the avalanche



- A precise measure of rheology for very dense suspensions.

- the frictional description is relevant to describe flows 
under gravity (avalanches, sediment transport...) ... 

Conclusions about the rheology...

- pressure imposed  versus volume imposed...



A classical hydrodynamic problem:
Forces on a moving object

Introduction Dispositif expérimental Forces au premier 1/2 tour Simulations numériques de l’écoulement Conclusion

Enjeux

Pourquoi s’intéresser aux forces dans un granulaire

I Compréhension de phénomènes complexes (ségrégation
granulaire, mouvements biologiques ... ) :

I Test des lois de comportement granulaires
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drag has been studied in details,...
what about lift ?



Evidence of lift force on a symetric object  



a recent study on lift forces...

Drag Induced Lift in Granular Media

Yang Ding, Nick Gravish, and Daniel I. Goldman*

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
(Received 31 August 2010; published 13 January 2011)

Laboratory experiments and numerical simulation reveal that a submerged intruder dragged horizon-

tally at a constant velocity within a granular medium experiences a lift force whose sign and magnitude

depend on the intruder shape. Comparing the stress on a flat plate at varied inclination angle with the local

surface stress on the intruders at regions with the same orientation demonstrates that intruder lift forces are

well approximated as the sum of contributions from flat-plate elements. The plate stress is deduced from

the force balance on the flowing media near the plate.

DOI: 10.1103/PhysRevLett.106.028001 PACS numbers: 45.70.Mg, 47.50.!d, 83.10.Rs

Objects moved through media experience drag forces
opposite to the direction of motion and lift forces perpen-
dicular to the direction of motion. The principles that
govern how object shape and orientation affect these forces
are well understood in fluids like air and water. These
principles explain how wings enable flight through air
and fins generate thrust in water [1].

Lift and drag forces are also generated by movement
within dry granular media—collections of discrete parti-
cles that interact through dissipative contact forces.
Generation and control of these forces while moving
within granular media is biologically relevant to many
desert organisms that dive into [2], or swim within [3]
sand. Lift forces are also relevant to industrial process
such as soil tillage [4].

In granular media, lift and drag forces are not as well
understood as in fluids; movement probes the complex
fluid or solid behaviors of dense granular flows [5].
While progress has been made in understanding drag
forces in slow horizontal and vertical drag, and impact
[6], there has been comparatively little work investigating
lift forces. Studies have examined lift forces for a partially
submerged vertical rod moving horizontally and for a
rotating plate [7,8], and the drag force on submerged
objects with curved surfaces [9]; however, the lift forces
experienced by horizontally translated submerged in-
truders have not been explored.

Experiment and simulation.—Experiment and simula-
tion were employed to investigate the lift (Fz) and drag
(Fx) forces on simple shapes during horizontal translation
in granular media [Fig. 1]. In the experiment, long in-
truders with different cross sections were dragged within
a bed of glass beads with particle diameter (PD) of 0:32"
0:02 cm and density (!) 2:47 g=cm3 [Fig. 1]. Dragging
was performed at a constant speed 10 cm= sec with the
intruder’s vertical midpoint at depth d ¼ 12:5 PD and its
long axis perpendicular to the direction of motion. In the
experiment, l ¼ 31:3 PD long intruders were connected at
the midpoint to a force sensor (mounted to a linear trans-
lation stage) by a stiff stainless steel rod of diameter 2 PD.

Following the method of [6], forces on the connecting rod
were determined in separate measurements and subtracted
from Fx and Fz. The grain bed was 75 PD wide by 53 PD
deep by 75 PD long. The initial packing state of the grains
was prepared by shaking the container moderately in the
horizontal direction before each run. The volume fraction
was determined through measurements of !, total
grain mass (M), and occupied volume (V) to be M

!V ¼
0:62" 0:01.
The simulation employed the soft-sphere discrete ele-

ment method (DEM) [10] in which particle-particle and
particle-intruder contact interactions were determined by
the normal force Fn ¼ k"3=2 !Gnvn"

1=2 and the tangen-
tial force Fs ¼ #Fn, where " is the ‘‘virtual overlap’’
and vn is the normal component of the relative velocity.
Fn comprises a Hertzian contact term and a velocity-
dependent normal dissipation [10]. Constants k ¼
2$ 106 kg s!2 m!1=2, Gn ¼ 15 kg s!1 m!1=2, and # ¼
#fpp;pig ¼ f0:1; 0:27g represent the hardness, viscoelastic
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FIG. 1 (color online). Lift and drag forces in granular media:
(a) Schematic of the experimental setup. (b) Lift force as a
function of depth for the cylinder (d), square rod (j) and half
cylinder (m). The gray region indicates the depth at which forces
in (c) were measured. (c) Net force on rods measured in the
experiment [black arrows] and simulation [gray (red) arrows].
Forces [light gray (green) arrows] on the intruder surfaces were
measured in the simulation and are scaled by four for visibility.

