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• Focus on foams/emulsions or frictionless granular material

– soft, repulsive, finite-range spherically-symmetric potentials

• Such systems have T=0 1st/2nd-order phase transition
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• Generate configurations near J
– Start with some initial config

– Conjugate gradient energy minimization (inherent structures, Stillinger & Weber)

• Classify resulting configurations

How we study Point J
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Onset of Overlap is Onset of Jamming

•Pressures for different 
states collapse on a single 
curve 

•Shear & bulk moduli, G & B, 
vanish at same φc

•G/B ~ (φ-φc)γ≈1/2
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Onset of Overlap has 1st-Order Character
         

–        (2D)  

                                                      (3D)

Zc = 3.99 ± 0.01
Zc = 5.97 ± 0.03
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Just below 
φc, no 
particles 
overlap

Just above 
φc there are 

Zc

overlapping 
neighbors 
per particle
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• What is the minimum number of interparticle contacts 
needed for mechanical equilibrium?  

•No friction, spherical particles, D dimensions
–Match 

unknowns (number of interparticle 
normal forces) 
equations (force balance for mechanical 
stability)

–Number of unknowns per particle=Z/2
–Number of equations per particle = D

Isostaticity

Z = 2D

James Clerk Maxwell

Phillips, Thorpe, Boolchand, Edwards, Ball, Blumenfield



Isostaticity and Diverging Length Scale

•For system at φc, Z=2d

•Removal of one bond makes entire system 
unstable by adding one soft mode

•This implies diverging length as φ-> φc +

For φ > φc, cut bonds at boundary of circle of size L
Count number of soft modes within circle 

Define length scale at which soft modes just appear 

� 

Ns ≈ L
d−1 − Z − Zc( )Ld

  

� 

 ≈ 1
Z − Zc

≈ φ −φc( )−0.5

M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)
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Consequences of Diverging Length Scale
• Solids are all alike at low T or ω:

– density of vibrational states D(ω)~ω2 in d=3

– vibrational heat capacity C(T)~T3

– thermal conductivity κ(T)~Cvℓ~T3

• Why? 
Low-frequency excitations are sound modes.  At long 

length scales all solids look elastic 



Consequences of Diverging Length Scale
• Solids are all alike at low T or ω:

– density of vibrational states D(ω)~ω2 in d=3

– vibrational heat capacity C(T)~T3

– thermal conductivity κ(T)~Cvℓ~T3

• Why? 
Low-frequency excitations are sound modes.  At long 

length scales all solids look elastic 

BUT at Point J, there is a diverging 
length scale ℓ*

So what happens?



Vibrations in Marginally Jammed Solids

• More and more modes in excess of Debye prediction as φ->φc 
(boson peak)

• New class of excitations distinct from sound modes originates from 
soft modes at Point J M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

• Robust for systems near isostaticity Souslov, Liu, Lubensky, PRL 103, 205503 
(2009); Mao, Xu, Lubensky arXiv: 09092616 
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Vibrational Modes Predict Soft Spots
• Adams-Gibbs Cooperatively-Rearranging Regions?
• Shear Transformation Zones?

M. Lisa Manning’s talk next week



Summary of Point J

• Mixed first-order/second-order transition (RFOT)
• Number of overlapping neighbors per particle

• Static shear modulus/bulk modulus

• Two diverging length scales
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Similarity to Other Models
• This behavior has only been found in a few models, all in mean-field limit 

– 1-RSB p-spin interaction spin glass Kirkpatrick, Thirumalai, Wolynes

– compressible frustrated Ising antiferromagnet Yin, Chakraborty

– kinetically-constrained Ising models Sellitto, Toninelli, Biroli, Fisher

– k-core percolation and variants Schwarz, Liu, Chayes, Toninelli, Biroli, Fisher,Harris, Jeng

– Mode-coupling approximation of glasses Biroli, Bouchaud

– 1-RSB solution of hard spheres Zamponi, Parisi

• These other models all exhibit glassy dynamics!!

First hint of quantitative connection between sphere packings 

and glass transition



N. Xu, T. K. Haxton, A. J. Liu and S. R. Nagel, PRL 103, 205503 (2009).

• How do ideal spheres behave at nonzero temperature?

Point J and the Glass Transition
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Dramatic Increase of Relaxation Time
Colloidal glass transition Glass transition

L.-M. Martinez and C. A. Angell, 
Nature 410, 663 (2001).

