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The Big Question
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chain connectivity on mechanical response?
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Stress-Strain Response in Ductile Glasses
Elastic response at small strains (few %)

Yield as barriers to local rearrangements overcome
Strain softening as material “rejuvenates”

Plastic Flow
Polymers: chains orient -- strain hardening 
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Similarities/differences between                 
polymeric and ‘monomeric’ response

• elastic, yield, flow
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Similar Different

• hardening, fracture

Broad-brush reason: covalently bonded chains can orient 
on large scales: increases material anisotropy, changes 

long- range order



Traditional Interpretation of Polymeric Hardening
(Haward, Argon, Boyce et. al.)

• Hardening has same “shape” as in rubber -- model using 
entropic (rubber) elasticity, separately from plastic flow 

This is wrong 
for glasses!

Strain Hardening in Polymeric Systems

Stress for a Rubber or Melt

stretch

stretch

Stress is derivable from 
rubber (entropic) elasticity: 

Modulus proportional to T and 
entanglement density:

Entanglements ~ crosslinks
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TABLE I: Primitive Path Analysis Results (Glasses). Results are from PPA runs of length ?.

Uncertainties quoted are statistical uncertainties from the finite ∆bpp.
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Entropic Elasticity

Assumes chain segments 
can move freely between 

crosslinks

Equilibrium theoryHardening stress arises from 
entropy of crosslinked network

Chains stretch affinely 
between entanglements



Problems w/traditional approach

• qualitatively predicts shape of stress-strain curves, but:

• prediction; GR = ρekBT ~ 100 times too high; 
inconsistent with rheolog. measurements of ρe

• wrong trend with T

(Van Melick et. al., E. J. Kramer)

cross-linker added during polymerisation, the network
density increases. Similar to the results of Fig. 3b, the
influence of small amount of cross-linker on the network
density is low and therefore it is reasonable to assume that
the network density also departs from a plateau, represented
by the solid line in Fig. 4b.

3.2. Uniaxial compression tests

The effect of an increased network density on the post-
yield behaviour was investigated by uniaxial compression
tests. Since localisation phenomena like crazing and
necking are absent in such tests, a true stress–true strain
curve is obtained, see Fig. 5. From these results, it can be
concluded that the post-yield behaviour is strongly influ-
enced by a change in network density. For increasing
network density, i.e. increasing PPO fraction or increasing
the amount of cross-linker, the strain hardening modulus
clearly rises, while the yield stress, which is mainly
determined by the secondary interactions between the
polymer chains, remains largely unaffected. The fact that
strain softening, which is also governed by secondary
interactions, decreases with increasing network density
must be attributed to the stabilising contribution of the
polymer network, that shows a noticeable effect at small
strains. Hence, the true stress cannot drop as much as in a
looser network.

From the uniaxial compression curves at large strains, the
strain hardening moduli were determined. From the strain
energy function, first proposed by Mooney [42], for rubber–
elastic materials, it can be derived that the true stress is
proportional to l2 2 l21: If a neo-Hookean description is
valid for the strain hardening behaviour of these materials,
the true stress should be proportional to this strain measure.
In Fig. 6a it is shown that for the PS/PPO blends the true
stress is indeed linear in l2 2 l21: The strain hardening
modulus is defined as the slope at large strains, which is
schematically represented by the dashed line in Fig. 6a. An
identical procedure is followed to determine the strain
hardening moduli of XPS.

The validity of a neo-Hookean description of the large-
strain behaviour of these materials is illustrated by
numerical simulations, performed with MARC (MSC
Software) employing the compressible Leonov model [10,
26,43] with a neo-Hookean relation representing the large
strain behaviour. In Fig. 6b it is shown that the simulations
provide a good description of the uniaxial compression
tests, indicating that the strain-hardening behaviour can
indeed adequately be described by a neo-Hookean relation.

Finally, combining the results of the DMTA experiments
and the uniaxial compression tests yields the relation sought
between the network density and the strain hardening
modulus. In Table 2 the values for the network density and
strain hardening modulus of the various materials are given,

Fig. 5. Compressive behaviour of PS/PPO (a) and XPS (b) at room

temperature and at a strain rate of 1022 s21.

Fig. 6. A neo-Hookean relation can adequately describe the strain
hardening behaviour as is shown by analytical (a) and numerical methods

(b).