PRL 106, 028001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 JANUARY 2011

0031-9007=11=106(2)=028001(4) 028001-1 ! 2011 The American Physical Society

Ding et al. Phys. Rev. Lett. 2011 

Lift on a symmetrical object which scales with depth... 

physical origin, scaling ??



Experimental set-up: drag and lift on a rotating cylinder 

low velocity quasi-static regime : forces independent 
of velocity  measurements first half-turn...  

Dispositif expérimental  

Torque meter

23 cm

30 cm

Glass beads
500 μm

Ω

h

LD

Fdrag
2

Fdrag
2

Weighting
scale

Flift

FIG. 1. Sketch of the experiment. A static cylinder is buried in a rotating tank filled with glass

beads. A torque meter and a precision weighting scale record the drag and lift force on the cylinder.

Note that each half of the cylinder experiences a force equal to Fdrag/2, which implies eq. 1.

II. EXPERIMENTS

A. Experimental setup

The experimental setup is sketched in Fig. 1. It is composed of a tank 30 cm in diameter

filled with 23 cm of glass beads 530±30µm in diameter and density ⇥g = 2.5 g.cm�3. The

tank is fixed on a rotating table and rotates around its vertical axis. All our experiments

are performed at a rotation speed equal to 0.8 rpm, which corresponds to the quasi-static

regime for which we have checked that the measured forces are independent of velocity17.

The obstacle is a steel cylinder of length L and diameter D, which is buried at the centre of

the tank, at depth h. The cylinder is kept static and horizontal by a 3mm vertical rigid rod

fixed at the top of the experiment to a torque meter (Meiri CS1). The measured torque M

experienced by the cylinder when the tank is rotating provides a measurement of the drag

force using the following relation28 (see caption of Fig. 1):

Fdrag =
4

L
M. (1)

4

scale

stage

torque
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Support

Cylinder

grains 
container

FIG. 1. Sketch of the experiment. A static cylinder is buried in a rotating tank filled with glass

beads. A torque meter and a precision weighting scale record the drag and lift force on the cylinder.

Note that each half of the cylinder experiences a force equal to Fdrag/2, which implies eq. 1.

II. EXPERIMENTS

A. Experimental setup

The experimental setup is sketched in Fig. 1. It is composed of a tank 30 cm in diameter

filled with 23 cm of glass beads 530±30µm in diameter and density ⇥g = 2.5 g.cm�3. The

tank is fixed on a rotating table and rotates around its vertical axis. All our experiments

are performed at a rotation speed equal to 0.8 rpm, which corresponds to the quasi-static

regime for which we have checked that the measured forces are independent of velocity17.

The obstacle is a steel cylinder of length L and diameter D, which is buried at the centre of

the tank, at depth h. The cylinder is kept static and horizontal by a 3mm vertical rigid rod

fixed at the top of the experiment to a torque meter (Meiri CS1). The measured torque M

experienced by the cylinder when the tank is rotating provides a measurement of the drag

force using the following relation28 (see caption of Fig. 1):

Fdrag =
4

L
M. (1)

4

Guillard et al. PRL 2013 



Drag forces 

Drag forces proportional to depth (pressure) 

Albert et al. Phys. Rev. Lett. 1999 
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FIG. 2. Drag (a) and lift (b) forces as function of depth h measured with cylinders of diameter

D = 4mm and various lengths L. Each point is an average of 4 measurements, error bars indicating

their minimal and maximal values. Insets : scaled drag and lift forces for the same cylinders (see

text).

of the data on a line shows the following scaling for the drag force:

Fdrag = Cd �ghDL, (2)

with Cd � 13. It is interesting to note that although the scaling is intuitively given by a

friction criterium (a force proportional to the ambient hydrostatic pressure times the surface)

the coe⇤cient of proportionality is large. Such a large amplification factor of the drag forces

in granular media is recovered in various configurations and depends on the geometry of the

system as well as on the packing fraction and frictional properties of the particles8,18,29.

