Avalanches and Diffusion in Amorphous Solids Under Athermal, Quasistatic Shear

Craig Maloney

Collaborators: M. O. Robbins (Hopkins)

Funding: NSF DMR-0454947 and PHY99-07949

KITP June 2010

Carnegie Mellon

Outline

- Amorphous solids
 - Types
 - Athermal quasistatic shear (AQS)
- Slip lines in Lennard-Jones solids
 - CEM + M.O. Robbins (J. Phys 2008, PRL 2009)
 - Spatial structure of plasticity
 - Effective diffusion
- Jamming
 - (CEM. PRL Submitted)
 - Bubble model / critical scaling near jamming
 - Effective diffusion
 - Avalanches

The question(s) I am asking

- For "simple" amorphous solids in AQS:
 - What is the elementary mechanism(s) which accommodates applied shear?
 - How are they organized in space and time?
 - (How does this impact viscoplastic rheology)?

Types of amorphous solids

- Types
 - Emulsions / Foams
 - Granular packings
 - Colloidal suspensions
 - Atoms / Molecules

Local shear strain under driving:

Polydisperse PMMA spheres in density-matched solvent

Solid-like (glassy) regime, no applied shear strain

(Weeks et. al.)

Types of amorphous solids

- Types
 - Emulsions / Foams
 - Granular packings
 - Colloidal suspensions
 - Atoms / Molecules

Athermal, quasistatic shear (AQS)

- Differences in particle-scale physics (do they matter?):
 - Inertial or overdamped?
 - "Real" temperature
 - Dissipation mechanisms / hydrodynamics
 - Attractive forces / adhesion
 - Coulomb friction / covalent bonding
- Energy landscape picture of AQS (Malandro and Lacks)

- $t_{thermal} >> t_{shear} >> t_{rearrange}$
- first Temperature to zero, then shear rate to zero.

Carnegie Mellon

Civil & Environmental

control: $L_y(t)$, $L_x(t)$ conserve area

Carnegie Mellon

• 2D Molecular Dynamics:

control: $L_y(t)$, $L_x(t)$ conserve area

Carnegie Mellon

- 2D Molecular Dynamics:
- binary Lennard-Jones

control: $L_y(t)$, $L_x(t)$ conserve area

Carnegie Mellon

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0

control: $L_y(t)$, $L_x(t)$ conserve area

Carnegie Mellon

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)

control: $L_y(t)$, $L_x(t)$ conserve area

Carnegie Mellon

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain

control: $L_y(t)$, $L_x(t)$ conserve area

Carnegie Mellon

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain
- periodic boundaries

control: $L_y(t)$, $L_x(t)$ conserve area

Carnegie Mellon

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain
- periodic boundaries
- system sizes up to 3000x3000
 - ~ 10M particles

control: $L_y(t)$, $L_x(t)$ conserve area

Carnegie Mellon

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain
- periodic boundaries
- system sizes up to 3000x3000
 - ~ 10M particles
- Quasi-static limit (about 500 CPU days / run)

control: $L_y(t)$, $L_x(t)$ conserve area

Carnegie Mellon

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain
- periodic boundaries
- system sizes up to 3000x3000
 - ~ 10M particles
- Quasi-static limit (about 500 CPU days / run)
- Strain window, Δγ, plays role of time!

Carnegie Mellon

control: $L_y(t)$, $L_x(t)$ conserve area

Local vorticity, ω

For each triangle:

$$\frac{\partial u_i}{\partial x_j} = F_{ij}$$

$$\epsilon_1 = \frac{F_{xx} - F_{yy}}{2}$$

$$\epsilon_2 = \frac{F_{xy} + F_{yx}}{2}$$

Invariants:

$$\epsilon = \sqrt{\epsilon_1^2 + \epsilon_2^2}$$

$$\omega = F_{xy} - F_{yx}$$

"Canonical" atomistic Eshelby shear transformation: pure shear $\epsilon_1 > 0 \epsilon_2 = 0 \omega = 0$

