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The simplest archetypal problem…

We focus on the problem of the one single particle in a fixed vortex and we try to 
quantify the tendency of a particle to  escape the flow streamlines.
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Motion along the tangent  
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Motion Para fusin (against Nature): 
Centrifugal Motion

Motion Kata fusin (according to Nature): 
Motion along the tangent  



The effect of vortices? problem becomes non-trivial 

Defintion of a Parameter

Light particles:  tp << tf

Particle Relaxation Time:

Flow Time Scale:

Particle Stokes number:

Intermediate particles:  tp ≈  tf

Heavy particles:  tp >>  tf



… A very simple experiment: 

A ‘rain’ of heavy particles in Still Fluid

Heavy Particles Light Bubbles

Particles settling velocity: vs = dp
2g(rp-rf)/(18 m)



A less simple experiment: we add steady vortices

Preferential segregation due to inertia arises

Heavy particles are propelled out of the vortices while settling down. Light bubbles are propelled inward  while rising up. there is a 

general influence on the effective settling velocity  (Maxey, Phys Fluids 1987)

Heavy Particles Light Bubbles



Environmental Motivations
Role of Turbulence still unclear ... Beside being Difficult to 

Model accurately for process prediction
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Cloud Physics Issues: Rain Generation

Plancton dynamics, environmental fluxes

PNAS (2004) 101

Turbulence increases the average settling 

velocity of phytoplankton cells

J. Ruiz, D. Macìas, and F. Peters

A species of phytoplankton (●, Artemia Salina 

Eggs) rise with: V rise > V Stokes 
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Cloud Physics Issues: Rain Generation

Plancton dynamics, environmental fluxes

Phys. Fliuds (2007) 19

Influence of added mass on anomalous high rise velocity of light 

particles in cellular flow field: A note on the paper by Maxey 1987 

C. Marchioli, M. Fantoni, and A. Soldati

PNAS (2004) 101

Turbulence increases the average settling 

velocity of phytoplankton cells

J. Ruiz, D. Macìas, and F. Peters

A species of phytoplankton (●, Artemia Salina 
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Environmental Motivations
Role of Turbulence still unclear ... Beside being Difficult to 

Model accurately for process prediction
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Cloud Physics Issues: Rain Generation

Plancton dynamics, environmental fluxes



Deposition
Role of Turbulence Clear. Difficult is accurate modelling for 

process optimization

Process Issues: 

Particle deposition 

and Sedimentaion
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Free-slip

Interface

No-slip wall

Environmental Motivations







Instantaneous position of St =1 particles 
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Instantaneous position of St =1 particles 

slice  View: Particles accumulate into 

Regions which are called Caustics

Number concentration of Particles

(By Maurizio Picciotto)

An Interesting Feature

Particles cluster and produce Caustics …



Fil Rouge
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1. Effect of Clustering and Scales on Deposition by DNS of 

Turbulence with Pointwise Particles

1. Modelling issues in LES

2. Surfacing and Clustering of Slightly Buoyant Particles in Free-

Surface Flows

1. Thermally Stratified Flows

(4.1 Oberbeck-Boussinesq Approximation)

4.2 Surfacing and Clustering of Slightly Buoyant Particles in 

Stratified Free-Surface Flows



Focus on particle motion near a wall. 

Flow Instances and Numerical Methodology

Channel Flow (All Scales Solved)

Well Resolved Pseudospectral DNS of 3D time-dependent turbulent gas flow

Shear Reynolds number:

Lagrangian (Heavy) Particle Tracking



... But if we are interested in boundary Layers …

Kolmogorov scaling seems not the right one

Better the Wall variables scaling (Shear Based)

All variables decrease their size approaching the wall

Wall
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Centerline

Channel flow is a multiscale phenomenon, particles ‘visit’ all possible regions

Of the domain and interact with ever changing scales. In addition, the strong shear

which dominate the wall region gives structures a distinctly streamwise 

Stretched pattern.



Segregation Pattern in the Homogeneous Plane
(Marchioli and Soldati, 2002, J. Fluid Mechanics)



Segregation and Transfer Patterns in the Cross-Plane

Microscale phenomena induce Macroscale Effects
(Marchioli and Soldati, 2002, J. Fluid Mechanics)
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Gray shades In the animation:

White: High Streamwise velocity

Black: Low Streamwise Velocity



St 

Deposition Rates (and wall normal concentration distribution)

Microscale phenomena induce Macroscale Effects

St = 25

St = 5

St = 1

St= 0.2
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Qualitative explanation of the instantaneous transfer processes.

Deposition and Entrainment are controlled by turbulence 

Structures localized in time and space
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Qualitative explanation of the instantaneous transfer processes.