Brambilla, et al., arXiv/0809.3401
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Very Different Underlying Pictures
Colloidal glass transition Glass transition

free volume complex energy landscape
8/5/09 4:25 PMMap of Lake O'Hara - YellowMaps Topo Guide

Page 1 of 2http://www.yellowmaps.com/topo/_lakeohara_bc/index2.htm

Copyright © 2004 YellowMaps. All rights reserved. Terms of Use | Privacy Policy | Home | Close

  

Pressure is most important
It governs amount of free 

volume

Temperature is most important
It allows system to overcome 

energy barriers
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Pressure is most important
It governs amount of free 

volume

Temperature is most important
It allows system to overcome 

energy barriers

There are systems for which these two transitions are the 
same phenomenon



Relaxation Time
• Look at relaxation
    time along different
    trajectories

– Fix p, lower T

– Fix T, raise p
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Data Collapse!

τ p = f
T
p

⎛
⎝⎜

⎞
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Data for different (p, T) collapse 
on to single scaling curve!
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Dimensional Analysis
• Recall interaction potential 

• We have 3 dimensional parameters in model:  ε, m, σ

or equivalently

interaction energy

particle mass

particle diameterτ ε
mσ 2 = h

T
ε
, pσ
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• In low p limit, the relaxation time depends only on T/p
• Data collapse for different trajectories

Dimensional Analysis
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• pσ3/ε->0 corresponds to low p limit for soft spheres AND to 
the hard sphere limit

• Should see collapse for anyα≥ 0 including α=0 (hard 
spheres)

Data Collapse for Different Potentials
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• pσ3/ε->0 corresponds to low p limit for soft spheres AND to 
the hard sphere limit

• Should see collapse for anyα≥ 0 including α=0 (hard 
spheres)

Data Collapse for Different Potentials

YES!

ΔV~T/p

T does work 
against pressure 
to open up free 

volume
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Hard spheres

Glass transition equivalent to colloidal glass transition 
as pσ3/ε-> 0  

σ3



• As spheres soften, relaxation time decreases (Weitz/Reichman)

• New mechanism of relaxation controlled by pσ3/ε emerges

Relaxation times at high pressure
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Soft spheres have smaller equivalent hard sphere diameter

Soft spheres
with diameter σ

Hard spheres with
reduced diameter

σHS = σ − Δσ

smaller effective 
volume fraction

more free volume

faster relaxation

How to choose σeff? 
Rowlinson, Barker-Henderson, Andersen-Weeks-Chandler

σeff <σ



Andersen, Weeks, Chandler J. Chem. Phys. 54, 5237 (1971) 

• Taylor expand free energy around hard-sphere potential 

• Choose         so that first-order functional derivative of free 
energy with respect to exp(-V(r)/T) vanishes

• Can calculate       from the soft-sphere potential and hard-
sphere properties alone!

• This approximation reproduces captures static quantities 
beautifully

Strategy for choosing σeff

σ eff

 
dryeff∫ (r) exp −V (r) /T[ ]− exp −Veff (r) /T⎡⎣ ⎤⎦{ } = 0

eβVeff (r )geff (r) original soft-sphere 
potential

hard-sphere 
potential with σeff

σ eff



Relaxation time
• Start with soft spheres at arbitrary pressure
• Use ACW to calculate effective hard sphere diameter σeff

• Obtain new packing fraction for effective hard spheres ϕeff
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Recall Hard-Sphere Curve
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Universal Hard-Sphere Master Curve

• This implies that                                 or
•  Given 

– hard-sphere master curve
– pair interaction potential of soft-sphere system

• can calculate relaxation time of soft-sphere system!
• Can also use soft spheres to extend master curve
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Two Mechanisms of Relaxation in Soft Spheres
• Temperature opens up free volume against the pressure

– hard spheres are fragile glassformers (super-
Arrhenius increase of relaxation time)

• Temperature allows soft spheres to overlap so they 
behave as hard spheres with smaller diameter (less 
super-Arrhenius with increasing overlap)

• In energy landscape, canyons do not become deeper but 
become narrower and more convoluted as p ↑ or T ↓

T = pΔV
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Connection to Point J
• Point J corresponds to double limit T/pσ3 → 0, pσ3/ε → 0
• What is

• Does τ diverge at Point J?  Or does it diverge at T/pσ3 > 0?
• Does Pt J control glass transition?  Or is there an underlying 

thermodynamic glass transition?

lim
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Fitting Forms
• Vogel-Fulcher form:

• Elmatad-Chandler-Garrahan form:  

τ
τ 0

= exp A
T − T0

⎛
⎝⎜

⎞
⎠⎟

Y. S. Elmatad, D. Chandler, 
J. P. Garrahan, J. Phys. 
Chem. B 113, 5565 (2009).



Form of Scaling Function

f (x) = 0.5exp 0.15
x − 0.05
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Fits:
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= f
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• Hard spheres are very fragile!
• Can’t distinguish between V-F form  and E-C-G form 
• Can’t tell if there is a thermodynamic glass transition or not
• But if not, then Point J controls dynamical glass transition



