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Thermodynamics and STZs

• Briefly review the shear transformation zone theory 
of amorphous plasticity.

• Apply the non-equilibrium thermodynamics 
framework just presented to an STZ system in order 
to
• Constrain the theory

• Relate the microscopic degrees of freedom the 
relevant "effective temperature" associated with 
these degrees of freedom

• See Falk, Langer, Annual Reviews of Condensed Matter Physics 
(in press) arXiv:1004.4684
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Micro-mechanical Observations 1

Simulation by T.K. Haxton and A.J. Liu, PRL 99, 195701 (2007)
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Shear Transformation Zones

Postulates:
• STZs have a particular orientation.  They are susceptible to 

shear to the extent that the shear is along this direction.
• STZs are reversible until their environment rearranges.  They 

behave as 2-state systems.
• STZs are transient.  They can be created and destroyed by 

neighboring plastic activity.
4

Falk, Langer, PRE (1998)

Falk, Maloney, EPJB (2010)
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Deformation by STZs
Next consider the shear response by assuming 
plastic strain rate to be proportional to STZ Flips

Flip Rates Shear Stress

Bulk
Material
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ε̇pl = v0[R(s)n− −R(−s)n+]
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Rate of 
Mechanical 
Mixing

Deformation by STZs

• Plastic Strain Rate Proportional to Flips

• Master Equation for Densities

+ - ++
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ε̇pl = v0[R(s)n− −R(−s)n+]

ṅ± = R(±s)n∓ −R(∓s) n± + Γ(s, n±)
[neq

2
− n±

]
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Re-expressing the Master Eq

• Plastic Strain Rate Proportional to Flips

• Master Equation for Densities

7

ε̇pl = v0[R(s)n− −R(−s)n+]

ṅ+ = +R(s)n− −R(−s) n+ + Γ
[neq

2
− n+

]

ṅ− = −R(s)n− + R(−s) n+ + Γ
[neq

2
− n−

]

Λ =
n+ + n−
(N/V )

m =
n+ − n−
n+ + n−

In a full tensorial model Λ 

would be a scalar, but m would 

be a tensor mij that describes 
the second moment of the STZ 

orientational distribution.
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Re-expressing the Master Eq

• Plastic Strain Rate Proportional to Flips

• Master Equation for Densities

• need to come up with way to obtain Λeq and Γ
• original guess for Γ was 

8

ε̇pl = ε0ΛC(s) [T (s)−m]

Λ̇ = ṅ+ + ṅ− = Γ(s,Λ, m)[Λeq − Λ]

s ε̇pl

ṁ = 2C(s) [T (s)−m]− Γ(s,Λ, m)
Λeq

Λ
m
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• Consider a thermally isolated system 
consisting of a deforming subsystem with 
energy UC and entropy SC in contact with a 
thermal reservoir of energy UR and entropy SR.

• Define

• And

• By 1st Law 

Thermodynamics of a Deforming System
Bouchbinder, Langer PRE, 80 031131,031132 (2009)

9

χ ≡
(

∂UC

∂SC

)

σ,{Λ}
"= θ ≡

(
∂UR

∂SR

)

2 V s ε̇tot = U̇ tot

thermal 
reservior

sheared 
subsystem

{Λ} represents all the internal 
state variables needed to 
describe the subsystem.

U tot = UC (SC , s, {Λ}) + UR(SR)
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The First Law of Thermodynamics

• If                                        then elastic terms 
cancel and we find

10

2 V s ε̇tot = U̇ tot

2 V s
(

˙εel + ˙εpl
)

= ˙U tot =
(

∂UC

∂εel

)
˙εel + ...

2 V s =
(
∂UC/∂εel

)

2 V s ε̇pl = χṠC +
∑

α

(
∂UC

∂Λα

)

SC

Λ̇α + θṠR
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How to Apply the Second Law?

