

GRANULAR UNSTEADINESS

Adam Abate, Hiroaki Katsuragi, Kerstin Nordstrom, E. Verneuil, P.E. Arratia, J.P. Gollub, and D.J. Durian U Penn Physics

• Steady input of energy can provoke an unsteady response eg: <u>dynamical heterogeneities</u> for three systems near jamming:

steady heap flow

soft colloids in a uchannel

CMMP-2010 decadal study

- · What happens far from equilibrium, and why?
 - exemplified by granular media and jamming:

No basis for usual intuition

· Grains, bubbles, colloids, cells, tectonic plates,...

disordered / heterogeneous:

k_BT<<interaction energy:

flow beyond threshold:

no symmetries far-from-equilibrium

nonlinear response

hard problems = new physics!
unreliable / inefficient engineering practices!

On approach to jamming...

 ...effects of disorder, non-equilibrium, and nonlinearity all become more and more important

- eg response to steady driving becomes more unsteady...

Unsteady response to steady driving

- Intermittency...
 - ...avalanches, rearrangements, mudslides, earthquakes
 - ...force chains in shear and impact/penetration
 - ...<u>clogging</u> / arching over an orifice
- Convection, size segregation, pattern formation, compaction, phase separation, in vibrated systems
- Clustering and finite-time singularities in a freely cooling inelastic gas
- Swarming, <u>density waves</u>, <u>giant #fluctuations</u> for selfpropelled particles and rods
- And, of course, dynamical heterogeneities...

1. Monolayer of air-fluidized balls

- · upflow of gas randomly kicks the grains, without causing levitation
- 50:50 mixture with 1:1.4 diameter ratio, to prevent crystallization

Two approaches to jamming

vs packing fraction vs gas speed

Approaches jamming like a glass

Subtle structural changes:

(Abate & Durian, PRE '06)

- growing 1^{st} peak and split 2^{nd} peak in g(r)
- vanishing number of four-fold coordinations
- Dramatic dynamical changes:
 - Growing region of subdiffusive / caged motion
 - Displacement distribution becomes non-Gaussian
 - Dynamics become spatiotemporally heterogeneous

String-like intermittent swirls

{~movie of bead velocities, averaged over time τ = cage breakout time}

Lay tracks from t to $t+\tau$

color-code by avg. speed = length of $\Delta r/\tau$

RED: fast/mobile

0

У

G

BLUE: slow

To quantify heterogeneities...

... use $\chi_4(l,\tau)$, a four-point dynamic susceptibility:

variance in decay of dynamical order parameter

Faster decay of $Q_t(\tau)$ when there are more fast/mobile regions

 χ_4 * ~ n*, the size of the heterogeneities

$\chi_4 \rightarrow flucts$ in number of "fast" regions

(Abate & Durian, PRE '07)

Define...

N number of particles in system n particles in each fast region $M+/-M^{\frac{1}{2}}$ number of fast regions Q_0 = order parameter in fast regions Q_1 = order parameter in slow regions

Compute average Q and its variance...

$$Q^* = [Q_0 (nM) + Q_1 (N-nM)]/N$$

 $\chi_4^* = N(\Delta Q^*)^2$

#particles in heterogeneity: $n^* = \chi_4^* / [(Q_1 - Q_0)(Q_1 - Q^*)]$

Flucts Δn in domain size are harmless:

(Abate & Durian, PRE '07)

Define...

N number of beads in system $n+-\Delta n$ beads in each fast region $M+/-M^{\frac{1}{2}}$ number of fast regions Q_0 = order parameter in fast regions Q_1 = order parameter in slow regions

$$\rightarrow$$
 n* [1 + (Δ n/n*)²] = χ_4 */ [(Q₁-Q₀)(Q₁-Q*)]

Constant airspeed, increasing ϕ

· Slower decays, increasing peak heights

Three different decay times & peak heights, and arbitrary choice of overlap cutoff function, <u>but...</u>

...same size n* of heterogeneities

Power-law growth on approach to jamming from below:

- Exponent v=0.72+-0.04 is curiously consistent with simulations:
 - OHern-Silbert-Liu-Nagel (2003) finite size scaling
 - Drocco-Hasting-Olsen-Reicchardt (2005) perturbation around object
 - Olsson-Teitel (PRL 2007) velocity correlations
- But $\langle v^2 \rangle$ decreases as $(\phi \phi_c)$ so "T" isn't constant...??!!