Deposition and Entrainment are controlled by turbulence 

Structures localized in time and space

Red: 

high Streamwise vel.

Blue: low

Streamwise vel.

Purple Particles: 

Going To the wall

Blue Particles: 

Going away off the wall
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In our view, before predicting deposition we should 

predict  preferential segregation

Regular distribution Random distribution Clustered Distribution

Sp = (s-sp)/l, with l = average n. particles per cell; s = standard deviation
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So we can measure particle segregation, as a function of the wall distance and as a 

function of particle inertia
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Different times 

III, IV and V seems 

stable

particle (st=25) tend to have maximum 

Segregation Around z+= 10
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Different times 

III, IV and V seems 

stable

particle (st=25) tend to have maximum 

Segregation Around z+= 10

But particles of different size segregate 

In different ways (at z+=10) 

Here also the comparison of the Deviation

From Poisson with the correlation dimension

(Grassberger P, Procaccia I. Measuring the strangeness of

strange attractors. Physica D. 1983; 9: 189-194.



Larger particles 

Will deposit due also 

to their inertia, 

coming directly from 

Far Away

If particles are influenced (but not dominated) by inertia, the 

Deposition Occurs in two steps: First Segregation into a space region and then 

deposition to the wall.  It is found that deposition has a maximum for those particles for 

which segregation has a maximum
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… A Large scale problem imposes  a coarse grained grid.

We study a-priori LES, as in the following portrait.
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How much does filtering affect 

the behavior of inertial particles?
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Significant underestimation of wall 

concentration  for large particles

(Concentration scales with the time 

Integral of Particle deposition velocity)

LES is tested on the prediction of particle concentration.

Unfortunately it does not maintain expectations…. Of course, 

the test is hard… it is the time integral of the deposition flux
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St=1

St=5

St=25



... and the reason for wrong underestimated deposition is 

wrong estimate of local segregation ...

Influence of the Stokes number on local particle segregation

Z=H (channel centerline)Z<0.15H (near-wall region)

LES predicts LESS segregation for larger particles and MORE 

segregation for smaller particles. These results in bounded flow confirm 

previous results by Simonin in HIT

LES

DNS LES

DNS

LES

DNS

LES

DNS
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We could put some stochastic forcing … provided that the

Forcing has the right features
Bianco et al.  (2012) Phys. Fluids, 

modelling has to fix two sources of errors: 

1.The filtered flow field; 

2.the Cumulated Particle wrong position
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DNS

LES Finer

LES Coarser



We could put some stochastic forcing … provided that the

Forcing has the right features.
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We can measure what we need!

DNS Grid

LES Grid (2x)



... and before finding a model we should aim for the

Work this model should do ... Therefore compute the error
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... and before finding a model we should aim for the

Work this model should do ... Therefore compute the error

... And the error has a shape which changes with space and inertia
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Physical Problem/Modelling Approach:

Neutrally-buoyant turbulence

• 3D turbulent water flow field at shear Reynolds number: Re =  171,   509

• Channel size: Lx x Ly x Lz = 4 h x 2 h x 2h

• Pseudo-spectral DNS: Fourier modes (1D FFT) in the homogeneous directions (x and y) , 

Chebyschev coefficients in the wall-normal direction (z) 

• Time intergration: Adams-Bashforth (convective terms), Crank-Nicolson (viscous terms)

Free-slip wall

No-slip wall

Department of Energy Technology, University of Udine, Italy



Free-slip

Interface

No-slip wall

Free Surface Flows
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2.2 Particles at surface: Particle Dynamics and Surface 

DIvergence



Free-slip

Interface

No-slip wall

Environmental Motivations



Open channel flow:
Particles at surface



Cluster Lifetime: They Overlive the structures 

which generated them.

Evolution of Correlation Dimension
Lovecchio et al. (2013) PRE
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Constant heat 
flux

Adiabatic wall

Physical Problem/Modelling Approach:
Stably-stratified turbulence
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Temperature field 

Thermocline
(barrier)

Upwellings 
do not reach 
the surface!
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Turbulent temperature statistics

Mean Temperature

Thermocline:
Potential barrier 
due to density 
distribution

Mean streamwise velocity
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Surface dynamics

Surface divergence Surface temperature

Higher correlation

Lower correlation

Department of Energy Technology, University of Udine, Italy



Lagrangian Particle Tracking

Surface divergence

Surface temperature
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Surface temperature

Surface divergence

Lagrangian Particle Tracking
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For stratified flows, 
Particles do not follow 
Carefully the flow field

No intense 
Upwelling events at 
the surface (thermocline)

Lagrangian Particle Tracking
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VORONOI ANALYSIS

Lagrangian Particle Tracking
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VORONOI ANALYSIS

Lagrangian Particle Tracking
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