H.G.H. van Melick et al. / Polymer 44 (2003) 2493–25022498



Molecular dynamics simulations

Compress using strain 
control

Maintain zero pressure along one 
or both transverse directions 
using Nose-Hoover barostat

Maintain isothermal conditions 
using Langevin thermostat

Strain rates ~ 105-108/s
but in experiment-like regime 

where thermal activation makes 
stresses logarithmic in strain rate

LAMMPS MD code
(S. J. Plimpton, Sandia NL)

Kremer-Grest bead-spring model: natural polymeric 
analogue of LJ, Kob/Anderson ‘monomeric’ glasses



Progress over the past several years

• most evidence shows entanglements 
secondary under most conditions

• instead hardening ~ flow stress, chain 
orientation

• hardening can occur for unentangled 
chains (if no brittle fracture) 

• dissipative stress σQ dominates: related 
to to local plastic rearrangements 

• rearrangements similar in flow, hardening 
but rate Rp increases

Long chains
Very short chains

Hoy & Robbins, PRE 2008

Experiments:  Govaert+Wendlandt, van Melick+Meijer, 
Dupaix+Boyce, Lee+Ediger, Hine/Duckett

Sims/Theory: Hoy+Robbins, Riggleman+de Pablo, 
Lyulin+Vorselaars, Chen+Schweizer

and many others



Strain hardening controlled by 
microscopic chain orientation

rather than macroscopic stretch λ,
if energetic stress small

Chain Orientation vs. Entanglement

Entropic models predict GR ~ ρe,     

no hardening for N < Ne

Simulations: hardening can occur 
independent of entanglement as long 

as some order parameter keeps 
evolving  with increasing strain

(Fracture of low-N systems suppr. by PBCs)
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Hoy & Robbins, PRL 2007



Glassy Hardening Modulus Rises Linearly with 

the Flow Stress

L. E. Govaert et. al, JPSPP 2008
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Are Polymer Glasses “Slow Melts”?
“Yes and no”; some illustrative examples

Chains relax indepdntly 
under strain?

Large scale relax. 
time τ ~ Nγ

Melts

Glasses

No

Often

γ = 2, 3.4

New results

Consider bidisperse mixtures 
of “short” and “long” chains



Hardening in bidisperse mixtures
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Nshort = 25, low strain rate

Nshort = 10, mod strain rate

1

GR = C0 + C1 × σflow (1)

UF ENE−SB(h, r) = −h + UF ENE(r) − UF ENE(rmin) (2)

σ = fσshort + (1 − f)σlong (3)

GR ~ (1-f)  not GR ~ ρe ~ (1-f)2

Stress = weight avg. of stresses in pure 
systems:

Hardening stress ~ work to 
orient chains in a glassy medium

arises from plastic activity necessary to 
maintain chain connectivity

Mixtures where short chains don’t harden:

Would be GR ~ ρe ~ (1-f)2 if controlled by entanglements

Weight fracs: (f) short unentangled 
chains, (1-f) well-entangled chains
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Independent orientation -- “mean field” picture?

Same systems

Well below Tg, λeff is 
independent of f!

(very different from melts)

Chains orient independently: 
suggests can understand in 

terms of single chain in 
glassy “medium”

Verified this holds for other f, chain 
lengths, T up to ~ .8Tg
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Maxwell-like Model

1

!
!eff

Rz

!eff = <Rz/Rz,o>

! = Macroscopic Stretch

Nonaffine deformation:

!eff = ! 

!eff = Chain-level Stretch

1

N τ/τLJ τ/((N − 1)τLJ)

12 1.15 · 105 1.05 · 104

18 1.78 · 105 1.05 · 104

36 4.49 · 105 1.28 · 104

71 - -

107 - -

500 7.14 · 106 1.43 · 104

λ = λeff + (λ − λeff)

εeff = ln(λeff)

ε̇eff = ε̇ − εeff/τ

(1)

λeff ~ “elastic” (reversible)   chain-
level deformation

τ ~ quiescent chain relaxation 
time ~ Nγ

stiff covalent bonds --- strain 
activated coherent chain 

relaxation
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Piece of puzzle for faster relaxation under active deformation!
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length L
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Coherently relaxing chain contours control 
scaling of hardening relative to flow? 
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“Few models account for 
relaxation during deformation” 

(Grassia et al, JPSPP,2009)

Assume plastic events 
correlated over volume V 
set by chain dimensions

V increases during 
deformation, but less if chains 

relax: mechanism for both 
hardening and relaxation



Stress from anisotropic plasticity

Hardening ~ plastic flow stress in increasingly anisotropic medium! 