The remarkable result concerns the lift force plotted in Fig. 2b. First of all, it must be

noted that the vertical force points upward (hence its name “lift”), which means that it

tends to push the object outside the granular bed. Secondly, the lift force shows a very

di�erent behavior than the drag force. Close to the free surface, the lift force increases with

depth as observed in Ding et al24. However, at larger depths, the lift saturates and reaches a

constant value independent of the depth. This saturation value of the lift F sat
lift increases when
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FIG. 4. Saturated lift force scaled by buoyancy as function of the ratio between the cylinder

diameter to the grain diameter, D/d, both in experiments and discrete simulations. Points are

average of Flift in the saturated region, error bars are maximal and minimal Flift in this region.

The lines are guides for the eyes.

scaling of the saturated lift force as a function of the parameters:

F sat
lift � Cl (D/d) ⇥g �

D2

4
L. (3)

The factor Cl(D/d) is a function of the ratio of the obstacle diameter relative to the grain

diameter, and tends to a constant Cl ⇥ 20 when D/d > 15. This means that for large

obstacles compared to the grain diameter, the lift force is equal to 20 times the buoyancy

force, a surprisingly high force. For smaller diameter this ratio increases and the lift force

can reach values as high as 60 times the buoyancy for cylinders having a diameter less than

5 grain diameters. Such a finite size e�ect has been observed in previous studies for the drag

force, which is found to be higher for small objects than for larger ones13,17. We observe the

same e�ect for the lift force.

This finite size e�ect is also observed when studying the critical depth hcrit at which the

lift force saturates to its plateau value (see Inset of Fig. 2b). Fig. 5 shows that for large

cylinder diameters (typically D/d > 15), the critical saturation depth hcrit is independent

of the grain size and scales as h > hcrit ⇥ 10D. However, for cylinder diameter close to
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Figure 3.4 – a) Force de portance adimensionnée par la poussée d’Archimède en fonction de
h�D pour différents cylindres. b) Valeur de la portance saturée adimensionnée par la poussée
d’Archimède en fonction de D�d ; les points sont la moyenne des portances mesurées pour
h > h

crit

, les barres d’erreurs sont l’écart-type autour de cette moyenne.

discutée partie 3.1p.28 et observé par [Albert et al., 1999].
Il est intéressant de noter que la profondeur à laquelle la portance atteint sont niveau

plateau est elle aussi soumise à des effets de taille finie. La figure 3.5 montre la profondeur
de saturation – définie comme la profondeur à laquelle la force de portance atteint 90% de
la portance saturée, cf. figure 3.3b – en fonction de D�d. À nouveau, lorsque D�d � 10, la
profondeur critique est constante de l’ordre de h

crit

� 10D, tandis que à plus faible diamètre
h
crit

augmente et peut atteindre une quarantaine de diamètre de cylindre. Pour un cylindre
fin, de diamètre inférieur à 10 diamètres de grains, la portance va donc croître sur une plus
grande profondeur, pour atteindre une valeur de saturation plus élevée.

3.3 Simulations numériques des forces

Les résultats précédents obtenus expérimentalement poussent à s’interroger plus avant sur
l’origine des forces de portances. En particulier, il serait intéressant de connaître la répartition
des contraintes dans le milieu granulaire et sur le cylindre. Expérimentalement, obtenir ces
informations est difficile, nous nous sommes donc tournés vers les outils numériques à notre
disposition.
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FIG. 6. Sketch of the molecular dynamic simulation geometry.

III. NUMERICAL SIMULATIONS

A. Numerical method

To perform numerical simulations of a cylinder moving in a granular medium we have

used the open source software Liggghts30. The software is based on a molecular dynamics

method and solves the equations of motion for the dynamics of soft, inelastic, frictional

spheres. Details of the simulation method are given in Appendix A. The configuration

studied is sketched in Fig. 6. The simulation space is a 3D box with periodic boundary

conditions along the x and y directions. Gravity points towards �z. The size of the box is

140⇥ 10⇥ 120 particles in the x, y and z direction. At the beginning of the simulations, a

monolayer of fixed spheres is created at the bottom of the simulation box. Grains are then

poured in the box, until the surface reaches the desired vertical position for the cylinder.

A cylinder of diameter D is then introduced with its axis aligned along the y direction.