Carnegie Mellon

Local vorticity, ω

For each triangle:

$$\frac{\partial u_i}{\partial x_j} = F_{ij}$$

$$\epsilon_1 = \frac{F_{xx} - F_{yy}}{2}$$

$$\epsilon_2 = \frac{F_{xy} + F_{yx}}{2}$$

Invariants:

$$\epsilon = \sqrt{\epsilon_1^2 + \epsilon_2^2}$$

$$\omega = F_{xy} - F_{yx}$$

Carnegie Mellon

Correlations in steady state

6.0% to 6.1% 6.0% to 6.2% 6.0% to 6.4% γ: $|\Delta r|$ ω Civil & Environmental

ENGINEERING

Saturday, June 12, 2010

Carnegie Mellon

Transverse displacement traces (6.1% -> 6.2%)

Transverse displacement traces (6.1% -> 6.2%)

•System is either:

- active along δx=δy
- active along $\delta x = -\delta y$
- or quiescent

+2

+1

δу

-1

-2 -2 -1 δx +1 +2

Carnegie Mellon

- •System is either:
 - active along δx=δy
 - active along $\delta x = -\delta y$
 - or quiescent

- •System is either:
 - active along δx=δy
 - active along $\delta x = -\delta y$
 - or quiescent

- •System is either:
 - active along δx=δy
 - active along $\delta x = -\delta y$
 - or quiescent

Carnegie Mellon

- •System is either:
 - active along δx=δy
 - active along $\delta x = -\delta y$
 - or quiescent

- •System is either:
 - active along δx=δy
 - active along $\delta x = -\delta y$
 - or quiescent

- •System is either:
 - active along δx=δy
 - active along $\delta x = -\delta y$
 - or quiescent

- •System is either:
 - active along δx=δy
 - active along $\delta x = -\delta y$
 - or quiescent

- •System is either:
 - active along δx=δy
 - active along $\delta x = -\delta y$
 - or quiescent

 $<\!\!\Delta r^2\!\!> = \{N_{events}\} \, \{<\!\!\Delta r^2\!\!>_{elem.}\} = \{\Delta\gamma/(a/L)\} \, \{a^2/12\} = La/12 \, \Delta\gamma$

$P(\Delta r)$ for various $\Delta \gamma$

All distributions rescaled by Fickian expectation:

$$s = \langle \Delta r^2 \rangle / \Delta \gamma$$

$P(\Delta r)$ for various $\Delta \gamma$

All distributions rescaled by Fickian expectation:

$$s = \langle \Delta r^2 \rangle / \Delta \gamma$$

Looks Fickian but:

- spatial correlations
- • $<\Delta r^2>/\Delta \gamma$ depends on L

Carnegie Mellon

$P(\Delta r)$ for various $\Delta \gamma$

All distributions rescaled by Fickian expectation:

$$s = \langle \Delta r^2 \rangle / \Delta \gamma$$

Looks Fickian but:

- spatial correlations
- • $<\Delta r^2>/\Delta \gamma$ depends on L

At $\Delta\gamma$ =0.001, P(Δr) is exponential for 7 decades! Crossover to Fickian ($\Delta\gamma$ ~0.032) consistent with thick bands filling space

$P(\Delta r)$ for various $\Delta \gamma$

All distributions rescaled by Fickian expectation:

$$s = \langle \Delta r^2 \rangle / \Delta \gamma$$

Looks Fickian but:

- spatial correlations
- • $<\Delta r^2>/\Delta \gamma$ depends on L

•Slip line argument:

 $a=(12s/L) \sim 0.7\sigma_0$

At $\Delta\gamma$ =0.001, P(Δr) is exponential for 7 decades! Crossover to Fickian ($\Delta\gamma$ ~0.032) consistent with thick bands filling space

$P(\omega;\Delta\gamma)$

Carnegie Mellon

P(ω; Δ γ). Scale by Δ γ , fit to $e^{-ω/ω*}$

RMS ω vs $\Delta\gamma$

RMS ω vs $\Delta\gamma$

• Slip in bands: $a\sim\sigma_0$, $h\sim50\sigma_0$, $\gamma_{band}\sim1\%$ (for L~1000)

- Slip in bands: $a\sim\sigma_0$, $h\sim50\sigma_0$, $\gamma_{band}\sim1\%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma = a/L \sim 1/1000 \sim 0.001$