With theory of relaxation of 
λeff, have full model

• dissipative stress related to local plastic rearrangements events in both 
flow and hardening regimes

• assume stress is set by density                                                            
of coherently relaxing contours

Long chains
Very short chains

Hoy & Robbins, PRE 2008
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ρ = monomer number density

l0 = backbone bond length

lK = Kuhn length

Rc = extent of polymer
√
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c = size of plastic events - varies with stretch
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Some key results
• nonlinear viscoplastic “fading 

memory” eqn for σ* = σ/σflow

• continuous crossover from 
perfect-plastic flow to 
Gaussian-like hardening as N 
increases, without invoking 
entanglements

• coherent τ ~ Nγ-1 matches 
experimental trends much 
better than incoherent τ ~ Nγ
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very consistent with speedup in 
local relaxation observed in 

experiments (Lee, Ediger, etc.)!

τ ~ Νγτ ~ Νγ-1



Comparison to Experiment

• g  better than g for long chains; 
captures plastic flow “plateau”

• can predict stress only 
qualitatively; theory neglects 
softening, thermal relaxation, etc.

• but very consistent with observed 
scaling of hardening with flow 
(both rate- and T- dependent)

Govaert et. al., JPSPP 2008

~



Testing model with MD simulations

• λeff very well predicted; fits 
show τ ~ Nγ-1 during deform.

• γ = 2 --- Rouselike relxn!

• stress prediction qualitatively 
captures trends & quantitatively 
within ~20% (will show at end!)

• expected to break down along 
with MFT as T      Tg or in densely 
entangled systems with large 
energetic “chain stretching” 
contributions to stress

relxn. slows upon cessation 
of deformation

effect in prefactor, not γ

τ ~ Νγ-1 τ ~ Νγ

T ~ .6Tg
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Experimental Testability?

• λeff experimentally measurable! (Ube et al, Polymer, 2007, 2009)

• used scanning near-field optical microscopy

• extensible to T < Tg?

Low-MW matrix

High-MW matrix

Measured above Tg



• Chen/Schweizer (PRL 2009): similar analytic form for 
constitutive law, accounts for thermal relaxation but 
not λ = λeff

• Wendlandt (Polymer 2005): also associates rate 
dependence with a plastic volume V, but Eyring-like 
model, V decreases with increasing strain

• Constitutive (very many): sophisticated and fit data for 
real polymers, but not “microscopic”, and only (Miehe 
et al, 2004, 2009) accounts for λ = λeff

Compared to other recent non-entropic models



Summary
• mech. behavior of short chain polymer glasses ~ “atomic” glasses; 

differences arise from covalent connectivity

• glassy polymeric strain hardening arises from the stress necessary 
to orient individual chains as long as bond/entanglement stretching 
not important; this is the usual case in experiment

• Large scale chain orientation controls the dissipative part of 
polymer plasticity (well past yield strain)

• rising stress post-yield can be viewed as flow stress in increasingly 
anisotropic medium of coherently relaxing chain contours

• coherent relaxation concept explains N dependence of relaxation 
times under active deformation

• effect of entanglements may be primarily slowing relaxation?



• in sims, MF picture holds for T ~ .8Tg and below: obviously breaks 
down at “high” T since chains in melts don’t orient independently, 
but how high?  “high” T may be rate dependent

• further work needed to describe energetic component of stress, 
thermal/rate effects (e. g. Chen & Schweizer, 2007-09)

• chemistry dependence certainly important, especially for non-
compressive deformation, prob. have gone as far as possible with 
CG simulations

Behavior of different 
polymers in shear 

(G’Sell et. al., J. Mat. Sci. ’83) 



A question to ponder

Thanks: Ken Schweizer, Ed Kramer, 
Grisha Medvedev, Daniel Read, 

LAMMPS MD software, NSF-DMR 
grants, Yale Anderson fellowship

How do polymeric glasses compare 
to other “atomic” glasses in which 

some units much more strongly 
connected than others?



Bead-spring polymer modelJobTalk Equations
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LJ

FENE

Kremer & Grest, 1980s-present

captures RW structure, chain stiffness and 
uncrossability, excluded volume & adhesion,       

but no chemical detail

strength of adhesive interactions ~ rc

N spherical monomers per chain, measurable 
entanglement length Ne, density ρe  (Everaers et. al.)

increasing kbend raises ρe, 
diluting w/ short chains lowers ρe

very good at predicting “universal” features of real melts and 
glasses (800 citations)



Details of  nonlinear viscoplastic “constitutive law”

Math easier if use true strain ε rather than λeff

“Modulus” k(ε)

Stress depends only on k-history; used simple model for yield

Analytic solution for const strain rate uniaxial def.



Theory vs MD: predictions for σ*

• stress predictions qualitatively 
captures trends & quantitatively 
within ~20% 

• better agreement not 
expected because theory 
leaves much out; thermal 
effects, energetic terms, local 
relaxation & its variation with 
stress, etc.

• shape of theoretical curves 
seemingly agree better with 
experiment!
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