• Point J is a special point

• Hint of connection to glass transition in 
     exponents for jamming transition

• Similarity in form of slow down in
dynamics due to equivalence of
– hard sphere glass transition 
– thermal glass transition of soft spheres at low p

• Hard spheres tell us everything about soft spheres 
•Point J controls dynamical glass transition of hard spheres if 

thermodynamic glass transition does not exist

• Still ahead:  attractions

Conclusions
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• As pσ3/ε increases, σeff decreases
• As T/pσ3 increases, σeff decreases

Effective diameter
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ε
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Hard spheres with
reduced diameter

σHS = σ − Δσσeff
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Jamming vs. Glass Transition

glass phase
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• Point J only exists for repulsive, finite-range potentials
• Attractions can lead to vapor-liquid transition which 

preempts Point J

BUT:  Real Liquids have Attractions

Repulsion vanishes at 
finite distance

U

r

Attractions serve to hold system 
at high enough density that 
repulsions come into play (WCA)
Behavior of liquids is controlled by 
repulsions, and attractions are 
perturbation

But there is hope:



Similar Behavior in Jammed State

• Behavior of amorphous solids is 
– very different from that of crystals
– same in all amorphous solids
– still not understood

Zeller & Pohl, 
PRB 4, 2029 

(1971).



L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 (‘05)

• Density of states is not Debye-like at low ω
• Result of isostaticity M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

• Scaling of ω* is robust to systems near isostaticity Souslov, Liu, 
Lubensky, PRL 103, 205503 (2009); Mao, Xu, Lubensky arXiv: 09092616

Marginally Jammed Solid

Density of Vibrational Modes

φ− φc

ω*∝ φ −φc( )(α −1)/2

� 

ω *



Boson Peak

• Excess in density of states is tied to peak in heat 
capacity C(T)/T3

• This frequency/temperature can be tuned in jammed 
packings by varying φ-φc

crystal

C/T3

U. Buchenau, 
et al. PRB 34, 
5665 (1986)

amorphous



Boson Peak

• Excess in density of states is tied to peak in heat 
capacity C(T)/T3

• This frequency/temperature can be tuned in jammed 
packings by varying φ-φc

crystal

C/T3

Correlated with 
boson peak  
frequency at ω*

U. Buchenau, 
et al. PRB 34, 
5665 (1986)

amorphous



Thermal Conductivity
P. B. Allen and 
J. L. Feldman, 
PRB 48,12581 (1993). 

thermal 
conductivity

heat carried 
by mode i

diffusivity 
of mode i

κ =
1
V

Ci
i
∑ (T )di

 

di =
π

32ω i
2 Sij
i≠ j
∑ 2

δ ω i −ω j( )
Kubo formulation

crystal

amorphous

κ
T3

T2

Kittel’s 1949 hypothesis:  rise in κ above 
plateau due to regime of freq-independent 
diffusivity



Ioffe-Regel Crossover

•Crossover from weak to strong scattering at ω*

•At Point J, the diffusivity is flat down to ω=0
•Freq-indep diffusivity originates from Point J

N. Xu, V. Vitelli, M. Wyart, A. J. Liu, S. R. Nagel, PRL 102, 038001 (2008).
V. Vitelli, N. Xu, M. Wyart, A. J. Liu, S. R. Nagel, arXiv:0908.2176 



Consequences for Thermal Conductivity

T

crystal

amorphous

• At J, κis finite in harmonic approx

• So          up to                  then 
saturates

• For systems with ω*>0, onset of this 

behavior occurs at 

κ (T ) = dωC(ω )d(ω )g(ω )
0

∞

∫

d0 up to ωD g0 up to ωD

κ ~ T
 
kTD  ωD

 kT*  ω *

κ

boson peak in C 
end of plateau in κ

tied together through ω*

amorphousC/T3

T



Consequences for Thermal Conductivity

T

crystal

amorphous

κ

boson peak in C 
end of plateau in κ

tied together through ω*

amorphousC/T3

T



Quasilocalized Modes at ω*

N. Xu, Vi Vitelli, A. J. Liu, S. R. Nagel, arXiv:0909.3710



Quasilocalized Modes at ω*

N. Xu, Vi Vitelli, A. J. Liu, S. R. Nagel, arXiv:0909.3710



Quasilocalized Modes at ω*
• Modes become 

quasilocalized near Ioffe-
Regel crossover

N. Xu, Vi Vitelli, A. J. Liu, S. R. Nagel, arXiv:0909.3710



Quasilocalized Modes at ω*
• Modes become 

quasilocalized near Ioffe-
Regel crossover

• High displacements occur 
in low-coordination regions

N. Xu, Vi Vitelli, A. J. Liu, S. R. Nagel, arXiv:0909.3710



Anharmonicity

• The low-frequency quasi-localized modes have the lowest 
energy barriers to rearrangement
– two-level systems?
– STZ’s?