The cylinder is treated as a fixed wall and remains static during the simulation. Once the

cylinder has been created, more grains are poured in the box up to the desired level. To

create the relative motion between the cylinder and the granular medium, a velocity U0 is

then prescribed to the bottom monolayer, which entrains the whole granular bed. Simulating

the flow when the cylinder is deeply buried in the packing is expensive in term of CPU time,

due to the large amount of grains above the cylinder. In order to simulate the flow at high

10

Molecular dynamics simulations (LIGGGHTS)

FIG. 8. Discrete numerical simulations for a cylinder of diameter D/d = 3.3 located at an e�ective

depth h̃/D = 16. Figures on the left (resp. on the right) correspond to simulations without (resp.

with) pressure gradient. (a,b) Pressure field. (c,d) Velocity field in the frame of the cylinder

showing the magnitude of the velocity and the streamlines. (e,f) Velocity field in the frame of the

grains far away from the cylinder.
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scaling of the saturated lift force as a function of the parameters:

F sat
lift � Cl (D/d) ⇥g �

D2

4
L. (3)

The factor Cl(D/d) is a function of the ratio of the obstacle diameter relative to the grain

diameter, and tends to a constant Cl ⇥ 20 when D/d > 15. This means that for large

obstacles compared to the grain diameter, the lift force is equal to 20 times the buoyancy

force, a surprisingly high force. For smaller diameter this ratio increases and the lift force

can reach values as high as 60 times the buoyancy for cylinders having a diameter less than

5 grain diameters. Such a finite size e�ect has been observed in previous studies for the drag

force, which is found to be higher for small objects than for larger ones13,17. We observe the

same e�ect for the lift force.

This finite size e�ect is also observed when studying the critical depth hcrit at which the

lift force saturates to its plateau value (see Inset of Fig. 2b). Fig. 5 shows that for large

cylinder diameters (typically D/d > 15), the critical saturation depth hcrit is independent

of the grain size and scales as h > hcrit ⇥ 10D. However, for cylinder diameter close to
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Chapitre 3 : Propriétés des forces de portance

0 1000 2000 3000 4000 5000
⇢gh̃

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

F
tr

ai
ne

e
/D

L

0 1000 2000 3000 4000 5000

g 6= 0, sans supression
g 6= 0, avec supression
g = 0, avec supression

0 10 20 30 40 50
h̃/D

0

10

20

30

40

50

F
po

rt
an

ce
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

⇢g
⇡
(D

/2
)2

L

0 10 20 30 40 50

0

10

20

30

40

50

g 6= 0, sans supression
g 6= 0, avec supression
g = 0, avec supression

50
00

0

Figure 3.7 – Forces de traînée (a) et de portance (b) simulées sur un cylindre D�d = 3.3
en modifiant l’enfoncement effectif ˜h et le gradient de pression sur le cylindre selon les 3
méthodes indiquées dans le texte. Les barres d’erreurs sont les écart-type sur 4 préparations
initiales différentes.

du cylindre, mais avec ou sans gradient de pression.

3.3.2 Analyse des forces de traînée et de portance

La figure 3.7 montre les forces mesurées sur l’objet pour les 3 types de simulations (sans
surpression, avec surpression sous gravité, avec surpression sans gravité). La force de traînée
figure 3.7a montre que l’on retrouve une traînée proportionnelle à l’enfoncement comme
expérimentalement (en dehors d’une petite inflexion quand le cylindre devient trop proche
du fond pour les simulations sans surpression). On pourra noter que le coefficient de traînée
est légèrement plus faible en simulations que dans les expériences, le coefficient de friction
effectif étant de l’ordre de Csimu

d

� 10, au lieu de C
d

= 14 expérimentalement. Cependant,
le point important à noter est que la force mesurée est indépendante de la présence ou de
l’absence d’un gradient de pression. C’est donc bien la pression totale qui fixe la force de
traînée sur le cylindre. Ce résultat valide notre méthode d’ajout de surpoids pour simuler
des pressions importantes, la traînée simulée demeurant identique.

La force de portance mesurée en simulation est présentée figure 3.7b. Là encore les ré-
sultats sont qualitativement et quantitativement comparables à ceux obtenus expérimenta-
lement. Ainsi, la portance croît avec l’enfoncement et sature à sature à fort enfoncement,
typiquement lorsque h�D > 15 (courbe bleue, cas g ≠ 0 sans surpression). De la même ma-
nière, la courbe noire (cas g ≠ 0 avec surpression) montre bien que la modification de la
pression moyenne en ajoutant une couche de grains lourds au dessus du lit de grains ne
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In granular media : strong left/right asymmetry

FIG. 9. Schematic forces on each quarter of a cylinder in a granular flow, either with or without

pressure gradient.
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FIG. 10. a) Normal and tangential stress distribution for a cylinder D/d = 3.3 and h̃/D = 16. b)

Normal stress distribution at various e�ective depth around a cylinder D/d = 3.3. Dotted line are

with g = 0 (no pressure gradient). Insets: c) and e) Magnification of the rear part of the cylinder;

d) Normal stress scaled by the hydrostatic pressure.

metric around the center line of the cylinder, with a maximum at the front (� = 0) equal to 15

times the confining pressure P0 and an almost vanishing value at the rear (� = ⇥) (Fig. 10c).