• Clausius-Duhem Inequality states
• Coleman-Noll (1963) 
• Axiomatic approach takes the Clausius-

Duhem statement to be the definition of 
entropy and temperature.

• We can apply this to a system with two 
temperatures.

• See Bouchbinder, Langer (2009) for details.

11

Ṡ ≥ 0
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• This leaves us with the requirement that the work done exceeds 
the amount of energy stored in internal degrees of freedom.

• And the first law becomes

but this is simply energy conservation, and 
when we define the specific heat as
 
 
 
 
 
 
    

the first law reduces to

Enforcing the Second Law

12

W(s, {Λ}) ≡ 2 V s ε̇pl −
∑

α

(
∂UC

∂Λα

)

SC

Λ̇α ≥ 0

V ceff ≈ χ(∂SC/∂χ)

V ceff χ̇ = W(s, {Λ}) + Q

thermal 
reservior

sheared 
subsystem

Q

χṠC = W(s, {Λ}) + Q
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Constraining Λeq and Γ

• We can write down an expression for 
configurational entropy

• and the configurational energy

• from these and the equations of motion we 
derive an expression for the rate of plastic work

13

SC = NΛ−NΛ lnΛ + NΛψ(m) + S1(U1)

UC = NΛ eZ + U1(S1)

W(s, {Λ}) ≡ 2 V s ε̇pl −
∑

α

(
∂UC

∂Λα

)

SC

Λ̇α ≥ 0



24 Jun 2010
Emerging Concepts in Glass Physics, 

Kavli Institute for Theoretical Physics, UCSB

Constraining Λeq and Γ

• We can assure the work is non-negative if each 
term is non-negative.


 
 
 must be an even function peaked at 0

14

W
V

= 2 Λ C(s)[T (s)−m]
[
sv0 + χ

∂ψ

∂m

]

−
[
ez + χ ln Λ− χψ(m) + χm

∂ψ

∂m

]
Λ̇

−ΓχΛm
∂ψ

m
≥ 0

∂

ψ
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Constraining Λeq and Γ

• The second term will be even if the term in 
brackets goes to zero at 
 
 
 
 
 implying


 
 


15

Λ =Λ eq

Λeq = ν(m) exp(−ez/χ)

ν(m) = exp
[
ψ(m)−m

∂ψ

∂m

]

W
V

= 2 Λ C(s)[T (s)−m]
[
sv0 + χ

∂ψ

∂m

]

−
[
ez + χ ln Λ− χψ(m) + χm

∂ψ

∂m

]
Λ̇

−ΓχΛm
∂ψ

m
≥ 0

∂

Basic Form:

−∂FZ

∂Λ
Λ̇
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Constraining Λeq and Γ

• Similarly the first term will be even if the 
unknown term goes to zero when  


 
 


16

T (s) = m

T [ξ(m)] = m
∂ψ

∂m
= −v0

χ
ξ(m)

W
V

= 2 Λ C(s)[T (s)−m]
[
sv0 + χ

∂ψ

∂m

]

−
[
ez + χ ln Λ− χψ(m) + χm

∂ψ

∂m

]
Λ̇

−ΓχΛm
∂ψ

m
≥ 0

∂
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‟Athermal” Limit

• We will discuss the theory in the ‟athermal” limit; when annealing (aging) is 
negligible on the time scale of the experiment.

• In this limit there is only one relevant physical rate, the rate of plastic 
dissipation, which must be positive definite.

• The heat flow out of the system must also be proportional to the rate of 
plastic work, and we can write an equation for the evolution of χ.

• If we also assume we are in the low strain rate limit, there must be a well 
defined lower bound for χss, more than likely this value χ0=kBTg.