Three Effective Temperatures

(2) Granular:

$$T_q = \frac{1}{2} m < v^2 >$$

(Abate & Durian, PRL '08)

(2) Weighted-ball: $T_+ = \langle KE \rangle = \langle PE \rangle$

$$T_+ = \langle KE \rangle = \langle PE \rangle$$

(1) Einstein:

$$T_e = D / \mu$$

- Energies are thermally-distributed
- Near agreement of all five effective temps

Activated dynamics

- 1/mobility and relaxation time ~ exp[E/T_{eff}]
 - · collapse and same energy barrier, E, for both trajectories

Growth of heterogeneities vs T_{eff}

 Again, find good collapse for different ball sizes, packing densities, and gas-speeds:

solid curve: power law, with exponent 0.7+-0.2

dashed line: activated, with same barrier as τ , μ

In progress...

(Lynn Daniels)

• Measure pressure, and scale temperature by $P\sigma^2$:

No correlation with structure

[2] Steady granular heap flow

300 micron glass beads, 1 cm wide x 30 cm long heap

(Soft Matter, '10)

· Continuous flow near surface; no flow down deep

Jamming transition is versus depth

- Structure: no obvious changes
- · Dynamics...

Hiroaki Katsuragi

Structure vs depth

{at Q=2.5 g/s, well into the continuous regime}

 No evident variation, except for top 2-3 layers, just as in the glass transition:

Flow speeds vs depth

{at Q=2.5 g/s, far into the continuous regime}

- v_x(z) looks like a double exponential
- $v_x > \delta v$ only near the top
- · Fluctuations dominate down deep, near jamming

Deeper -> more heterogeneous

- Compute overlap parameter Q(t) and χ_4 = N σ^2 (t) by image-strip correlations (not particle tracking)
- Approach to J...
 - $Q(\tau)$ vs τ :
 - decays slower, both in time and in shape
 - Peak of χ_4 :
 - moves to longer times
 - · increases in height

Diverging time and length scales

~Exponential with depth, just like velocity profile

Control parameter

Dimensionless temperature or strainate

$$(P = \rho gz)$$

$$T \neq \rho \delta v^2/P$$

$$T \neq \rho \delta v^2 / P \qquad I = \dot{\gamma} d / \sqrt{P / \rho}$$

NB: T=I/100 $\rightarrow \delta v = 0.1 [(\dot{\gamma}d)(gz)]^{1/2}$

n* scaling

• Set by inertia number: $I = \dot{\gamma}d/\sqrt{P/\rho}$

Compares well with simulations of velocity correlations

(3d) Takahiro Hatano: $P \sim \dot{\gamma}^{1/2}$, $\xi \sim \dot{\gamma}^{-1/4} \rightarrow I \sim \dot{\gamma}^{3/4}$ and $\xi \sim I^{-1/3}$

(2d) Lydie Staron, Lagree, Josserand, Lhuillier (preprint)

[3] NIPA microgel beads

N-isopropylacrylamide (Yodh group)

(preprints '10)

Soft: can be compressed above close packing

Thermoresponsive: size & hence packing fraction can be varied *in-situ* via temperature

Kerstin Nordstrom

Particle Mechanics

Compress NIPA suspensions in a centrifuge
 Low RPM: Hertzian behavior, deduce particle modulus E
 E ~ 1/(particle volume)³, must be scaled out in rheology

Particle Mechanics II

High RPM: height asymptotes toward a constant, Ha

- $H_a/H_c = (1/\phi_a) / (1/\phi_{rcp}) = 0.64 \rightarrow \phi_a=1$
- · particles deform without deswelling!

Microfluidic Shear Rheology

- Pressure-driven flow in a PDMS microchannel
 - L = 2 cm long, 100 μ m tall x 25 μ m wide
- Principle:
 - [1] measure pressure gradient, deduce stress σ =(Δ P/L)x vs x
 - [2] measure velocity profile, deduce strainrate $\dot{\gamma}$ =dv/dx vs x
 - [3] combine for stress vs strainrate

Example velocity profile data

- [1] measure pressure gradient, deduce stress σ =(Δ P/L)x vs x [2] measure velocity profile, deduce strainrate $\dot{\gamma}$ =dv/dx vs x
- Parabolic: $dv/dx \sim x$ so viscosity = constant (Newt.)
- Plug: dv/dx=0 so stress = constant (yield stress)