By increasing the confining pressure (i.e. the equivalent depth) (Fig. 10b and 10e), one

observes that this symmetric distribution increases linearly with the confining pressure, as

expected from the frictional rheology. One can then write ⌅g=0
n (�) = ⇤gh̃⌅̃g=0

n (�) = P0⌅̃g=0
n (�)

with the normalised distribution ⌅̃g=0
n (�) being independent of P0 (Fig. 10d).

When gravity is switched on, the distributions become asymmetric (Fig. 10b): the normal

stress becomes higher in the bottom front quarter (0 < � < ⇥/2) and lower in the top front

quarter (�⇥/2 < � < 0). This asymmetry induces the net lift force. Qualitatively, the

simple picture of Fig. 9 is then correct: the lift arises from an increase of the normal stress

on the bottom front quarter. One can wonder if this asymmetry of the stress distribution in
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with g = 0 (no pressure gradient). Insets: c) and e) Magnification of the rear part of the cylinder;

d) Normal stress scaled by the hydrostatic pressure.
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times the confining pressure P0 and an almost vanishing value at the rear (� = ⇥) (Fig. 10c).
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with the normalised distribution ⌅̃g=0
n (�) being independent of P0 (Fig. 10d).

When gravity is switched on, the distributions become asymmetric (Fig. 10b): the normal

stress becomes higher in the bottom front quarter (0 < � < ⇥/2) and lower in the top front
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simple picture of Fig. 9 is then correct: the lift arises from an increase of the normal stress

on the bottom front quarter. One can wonder if this asymmetry of the stress distribution in

16

-4
0

-2
0

0
20

40

FIG. 11. Angular distribution of the di�erence between pressure with and without bulk gravity

�n � �g=0
n for 3 e�ective depths.

the presence of gravity is simply given by the stress distribution without gravity, weighted

by the hydrostatic pressure level. In other terms, it is tempting to assume that the forces on

each elementary surface around the obstacle only depends on the local hydrostatic pressure

and is the same with or without pressure gradient. Under this assumption, the normal

stress distribution ⌅n(�) around the obstacle in presence of gravity would be given by the

normalized stress distribution without gravity ⌅̃g=0
n (�) multiplied by the local hydrostatic

pressure as:

⌅n(�) = ⌅̃g=0
n (�)⇤g

�
h̃+

D

2
sin �

⇥
(4)

where h̃ is the equivalent depth at the centre of the cylinder. In this case, the lift

force would be simply given by the integral Flift = (⇤gLD2/4)
⇤ �

�� ⌅̃
g=0
n (�) sin2 �d� since

⇤ �

�� ⌅̃
g=0
n (�) sin �d� = 0. This approach thus predicts that the lift scales like the buoyancy,

in agreement with the experiments and simulations. However, this simple description fails

in quantitatively predicting the lift force. Using the distribution ⌅̃g=0
n measured in the

simulation without gravity (Fig. 10d), one find Flift/(⇥⇤gLD2/4) ⇥ 3.6, which is one order

of magnitude lower than the measured lift force, equal to 30 times the buoyancy in this

case. The discrepancy can also be evidenced by directly looking at the asymmetric part of
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FIG. 8. Discrete numerical simulations for a cylinder of diameter D/d = 3.3 located at an e�ective

depth h̃/D = 16. Figures on the left (resp. on the right) correspond to simulations without (resp.

with) pressure gradient. (a,b) Pressure field. (c,d) Velocity field in the frame of the cylinder

showing the magnitude of the velocity and the streamlines. (e,f) Velocity field in the frame of the

grains far away from the cylinder.
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FIG. 8. Discrete numerical simulations for a cylinder of diameter D/d = 3.3 located at an e�ective

depth h̃/D = 16. Figures on the left (resp. on the right) correspond to simulations without (resp.

with) pressure gradient. (a,b) Pressure field. (c,d) Velocity field in the frame of the cylinder

showing the magnitude of the velocity and the streamlines. (e,f) Velocity field in the frame of the

grains far away from the cylinder.
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Conclusion:

-pressure imposed rheology an intersting approach

-visco-plastic frictionnal description captures many 
observed feature in dense granular flows

- Hydrodynamic approach 

Questions:

-microscopic origin: role of contact? of fluctuations?

-link with quasi-static regime, and collisional regime?
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