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Outline

• Dynamics of metallic liquid

– Equipartition theorem with the dynamics of atomic-level-
stresses.

• Glass transition

– Loss of ergodicity due to topological frustration.

– Universal critical strain for the glass transition.

– Local topological instability.

• Jump in specific heat at Tg. 

• Density of “defects” by x-ray diffraction.

• Implications.



Atomic Dynamics

• Normal mode obtained by diagonalizing the 
dynamical matrix (Born and Huang):

• Similar analysis has been made for liquids and 
glasses.

• However, in the liquid state D is time-dependent.

• In high-temperature liquids modes are more 
localized.
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Dynamic PDF

• Dynamic structure factor:

• Dynamic PDF
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• Only the NN are dynamically correlated above 10 meV.
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Vibrations of the Neighbor Shells

• Vibrations of the nearest 

neighbor shells are nearly 

orthogonal to each other.

• They can be the basis for the 

statistical mechanics of the 

liquids.

• They can be described in 

terms of the atomic-level 

stresses.



Atomic Level Stresses and Strains

• Atomic level stresses (pressure and five shear stresses) relate 
the local topology to the local energy landscape.
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T. Egami, K. Maeda and V. Vitek, 
Phil. Mag. A41, 883 (1980).



Atomic Level Stresses and Strains

• rij = 0 defines the “ideal 
glass” that cannot be 
achieved.

• Symmetry and extent of 
deviation from the ideal 
state.

• Strain cannot be defined 
without the reference, 
but stress can.
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Atomic Level Stresses from the First Principles
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Nielson (PRL 50, 697, 1983); Vitek and Egami (phys. stat. sol. (b) 144, 145, 1987)

D. Nicholson and G. M. Stocks

Fe48Mn20Zr10B22

•Integrated stress for unit cell

•Results will provide check for local stress



• Equal to kT/4 for various potentials.

V. A. Levashov, R. S. Aga, J. R. Morris and T. Egami, 
Phys. Rev. B, 78, 064205 (2008)
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Glass Transition

• High-temperature equation,

extrapolates to v = 0 at T = 0; all neighbors at the 

bottom of the potential.

• But that is physically impossible because of 

jamming.

• There must be a minimum strain.
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“Quantization” Effect

• NC continuously fluctuates at 
high T, and a short time 
average is a non-integer.

• As the system freezes local NC

becomes an integer.

• This process of 
“quantization” is the heart of 
the glass transition.

T

NC

TC

Tg

Time averaged over 
~nano-second



T. Egami, S. J. Poon, Z. Zhang and V. Keppens, 
Phys. Rev. B 76, 024203 (2007). 

• Glass transition temperature is equal to the energy of local density 
fluctuation with the long-range stress field at a critical strain level.  

v,T = 0.0917 0.003 (4%).
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Universal Minimum Local Strain

• If the strain is too large 
the local topology 
becomes unstable, and 
change.

• Depth of the valley in 
the energy landscape.
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Local topological instability

• Since the coordination 
number is an integer, there is 
a range of values of x over 
which a particular 
coordination number is 
stable.

xLocal energy landscape



Liquid-Like Sites (Free-Volume)

• Local environment unstable at 
certain sites with the volume 
strain larger than 11%.

• Free-volume (n) (εv > 0.11) and 
anti-free-volume (p) (εv < -0.11) 
defects [Cohen and Turnbull, 
1959]

• They define the liquid-like sites.

Free volume element



Percolation of the Liquid-like Sites

• Total fraction of the liquid-like sites:

• For v,T = 0.095 0.003

• Percolation concentration for DRP is 0.2: Glass transition occurs by 
percolation of the liquid-like sites [M. H. Cohen and G. Grest, Liquid-
glass transition, a free-volume approach, Phys. Rev. B 20, 1077-1098 
(1979) 
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Jump in Specific Heat at Tg

• All glasses show a 
jump in Cp at Tg.

• But the magnitude 
appears to vary 
widely.

• May be related to 
fragility.

A. C. Angell, Science 267, 1924 (1995).



• Above Tg:

• Below Tg:

• Jump in Cp:
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H. B. Ke, P. Wen, D. Q. Zhao and W. H. Wang, 
Appl. Phys. Lett.  In press.
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• For other glasses than metallic glasses:

• For B2O3, nd = 5/3; only oxygen atoms are 
active; light B atoms are dynamically slaved.

• B. Wunderlich, J. Phys. Chem. 64, 1052 (1960).
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Analysis of the directional dependence of S(Q) and PDF(r) 
by expansion in terms of spherical harmonics

anisotropic PDF can be obtained by transformation

where Jl is the spherical Bessel function
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Y. Suzuki, J. Haimovich and T. Egami, Phys. Rev. B 35, 2162 (1987)
W. Dmowski, T. Egami, J. Mater. Res, v 22, 412 (Feb 2007 )







Bond-Orientational Anisotropy





Equivalence of Temperature and Stress

P. Guan, M.-W. Chen and T. Egami, 

Phys. Rev. Lett., 104, 205701 (2010).
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• Topological fluctuation 
theory explained:
– Tg

– ΔCp

– Fraction of defects.
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Conclusions

• Atomic-level-stresses can explain 

– Atomic dynamics

– Glass transition: Tg, ΔCp

– Anelastic behavior

• A good bases for statistical theories of glass 
and liquids.