17

ceff χ̇ ∝W ×
[
1− χ

χ0

]

W
V

= 2 Λ C(s)[T (s)−m]sv0 = ΓΛ v0 s0

• The rate of mixing must also be proportional to the rate of work per STZ	 	 	
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STZ Equations of Motion

18

ε̇pl = ε0ΛC(s)[sign(s)−m]

ṁ = 2C(s)[sign(s)−m]
(

1− s m

s0

)

Λ̇ =
2C(s) s

s0
[sign(s)−m][Λ− eψ(0)−eZ/χ]

χ̇ =
2 s

ceff
ε0ΛC(s)[sign(s)−m]

[
1− χ

χ0

]
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Yield in the "Athermal" Limit

m

ss0

uncrossable 
dynamical 
boundary

19

ε̇pl = ε0ν(0)e−eZ/χC(s)[sign(s)−m]

ṁ = 2C(s)[sign(s)−m]
(

1− s m

s0

)
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Development of a Shear Band

 

10% 20% 50% 100%

20

Y Shi, MB Katz, H Li, MLF, PRL, 98, 185505 (2007)
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Relating χ to the microstructure

• Consider a linear relation between the χ 
parameter and the local internal energy

• Is there an underlying scaling?

21

ε̇pl = exp(−eZ/χ) f(s)

C1 χ = U − U0

ε̇pl(y)
ε̇b

= exp
(

eZ

χb
− eZ

χ(y)

)

ln
(

ε̇pl(y)
ε̇b

)
=

eZ

χ0(ε̇pl)
− C1 eZ

U(y)− U0
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Scaling verifies the hypothesis

• Assuming,

 
                  , eZ=1.9ε
Y Shi, MB Katz, H Li, MLF, PRL, 98, 185505 (2007)

22

χ0 ≈ kB Tg

εSL
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Numerical Results
(M Lisa Manning and JS Langer, PRE, 76, 056106(2007)

• These equations closely 
reproduce the details of the 
strain rate and structural profiles 
during band formation

23
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Metallic Glass Deformation
Lu, Ravichandran, Johnson, Acta Mat 51, 3429 (2003)

24
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Shear Induced Anisotropy in Granular Media 

• Taylor-Couette cell

• 102mm inner cylinder

• 44mm gap

• 1mm beads 
or 2mm beads

• Inner cylinder rotated 4-8 
mm/s

• Top surface monitored with 
high speed camera

• Torque measured at inner 
cylinder

MLF, M. Toiya, W. Losert, arxiv:0802.1752 (2008)

25

(experiments by W. Losert and M. Toyia)



24 Jun 2010
Emerging Concepts in Glass Physics, 

Kavli Institute for Theoretical Physics, UCSB

Comparison to Granular Flow Data

26

• The blue dots represent experimental 
measurements of displacement at a 
specified radial position, plotted as a 
function of the inner cylinder displacement 
subsequent to shear reversal.

• The red lines are the STZ predictions. 
 

 

1mm beads

2mm beads

MLF, M. Toiya, W. Losert, arxiv:0802.1752 (2008)
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Amorphous 
Silicon forms 5-
fold coordinated 
liquid-like 
regions that 
facilitate shear.
Requires χ 
dynamics
Demkowicz and 
Argon, PRB 72, 
245205 (2005).

Bouchbinder, Langer 
and Procaccia, PRE 
75, 036108 (2007).

 

STZ Comparison to Shear of a-Si

27
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Summing Up
• We need constitutive theories of plastic response in order to predict 

mechanical response past the elastic regime.
• Shear Transformation Zone Theory is an attempt to build a 

thermodynamically based phenomenological theory with a 
connection to the microscopic physics of deformation.

• The theory exhibits the following behaviors that are seen in 
simualtion and experiment
• A range of behavior from perfectly plastic to shear softening
• Plastic hysteresis (Bauschinger effects)
• Existence of a dynamically emerging yield stress 

(transition from creep to superplastic flow ⇒ nonlinear rheology)

• Diverging time scale for deformation near the yield stress

• Are STZ's ephemeral or persistent?  
• How can we more precisely connect atomic scale to parameters?
• What is the physically correct form for R(s)?
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