μF Shear Rheology of NIPA

one sample: many tempertures \rightarrow many packing fractions

- Below RCP: non-Newtonian power-law fluid
- · Above RCP: Hershel-Bulkley behavior
 - yield stress + strainrate $\beta = 1/2$

$$\sigma = \sigma_y \left[1 + (\dot{\gamma}\tau)^{\beta} \right]$$
 Hershel-Bulkley fits

- The power-law is consistent with $\beta=1/2$
 - good fits, constant β =1/2, even quite far from ϕ_c
 - same result for two different particle sizes

van Saarloos predicts β =2b/(b+3) if the drag between two moving particles is F ~ -v^b {b=1 gives β =1/2}

$$\sigma = \sigma_y \left[1 + (\dot{\gamma}\tau)^{\beta} \right]$$
 Hershel Bulkely fits

Yield stress vanishes & timescale diverges at RCP

$$\sigma_{y} \sim (\phi - \phi_{c})^{\Delta}, \Delta = 2$$

vanSaarloos:

$$\sigma_y \sim G_{yy}$$
 and $\gamma_y \sim (\phi - \phi_c)$

Liu-Nagel:

$$G\sim (\phi-\phi_c)^{\alpha-3/2}$$
 for potential V~overlap ^{α}

Hertzian:

$$\alpha=5/2 \rightarrow \Delta=\alpha-\frac{1}{2}=2$$

$$\sigma = \sigma_y \left[1 + (\dot{\gamma}\tau)^{\beta} \right]$$
 Hershel-Bulkley fits

Experimental results for exponents:

$$\sigma_{y} \sim (\phi - \phi_{c})^{\Delta}$$
 $\Delta = 2$
 $\tau \sim (\phi - \phi_{c})^{-\Gamma}$
 $\Gamma = 4$
 $\beta = 1/2$

· Check:

 $\sigma_{y}(\dot{\gamma}\tau)^{\beta}$ must be finite and nonzero at ϕ_{c} : $\Delta - \Gamma\beta = 0$

$$\sigma = \sigma_y \left[1 + (\dot{\gamma}\tau)^{\beta} \right]$$
 Olsson-Teitel scaling

Collapse onto two branches, above & below ϕ_c

$$\frac{\sigma_{y} \sim (\phi - \phi_{c})^{2}}{10} \qquad \tau \sim (\phi - \phi_{c})^{-4} \qquad \beta = 1/2$$

$$\frac{\sigma_{y} \sim (\phi - \phi_{c})^{2}}{10} \qquad \frac{\sigma_{z} \sim \dot{\gamma}^{\beta}}{10} \qquad \frac{\sigma_{z} \sim \dot{\gamma}^{\beta}$$

Slow shear > heterogeneous

- Compute overlap parameter Q(t) and $\chi_4 = N\sigma^2(t)$ by image-strip correlations (not particle tracking)
- Decreasing strainrate...
 - $Q(\tau)$ vs τ :
 - · decays slower
 - Peak of χ_4 :
 - moves to longer times
 - · increases in height

Size n* of heterogeneities

- Larger for...
 - low shear: $n^* \sim (\text{strain rate})^{-1/3}$, same as for heap flow
 - volume fractions closer to RCP

Full scaling of n* for NIPA

• n* ~ (strainrate)^{-1/3} ($\phi - \phi_c$)^{-4/3} what is the physical origin of these exponents?

Time scale diverges too

• $\tau^* \sim (\text{strainrate})^{-1} (\phi - \phi_c)^{-4}$

Conclusion

- The response to steady driving forces can be spatially and temporally heterogeneous, more so near jamming
 - vs packing, airspeed, shear, T/P, depth, discharge,...
- Size n* of dynamical heterogeneities
 - deduction from 4pt susceptibilities
 - growth on approach to jamming
 Air-fluidized "thermal" balls: as $\phi \rightarrow \phi_c$ and $T/P \rightarrow 0$ Athermal hard grains: as strainrate $\rightarrow 0$ Athermal soft colloids: as strainrate $\rightarrow 0$ and $\phi \rightarrow \phi_c$
- Meaningful effective temperatures
- Macroscopic rheology

Many thanks to

Hiroaki Katsuragi

Kerstin Nordstrom

- Emilie Verneuil, Paulo Arratia, Jerry Gollub
- Plus:

Andrea LIU
Tom LUBENSKY
Wim van SAARLOOS
Arjun YODH & group

Ahmed Alsayed, Anindita Basu, Zexin Zhang

THE END.