- Slip in bands: $a\sim\sigma_0$, $h\sim50\sigma_0$, $\gamma_{band}\sim1\%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma = a/L \sim 1/1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{eff} = \langle \Delta r^2 \rangle / \Delta \gamma = (La/12)$

- Slip in bands: $a\sim\sigma_0$, $h\sim50\sigma_0$, $\gamma_{band}\sim1\%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma = a/L \sim 1/1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{eff} = \langle \Delta r^2 \rangle / \Delta \gamma = (La/12)$
- Measured D_{eff} is consistent with apparent a.

- Slip in bands: $a\sim\sigma_0$, $h\sim50\sigma_0$, $\gamma_{band}\sim1\%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma = a/L \sim 1/1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{eff} = \langle \Delta r^2 \rangle / \Delta \gamma = (La/12)$
- Measured D_{eff} is consistent with apparent a.
- P(Δr^2) Guassian at $\Delta \gamma \sim 0.032$

- Slip in bands: $a\sim\sigma_0$, $h\sim50\sigma_0$, $\gamma_{band}\sim1\%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma = a/L \sim 1/1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{eff} = \langle \Delta r^2 \rangle / \Delta \gamma = (La/12)$
- Measured D_{eff} is consistent with apparent a.
- P(Δr^2) Guassian at $\Delta \gamma \sim 0.032$
- $<\omega^2>\sim\Delta\gamma$, BUT, P(ω) highly non-Gaussian: P \sim e ω/ω^*

- Slip in bands: $a\sim\sigma_0$, $h\sim50\sigma_0$, $\gamma_{band}\sim1\%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma = a/L \sim 1/1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{eff} = \langle \Delta r^2 \rangle / \Delta \gamma = (La/12)$
- Measured D_{eff} is consistent with apparent a.
- P(Δr^2) Guassian at $\Delta \gamma \sim 0.032$
- $<\omega^2>\sim\Delta\gamma$, BUT, P(ω) highly non-Gaussian: P \sim e ω/ω^*
- ω^* ~0.1 compatible with yield strain ϵ_{yield} ~0.05

Structure factor for $\Delta \gamma = 0.04$ $S(\vec{q}) = \left| \int \omega(\vec{r}) exp[i\vec{q} \cdot \vec{r}] dr \right|^2$

 $\theta=\pi/8$ and $\theta=3\pi/8$ have same shear stress, different normal stress.

$$S(q;\theta)=A(\theta)q^{-\alpha(\theta)}$$

Carnegie Mellon

α depends on angle!

α: has "shear" symmetry

θ: does not

Compare to Talamali et. al. (Vandembroucq talk)

<LogS $>_{\theta}$ scaled by $\Delta\gamma$

<LogS>_θ best-rescaling

Summary: Spatial structure of strain

- Measured vorticity, ω , for various, $\Delta \gamma$
- In steady state, $S(q,\theta)=A(\theta)q^{\alpha}$
- α has "shear symmetry"
- $A(\theta)$: Mohr-Coulomb effect
- $S/\Delta\gamma$ collapse implies: ω is decorrelated

Carnegie Mellon

Jammed systems

From F. Lechenault

From A. Abate

Jammed systems

From F. Lechenault From A. Abate

Jammed systems

Carnegie Mellon

Jamming and critical scaling at ϕ_c

- φ,σ rheology scaling near "point J"
- Olsson and Teitel (bubbles), Hatano (grains)...

- φ,σ rheology scaling near "point J"
- Olsson and Teitel (bubbles), Hatano (grains)...

- φ,σ rheology scaling near "point J"
- •Olsson and Teitel (bubbles), Hatano (grains)...

