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Nonequilibrium relaxations (physical aging)

* Below T, glasses do not equilibrate, material can only slowly
explore configuration space, a-relaxation time t increases

» Material properties depend on waiting timet,, since the glass was
formed and time t at which external conditions (stress) are changed

e Almost all glasses age:

—> thermodynamic quantities (energy, density) ~log t,,

- correlation functions C(t,tw) ) Cfast (t) + Cage(t / th)

e In structural glasses, aging changes the mechanical properties such as
creep compliance and yield stress.




AG (arb. units)

‘Aging is ubiquitous...
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‘Questions:

« How are the macroscopic physical aging effects related
to molecular level processes?

* How does plastic deformation interact with physical
aging?

* What isthe molecular level origin of physical
aging in structural glasses?

» How does active deformation accelerate segmental
dynamics?




Molecular dynamics

 Our approach: minimalistic molecular models that capture generic
physics of structural glasses

Bead-spring polymer: Binary LJ mixture:

(X

r,/r,=0.88

» Lennard-Jones (LJ) potential V, ;— van der Waals interaction,
energy u,~ meV, length d ~ nm, time ~ ps

» Covalent bonds, 2 different sphere sizes prevent crystallization
—> computer glass transition to amorphous solid




Aging of ther modynamic variables
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 Glass compactifies logarithmically in absence of deformation when
maintaining zero hydrostatic pressure
1 dv

. physical aging rate r, =
physical aging rate r, V. dlogt




Physical aging and mechanical properties

e Almost all polymer glasses undergo slow structural relaxations
In the glassy state

e density, enthalpy change with waiting time e apsed since the
glass was formed

» mechanical properties change with age: compliance decreases,
yield stress increases
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* Agefort, after down-quench,
deform at constant strain rate

Overshoot stress
e grows~ log (t,)

e grows ~ log (strain rate)

‘ Yield (overshoot) stress
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Creep compliance

2 50107 From molecular dynamics:
waiting time
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* Agefor t, after smple down quench.
*Apply constant load, measure time-dependent strain = J(t,t, )=¢(t,t,)/c

 Compliance shifts to longer times with increasing t,, = polymer
stiffens
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e Asin experiments, compliance curves
overlap after shifting time by a,(t,)

Shift factor vs waiting time:
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aging exponent u=w(T,o) < 1:
—>subaging

 u(T) from microscopic theory (segmental hopping):

Chen & Schweizer PRL 98, 167802 (2007)




Molecular mobility controls mechanical response
» the mechanical shift factor a,(t,) isrelated to atomic mobility

mean-sguared displacement Intermediate scattering function
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‘ Aging and reguvenation

« Agefort,, then apply stress ¢ and measure aging exponent
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* U decreases, relaxation times increase more slowly:
- system "looks younger" at larger stresses: mechanical regyuvenation?




Aging and reguvenation
o Compare relaxation of unstressed and rejuvenated sample
* Energy of rejuvenated sample decreases faster after stress release

Molecular dynamics Soft glassy rheology (SGR)
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« But the time to reach equilibrium is unchanged!
|sthe system really “rejuvenated” ?

e Emerging picture: small (subyield) stress only lead to transient acceleration
of dynamics, full erasure only after plastic flow.




‘ Experimentson PMMA
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Reguvenation in astrain cycle

AE/E "

Cycle strain, record energy after unloading

Find regions of increased (rgyuvenated) and
decreased (overaged) energy states

Within SGR modédl, find regime of
overaging for low noise temperature and
small strains
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‘ Atomistic features of glassy dynamics
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log t logt

binary mixture polymer

= Structural relaxations are
Collective
Spatially heterogeneous
Temporally intermittent

= Trajectories are well described

Red = highly mobile :
Blue = immobile as a series of hops between

long lived caged states




Analysis of particle (segmental) trajectories

Record particle trajectories Tr
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log p(t,)

Hop times and displacements — polymer glass

First hop time
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Age-dependent

Two power laws, tail
moves to longer times
with increasing age,
likelihood of small t,
decreases

Persistent times and displacements
age-independent

Pure power law for persistent time

Asin trap model of glassy dynamics: trap
energies redrawn from stationary potential

enerqy landscape
Si P Warren and JR, EPL (2009)




Aging in an energy landscape picture
» Consider activated hops in arandom energy landscape:

* Escaperate: w : exp[- bE]
e Distribution of trap depths: r(E) : exp[- ng]

* Energy drawn anew after every jump (annealed disorder)
)

b

r
P

| (Bouchaud 1992, Monthus and Bouchaud 1996)

* For T < T, the dynamics becomes nonstationary and "“ages’

« System does not equilibrate due to the presence of very deep traps
» predicts distribution of trapping times PA)u t (+T/T)

e mean trapping time infinite - aging
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Hop times and displacements— binary mixture

First hop time
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= Hop time and persistence time distributions unchanged

s Displacement distribution purely exponential, no Rouse regime

—> Findings are general for structural glasses, not polymer specific.




Continuoustimerandom walk

<AXZ>
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Lines— CTRW

= Particle dynamics are model ed using a continuous time random walk
(CTRW) with measured hop statistics (no adjustable parameters).

m  Aging is sef-generating!

= All of the important physics has been captured




\ Accelerated dynamics. constant stress (creep)
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* three different t, and three stresses
0=0 (solid), 6=0.4 (dashed) and
6=0.5 (dotted)

o first hop time dist. narrows with
Increasing stress, power law tail
steepens (see expts. Ediger group)

e persistence time distribution
modified for large times

* power law exponent decreases
below -2 - aging is stopped
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Average hop rate and mobility

Simulation

logihop rate)

e Stran rateisauniversa
function of hop rate

o data collapse for different
stresses and ages
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e qualitatively ssmilar
relationship observed in
recent experiments




Accelerated dynamics. constant strain rate

log t, (a—c), log T (d-f)

» three different t,, and three strain rates &

e distributions “ cut off” at times ~ 0.1/&
but no change at small times

e aging stopped due to truncation of
persistence time distribution




‘ Acceler atl on I‘?.tl O_H e describe transformation of hop

. . . .
(a) const srain E/Ef =y time dists through cumulatives
rate of pr'Step stress

/”“’. P(t) = (\)) p(t,)at,

0.5
s e define an acceleration ratio
G e through times when P (t) = P,(t¢)
t‘l
102 | N acceleration ratio collapses onto
e universal curve when plotted
o against total strain
S 400 |
* (local) strain isgood variable to
o

T T describe accelerated dynamics
| T | (see also SGR model)

Warren and JR, PRL (2010)




Summary

« Simulations reproduce mechanical behavior typical of glasses.
Slow relaxation (aging) changes yield stress and creep compliance.

e Molecular mobility controls mechanical response

 Reduction of aging exponent under subyield stress, but glass returns to
original aging trgectory; erasure of aging only through plastic flow

* Robust picture of activated hopping dynamics with broad distribution of
relaxation times
- only first hop time waiting time dependent
- particle/segment ‘forgets’ its age after one hop
- supports picture of annealed disorder as assumed in trap model

» Accelerated dynamics. narrowing of relaxation time spectrum
universal dependence of acceleration on strain
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