0

0.2

0.4

0.6

p
(!
)

0 0.5 1 1.5 2 2.5
!

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

V
m
ax
(!
)

N. Xu, Vi Vitelli, A. J. Liu, S. R. Nagel, arXiv:0909.3710



K-Core Percolation
• Culling process

– Occupied sites with fewer than k occupied neighbors 
become vacant

• Repeat culling process until no more can be removed
• Remaining occupied sites called the k-core

k=3
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K-Core Percolation
• Culling process

– Occupied sites with fewer than k occupied neighbors 
become vacant

• Repeat culling process until no more can be removed
• Remaining occupied sites called the k-core

k=3



• Consider lattice with coord. # 
Zmax with sites indpendently 

occupied with probability p

• For site to be part of “k-core”, 
it must be occupied and have at 
least k=d+1 occupied neighbors

• Each of its occ. nbrs must have 
at least k occ. nbrs,etc

• Look for percolation of k-core

Jamming vs k-Core (Bootstrap)  Percolation

• Jammed configs at T=0 are 
mechanically stable

• For particle to be locally 
stable, it must have at least d
+1 overlapping neighbors in d 
dimensions

• Each of its overlapping nbrs 
must have at least d+1 
overlapping nbrs, etc.

• At φ> φc all particles in load-

bearing network have at least 
d+1 neighbors

J. M. Schwarz, A. J. Liu, L. Chayes, EPL 73, 560 (2006).



Long-Ranged Interactions/Attractions
• Point J only exists for repulsive, finite-range potentials
• Real liquids have attractions

• Excess vibrational modes (boson peak) believed 
responsible for unusual low temp properties of glasses

• These modes derive from the excess modes near Point J

Repulsion vanishes at 
finite distance

U

r

Attractions serve to hold 
system at high enough 
density that repulsions 
come into play (WCA)

N. Xu, M. Wyart, A. J. Liu, S. R. 
Nagel, PRL 98, 175502 (2007).



• Ellipsoids

• Introduce new rotational band but onset of translational 
band still scales as for spheres

• Ellipsoids controlled by Point J for spheres

Effect of Particle Shape

Z. Zeravcic, N. Xu, A. J. Liu, S. 
R. Nagel, W. van Saarloos, EPL, 
87, 26001 (2009).



Glasses & colloidal glasses shear thin--is there a connection?

What happens at Σ>0?

unjammed
T

Σ

1/φ J
jammed

Look at rheology: stress Σ vs. T, p, γ
.



• Stress is indep of potential for small T, p

Dimensional Analysis

T/ε

 

lim
pσ 2 /ε→0

Σ
p
= F

T
pσ 2 , I ≡ γ

m
p

⎛

⎝⎜
⎞

⎠⎟

T. Haxton

 or equivalently,

 

Σσ 2

ε
= H

T
ε
, γ mσ 2

ε
, pσ

2

ε

⎛

⎝
⎜

⎞

⎠
⎟

 

Σ
p
= G

T
pσ 2 , I = γ

m
p
, pσ

2

ε
⎛

⎝⎜
⎞

⎠⎟

or equivalently,

T. Haxton (2D)



Data Collapse for Rheology

σ

 
γ

σ/
p

 

I = γ m
p

T / pσ 2 = 0.01

T / pσ 2 = 0.1

 

lim
pσ 2 /ε→0

Σ
p
= F

T
pσ 2 , I = γ

m
p

⎛

⎝⎜
⎞

⎠⎟

High            , low I: viscous
Low            ,  low I:  elastic

T pσ 2

T pσ 2



η σ
mp

Consequences of Rheology Collapse

Equivalence of rheology for colloids and glasses
unjammed

T

Σ

1/φ J

jammed

 

I = γ m
p

 

lim
pσ 2 /ε→0

τ p
m

= F
T
pσ 2 ,

Σ
p

⎛
⎝⎜

⎞
⎠⎟

 

lim
pσ 2 /ε→0

Σ
p
= F

T
pσ 2 , I = γ

m
p

⎛

⎝⎜
⎞

⎠⎟

describes jamming surface:  universal near Point J!