- φ,σ rheology scaling near "point J"
- •Olsson and Teitel (bubbles), Hatano (grains)...

$$\delta \vec{v}_i = \vec{F}_i/D; \quad \delta \vec{v}_i = \vec{v}_i - y_i \dot{\gamma} \hat{x}; \quad \dot{\vec{r}}_i = \vec{v}_i$$

$$a = \frac{(R_i + R_j) - r_{ij}}{R_i + R_j}$$
$$U = \frac{\epsilon}{2}a^2$$

$$U = \frac{\epsilon}{2}a^2$$

$$\delta \vec{v}_i = \vec{F}_i/D; \quad \delta \vec{v}_i = \vec{v}_i - y_i \dot{\gamma} \hat{x}; \quad \dot{\vec{r}}_i = \vec{v}_i$$

$$a = \frac{(R_i + R_j) - r_{ij}}{R_i + R_j}$$

$$U = \frac{\epsilon}{2} a^2$$

• 50:50 bidisperse

Carnegie Mellon

$$\delta \vec{v}_i = \vec{F}_i/D; \quad \delta \vec{v}_i = \vec{v}_i - y_i \dot{\gamma} \hat{x}; \quad \dot{\vec{r}}_i = \vec{v}_i$$

$$a = \frac{(R_i + R_j) - r_{ij}}{R_i + R_j}$$
$$U = \frac{\epsilon}{2}a^2$$

$$U = \frac{\epsilon}{2}a^2$$

- 50:50 bidisperse
- R_large = 1.4 R_small = 1.4 σ_0

Carnegie Mellon

$$\delta \vec{v}_i = \vec{F}_i/D; \quad \delta \vec{v}_i = \vec{v}_i - y_i \dot{\gamma} \hat{x}; \quad \dot{\vec{r}}_i = \vec{v}_i$$

$$a = \frac{(R_i + R_j) - r_{ij}}{R_i + R_j}$$
$$U = \frac{\epsilon}{2}a^2$$

$$U = \frac{\epsilon}{2}a^2$$

- 50:50 bidisperse
- R_large = 1.4 R_small = 1.4 σ_0
- Drag force, Dδv, proportional to motion w/r/t homogeneous flow

Carnegie Mellon

$$\delta \vec{v}_i = \vec{F}_i/D; \quad \delta \vec{v}_i = \vec{v}_i - y_i \dot{\gamma} \hat{x}; \quad \dot{\vec{r}}_i = \vec{v}_i$$

$$a = \frac{(R_i + R_j) - r_{ij}}{R_i + R_j}$$
$$U = \frac{\epsilon}{2}a^2$$

$$U = \frac{\epsilon}{2}a^2$$

- 50:50 bidisperse
- R_large = 1.4 R_small = 1.4 σ_0
- Drag force, Dδv, proportional to motion w/r/t homogeneous flow
- Must balance potential force, F

Carnegie Mellon

$$\delta \vec{v}_i = \vec{F}_i/D; \quad \delta \vec{v}_i = \vec{v}_i - y_i \dot{\gamma} \hat{x}; \quad \dot{\vec{r}}_i = \vec{v}_i$$

$$a = \frac{(R_i + R_j) - r_{ij}}{R_i + R_j}$$
$$U = \frac{\epsilon}{2}a^2$$

$$U = \frac{\epsilon}{2}a^2$$

Only single timescale in model:

- 50:50 bidisperse
- R_large = 1.4 R_small = 1.4 σ_0
- Drag force, Dδv, proportional to motion w/r/t homogeneous flow
- Must balance potential force, F

Carnegie Mellon

Civil & Environmental

$$\delta \vec{v}_i = \vec{F}_i/D; \quad \delta \vec{v}_i = \vec{v}_i - y_i \dot{\gamma} \hat{x}; \quad \dot{\vec{r}}_i = \vec{v}_i$$

$$a = \frac{(R_i + R_j) - r_{ij}}{R_i + R_j}$$
$$U = \frac{\epsilon}{2}a^2$$

$$U = \frac{\epsilon}{2}a^2$$

Only single timescale in model:

 $\tau_D \doteq D\sigma_0^2/\epsilon$

- 50:50 bidisperse
- R_large = 1.4 R_small = 1.4 σ_0
- Drag force, Dδv, proportional to motion w/r/t homogeneous flow
- Must balance potential force, F

Carnegie Mellon

"Slow" shear at various density

 $\Phi = 1.0$

 $d\gamma/dt=1.25x10^{-6}$

 $\Phi = 0.85$

How are they different?

Transverse displacement distribution

 $P(\Delta y)$ much broader for ϕ =1.0 than ϕ =0.85 at early $\Delta \gamma$

 $P(\Delta y)$ similar for ϕ =1.0 and ϕ =0.85 at late $\Delta \gamma$

Carnegie Mellon

2nd and 4th moments (ϕ =1.0)

 10^{-2}

 $\Delta \gamma$

 10^{-1}

no rate dependence at plateau, we're quasistatic!

From LJ slip-line arguments:

Deff~ La/12

a~0.8σ

 $\Delta \gamma^* \sim a/L \sim .05$

Carnegie Mellon

Typical displacement over $\Delta \gamma \sim 0.05$

From LJ slip-line arguments:

Deff~ La/12

a~0.8σ

 $\Delta \gamma^* \sim a/L \sim .05$

2nd and 4th moments (ϕ =0.85)

increasing rate

 $\Delta \gamma$

 10^{-1}

 10^{-2}

slight rate dependence at plateau

at slowest rate, D_{eff} within 10% of D_{eff} for ϕ =1.0

Carnegie Mellon

Civil & Environmental ENGINEERING

10

Typical displacement over $\Delta \gamma \sim 0.05$

Carnegie Mellon

Non-gaussian parameter, α

cross-over to
Gaussian is
roughly
independent of φ
and dγ/dt.

Carnegie Mellon

Conclusion (Diffusion)

•Slip lines argument gives:

```
slip amplitude = a \sim 0.8\sigma
strain quantum = \Delta \gamma_* \sim a/L \sim 0.05
```

- Displacement fields at $\Delta\gamma\sim0.05$ look like slip lines with consistent slip amplitude
- Seems surprisingly robust with respect to φ!
 - systems near ϕ_c much less intermittent at small $\Delta \gamma$
 - but surprisingly similar in Fickian regime!

$$\frac{dU}{dt} = \left. \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

•Energy change under affine deformation = σ

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

•Energy change under affine deformation = σ

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

- •Energy change under affine deformation = σ
- Identify as input power

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

- •Energy change under affine deformation = σ
- Identify as input power

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

- •Energy change under affine deformation = σ
- Identify as input power
- Identify as dissipation rate

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

- •Energy change under affine deformation = σ
- Identify as input power
- Identify as dissipation rate

$$\Gamma \dot{\gamma} = \sigma \dot{\gamma} - \frac{dU}{dt} = \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i} = D \sum_{i} \delta v_{i}^{2}$$

Carnegie Mellon

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

- •Energy change under affine deformation = σ
- Identify as input power
- Identify as dissipation rate

$$\Gamma \dot{\gamma} = \sigma \dot{\gamma} - \frac{dU}{dt} = \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i} = D \sum_{i} \delta v_{i}^{2}$$
$$\langle \Gamma \rangle = \langle \sigma \rangle = \frac{DN}{\dot{\gamma}} \langle \delta v^{2} \rangle$$

Carnegie Mellon

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

- •Energy change under affine deformation = σ
- Identify as input power
- Identify as dissipation rate

$$\Gamma \dot{\gamma} = \sigma \dot{\gamma} - \frac{dU}{dt} = \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i} = D \sum_{i} \delta v_{i}^{2}$$
$$\langle \Gamma \rangle = \langle \sigma \rangle = \frac{DN}{\dot{\gamma}} \langle \delta v^{2} \rangle$$

Γ is energy dissipated per unit strain

Carnegie Mellon

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \boxed{\sigma \dot{\gamma}} - \boxed{\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}}$$

- •Energy change under affine deformation = σ
- Identify as input power
- Identify as dissipation rate

$$\Gamma \dot{\gamma} = \sigma \dot{\gamma} - \frac{dU}{dt} = \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i} = D \sum_{i} \delta v_{i}^{2}$$

$$\langle \Gamma \rangle = \langle \sigma \rangle = \frac{DN}{\dot{\gamma}} \langle \delta v^2 \rangle$$
 •Ono et. al. PRE 2003

Γ is energy dissipated per unit strain

Carnegie Mellon

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

- Energy change under affine deformation = σ
- Identify as input power
- Identify as dissipation rate

$$\Gamma \dot{\gamma} = \sigma \dot{\gamma} - \frac{dU}{dt} = \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i} = D \sum_{i} \delta v_{i}^{2}$$

$$\langle \Gamma \rangle = \langle \sigma \rangle = \frac{DN}{\dot{\gamma}} \langle \delta v^2 \rangle \qquad \mbox{ •Ono \it et. al. PRE 2003} \\ \mbox{ •Rheology = fluctuations}$$

- Γ is energy dissipated per unit strain

Carnegie Mellon

Civil & Environmental

Γ distribution (like acoustic emission spectrum)

Γ distribution (like acoustic emission spectrum)

power-law regime

Carnegie Mellon

Γ distribution (like acoustic emission spectrum)

- power-law regime
- exponent~-1.2

Carnegie Mellon

Γ distribution power-law rescaling

Γ distribution power-law rescaling

• Scale P by Γ^{-1.2}

Carnegie Mellon

Instantaneous energy dissipation:

- Instantaneous energy dissipation:
 - $\phi > \phi_c$, $d\gamma/dt \rightarrow 0$:

- Instantaneous energy dissipation:
 - $\phi > \phi_c$, $d\gamma/dt -> 0$:
 - Quasistatic peak

- Instantaneous energy dissipation:
 - $\phi > \phi_c$, $d\gamma/dt \rightarrow 0$:
 - Quasistatic peak
 - Power law regime with exponent ~ 1.2

- Instantaneous energy dissipation:
 - $\phi > \phi_c$, $d\gamma/dt \rightarrow 0$:
 - Quasistatic peak
 - Power law regime with exponent ~ 1.2
 - •Questions:

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
 - $\phi > \phi_c$, $d\gamma/dt \rightarrow 0$:
 - Quasistatic peak
 - Power law regime with exponent ~ 1.2
 - •Questions:
 - Slip line argument predicts D_{eff} ~ L. Can we see it?

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
 - $\phi > \phi_c$, $d\gamma/dt \rightarrow 0$:
 - Quasistatic peak
 - Power law regime with exponent ~ 1.2
 - •Questions:
 - Slip line argument predicts D_{eff} ~ L. Can we see it?
 - How does combined rate/size dictate Fickian cross-over?

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
 - $\phi > \phi_c$, $d\gamma/dt \rightarrow 0$:
 - Quasistatic peak
 - Power law regime with exponent ~ 1.2
 - •Questions:
 - Slip line argument predicts D_{eff} ~ L. Can we see it?
 - How does combined rate/size dictate Fickian cross-over?
 - Is physics the same at the same τ_J dγ/dt?

THE END

Carnegie Mellon

Thanks!

Numerical models / algorithms

Various interaction potentials:

$$U_{harm} = (\epsilon/2) s^2$$

$$U_{hertz} = \epsilon s^{5/2}$$

$$U_{Lennard-Jones} = \epsilon(r^{-12}-r^{-6})$$

Binary distribution in 2D

Athermal, Quasistatic Procedure:

- Minimize potential energy
- •Shear boundaries and particles
- Repeat

Represents: $\tau_{pl} << \tau_{dr} << \tau_{th}$

- •Bulk metallic glass in the zero temperature, zero strain rate limit
- •Granular material or emulsion in zero strain rate limit

Behavior:

•Discrete plastic jumps separate smooth, reversible elastic segments

Carnegie Mellon

Energy

Strain

Linear elastic response (at zero temperature)

- Take a binary Lennard-Jones system
- Quench instantaneously from T=infinity to T=0
- Apply infinitesimal shear strain
- Compute deviations from homogeneous shear
- Note vortex-like patterns... lengthscale?

A. Tanguy et. al. PRB 2002

- Single particle toy problem:
 - Start at F=0

Carnegie Mellon

- Single particle toy problem:
 - Start at F=0
 - Apply affine shear
 - Forces remain zero
 - No correction necessary

Carnegie Mellon

- Single particle toy problem:
 - Start at F=0

Carnegie Mellon

- Single particle toy problem:
 - Start at F=0
 - Apply strain

Carnegie Mellon

- Single particle toy problem:
 - Start at F=0
 - Apply strain

Use Hessian to compute "Affine force"

$$\vec{\Xi}_i = \gamma \sum_j \mathbf{H}_{ij} \hat{\mathbf{x}} \delta y_j$$

Carnegie Mellon

- Single particle toy problem:
 - Start at F=0
 - Apply strain

Use Hessian to find position correction

$$\vec{\Xi}_i = \mathbf{H}_{ii} \vec{dr}_i$$
 $\vec{dr}_i = \mathbf{H}_{ii}^{-1} \vec{\Xi}_i$

Carnegie Mellon

Back to full assembly:

$$\vec{\Xi}_i = \gamma \sum_j \mathbf{H_{ij}} \hat{\mathbf{x}} \delta y_{ij}$$

- Measure of local disorder.
- Only short range correlations in our samples.

Carnegie Mellon

Back to full assembly:

$$\vec{dr}_i = \gamma \sum_j \mathbf{H}_{ij}^{-1} \vec{\Xi}_j$$

Force balance:

Affine forces, Ξ , must be balanced by correction forces, $H^{-1}_{ij}dx_j$

Carnegie Mellon

Spatial autocorrelation function $g(\delta)$

$$g(\vec{\delta}) \doteq \int \vec{v}(\vec{r}) \cdot \vec{v}(\vec{r} + \vec{\delta}) d\vec{r}$$

- Usual autocorrelation
- Measures "vortex size"
- •Characteristic length?

Carnegie Mellon

Spatial autocorrelation function $g(\delta)$

Recall:
$$\vec{dr}_i = \gamma \sum_j \mathbf{H}_{ij}^{-1} \vec{\Xi}_j$$

Recall:
$$\vec{dr}_i = \gamma \sum_j \mathbf{H}_{ij}^{-1} \vec{\Xi}_j$$

Then:
$$\vec{dr}_i = \gamma \sum_p \left(\frac{\Xi_p}{\lambda_p}\right) \vec{\psi}_{ip}$$

Recall:
$$\vec{dr}_i = \gamma \sum_j \mathbf{H}_{ij}^{-1} \vec{\Xi}_j$$

Then:
$$\vec{dr}_i = \gamma \sum_p \left(\frac{\Xi_p}{\lambda_p}\right) \vec{\psi}_{ip}$$

- •Assume:
 - = is a random dipole field
 - Ψ_p are plane waves

•
$$\lambda_p = k_p^2$$
 ; $\Xi_p = k_p$

Carnegie Mellon

Recall:
$$\vec{dr}_i = \gamma \sum_j \mathbf{H_{ij}^{-1}} \vec{\Xi}_j$$

Then:
$$\vec{dr}_i = \gamma \sum_p \left(\frac{\Xi_p}{\lambda_p}\right) \vec{\psi}_{ip}$$

- •Assume:
 - = is a random dipole field
 - Ψ_p are plane waves
 - $\lambda_p = k_p^2$; $\Xi_p = k_p$

Approximate dr_i as random sum of plane waves:

$$\vec{dr}_i \sim \sum_{k=(m,n)} \phi_{mn} \frac{e^{2\pi i \vec{k} \cdot \vec{x}_i/L}}{|\vec{k}|}$$

Carnegie Mellon

Recall:
$$\vec{dr}_i = \gamma \sum_j \mathbf{H}_{ij}^{-1} \vec{\Xi}_j$$

Then:
$$\vec{dr}_i = \gamma \sum_p \left(\frac{\Xi_p}{\lambda_p}\right) \vec{\psi}_{ip}$$

- •Assume:
 - = is a random dipole field
 - Ψ_p are plane waves
 - $\lambda_p = k_p^2$; $\Xi_p = k_p$

Carnegie Mellon

Approximate dr_i as random sum of plane waves:

$$\vec{dr}_i \sim \sum_{k=(m,n)} \phi_{mn} \frac{e^{2\pi i \vec{k} \cdot \vec{x}_i/L}}{|\vec{k}|}$$

Then $g(\delta)$ is:

$$g(\vec{\delta}) \sim \sum_{k=(m,n)} \frac{\cos(2\pi \vec{k} \cdot \vec{\delta}/L)}{k^2}$$

$$g(\vec{\delta}) \sim \sum_{k=(m,n)} \frac{\cos(2\pi \vec{k} \cdot \vec{\delta}/L)}{k^2}$$

Carnegie Mellon

Similar to DiDonna +Lubenksy,

 $\bullet g(k) \sim 1/k^2$

but:

Fully discrete derivation

Blue curve:

Semi-continuum

Red curve(s):

Partial sum (n=40)
3 different angles

Summary: Elastic response

- Linear elastic (zero temperature) response is inhomogeneous.
- Displacement fluctuations appear as vortices
- Size scales with system size... no characteristic length
- "Affine forces": a new measure of local disorder.
- Fluctuations derived from approximating eigenmodes as plane waves and affine forces as a random dipoles.

Carnegie Mellon

Plastic response (Shear Transformation Zones)

No crystal... so no dislocations... but then what controls plasticity?

- •Shear Transformation Zone (STZ) Mechanism:
 - Argon and Kuo: bubble raft experiments
 - •Maeda and Takeuchi: computer simulations
 - •Bulatov and Argon: banding mechanism
 - •Falk and Langer: mean field theory

Analogous to dislocation glide:

What are the consequences of organization of local shear zones?

Typical plastic cascade

- Protocol: shear, relax...
- Single typical plastic event
- All relaxation at one strain
- "Number of minimization steps" analogous to time <F²>~dU/dt
- Descent is intermittent...

Typical plastic cascade

Initial portion of descent from previous slide:

Expected energy change after nucleation of localized slip:

Carnegie Mellon

Typical plastic cascade

At the end of the whole cascade, we are left with a slip line:

"Slip": $\vec{u} - \langle \vec{u} \rangle$

Analogous to dislocation glide:

Carnegie Mellon

But with local shearing zones:

Statistics and size scaling

Collect statistics for different system size and interaction potentials:

- •"Modulus"
- •Elastic interval
- Stress drop

Energy drop

Carnegie Mellon

Statistics and size scaling

Collect statistics for different system size and interaction potentials:

- •"Modulus"
- •Elastic interval: $\Delta \gamma$
- •Stress drop: $\Delta \sigma$
- •Energy drop: ΔU

Event size independent of potential and scales simply with system size!

Scaling argument: slip by length "a"

Carnegie Mellon

Summary: Plastic response

- Plastic response is intermittent with large, system-spanning events (avalanches)
- Avalanches composed of clusters of local slip (STZs)
- STZs interact elastically
- Universal yield strain $\varepsilon \sim 3\%$... agrees with experiments
- Universal slip amplitude $a \sim .1$ particle diameters... experiments difficult

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
 - binary Lennard-Jones quenched at Pressure=0
 - relative velocity damping (Kelvin/DPD)
 - axial, fixed area strain
 - periodic boundaries
 - system sizes up to $3000x3000 \sim 10M$ particles
 - Quasi-static limit (about 500 CPU days / run)

prescribed $L_y(t)$, $L_x(t)$ to conserve area

Carnegie Mellon

Local vorticity, ω

For each triangle:

$$\frac{\partial u_i}{\partial x_j} = F_{ij}$$

$$\epsilon_1 = \frac{F_{xx} - F_{yy}}{2}$$

$$\epsilon_2 = \frac{F_{xy} + F_{yx}}{2}$$

Invariants:

$$\epsilon = \sqrt{\epsilon_1^2 + \epsilon_2^2}$$

$$\omega = F_{xy} - F_{yx}$$

Carnegie Mellon

Future directions

•Recall:

- Differences in elementary physics:
 - Inertial or overdamped?
 - "Real" temperature
 - Dissipation mechanisms / hydrodynamics
 - Coulomb friction
 - Attractive forces / adhesion
- •How do microscopic details affect the intermittency, slip avalanches, elasticity, rheology, and yield?
- Currently looking at:
 - densities near random close packing (RCP)
 - massless (mean field bubbles) and massive (frictionless granular DEM) models.

Carnegie Mellon