A microscopic view of physical aging and plastic deformation in amorphous solids

Jörg Rottler

Department of Physics and Astronomy University of British Columbia

KITP workshop "Glasses 2010"

Collaborators:

Mya Warren (now UCSD) and Amy Liu (now Lumerical Solutions)

Nonequilibrium relaxations (physical aging)

- Below T_g , glasses do not equilibrate, material can only slowly explore configuration space, α -relaxation time τ increases
- Material properties depend on waiting time t_w since the glass was formed and time t at which external conditions (stress) are changed
- Almost all glasses age:
 - \rightarrow thermodynamic quantities (energy, density) ~ log t_w
 - \rightarrow correlation functions $C(t,t_w)$: $C_{fast}(t) + C_{age}(t/t_w^m)$
- In structural glasses, aging changes the mechanical properties such as creep compliance and yield stress.

Aging is ubiquitous...

Questions:

- How are the macroscopic physical aging effects related to molecular level processes?
- How does plastic deformation interact with physical aging?
- What is the molecular level origin of physical aging in structural glasses?
- How does active deformation accelerate segmental dynamics?

Molecular dynamics

• Our approach: minimalistic molecular models that capture generic physics of structural glasses

Bead-spring polymer:

Binary LJ mixture:

- Lennard-Jones (LJ) potential V_{LJ} → van der Waals interaction, energy u₀ ~ meV, length d ~ nm, time ~ ps
- Covalent bonds, 2 different sphere sizes prevent crystallization
 - → computer glass transition to amorphous solid

Aging of thermodynamic variables

atactic polystyrene

J. Hutchinson, Prog. Poly. Sci. (1995)

- Glass compactifies logarithmically in absence of deformation when maintaining zero hydrostatic pressure
- physical aging rate $r_v = -\frac{1}{V_0} \frac{dV}{d \log t}$

Physical aging and mechanical properties

- Almost all polymer glasses undergo slow structural relaxations in the glassy state
- density, enthalpy change with waiting time elapsed since the glass was formed
- mechanical properties change with age: compliance decreases, yield stress increases

Yield (overshoot) stress

• Age for t_w after down-quench, deform at constant strain rate

Overshoot stress

- grows ~ log (t_w)
- grows ~ log (strain rate)

Creep compliance

- Age for t_w after simple down quench.
- •Apply constant load, measure time-dependent strain \rightarrow J(t,t_w)= ε (t,t_w)/ σ
- Compliance shifts to longer times with increasing $t_{w_i} \rightarrow$ polymer stiffens

Time-waiting time superposition

• As in experiments, compliance curves overlap after shifting time by $a_J(t_w)$

Shift factor vs waiting time:

aging exponent $\mu = \mu(T, \sigma) < 1$: \rightarrow subaging

• $\mu(T)$ from microscopic theory (segmental hopping):

Chen & Schweizer PRL 98, 167802 (2007)

Molecular mobility controls mechanical response

• the mechanical shift factor $a_I(t_w)$ is related to atomic mobility

• time to escape from local cages increases with t_w ; superposition by shifting with factor a_{msd} We find:

$$a_{msd} \sim a_C \sim a_J$$

Aging and rejuvenation

• Age for t_w , then apply stress σ and measure aging exponent

McKenna, J. Phys Condens Mat. (2003)

- µ decreases, relaxation times increase more slowly:
 - → system "looks younger" at larger stresses: mechanical rejuvenation?

Aging and rejuvenation

- Compare relaxation of unstressed and rejuvenated sample
- Energy of rejuvenated sample decreases faster after stress release

- But the time to reach equilibrium is unchanged! Is the system really "rejuvenated"?
- Emerging picture: small (subyield) stress only lead to transient acceleration of dynamics, full erasure only after plastic flow.

Experiments on PMMA

Lee and Ediger (submitted)

- direct measurement of segmental relaxation via local probe molecules
- extract relaxation times from decay of autocorrelation function
- stresses in the pre-flow regime perturb the aging dynamics only transiently

Rejuvenation in a strain cycle

- Cycle strain, record energy after unloading
- Find regions of increased (rejuvenated) and decreased (overaged) energy states
- Within SGR model, find regime of overaging for low noise temperature and small strains

Atomistic features of glassy dynamics

2D slice through a polymer glass

Red = highly mobile Blue = immobile

- Structural relaxations are
 - Collective
 - Spatially heterogeneous
 - Temporally intermittent
- Trajectories are well described as a series of hops between long lived caged states

Analysis of particle (segmental) trajectories

Record particle trajectories

Calculate running average and standard deviation σ

Hops identified through a threshold in σ , i.e. through their activity

Find hop times and displacements

Hop times and displacements – polymer glass

First hop time

- Age-dependent
- Two power laws, tail moves to longer times with increasing age, likelihood of small t₁ decreases
- Persistent times and displacements age-independent
- Pure power law for persistent time
- As in trap model of glassy dynamics: trap energies redrawn from stationary potential energy landscape

Warren and JR, EPL (2009)

Aging in an energy landscape picture

- Consider activated hops in a random energy landscape:
- Escape rate: $w : \exp[-bE]$
- Distribution of trap depths: r(E): $\exp[-b_g E]$
- Energy drawn anew after every jump (annealed disorder)

(Bouchaud 1992, Monthus and Bouchaud 1996)

- For $T < T_g$, the dynamics becomes nonstationary and "ages"
- System does not equilibrate due to the presence of very deep traps
- predicts distribution of trapping times $P(t) \mu t^{-(1+T/T_g)}$
- mean trapping time infinite → aging

Hop times and displacements – binary mixture

- Hop time and persistence time distributions unchanged
- Displacement distribution purely exponential, no Rouse regime
- → Findings are general for structural glasses, not polymer specific.

Continuous time random walk

- Particle dynamics are modeled using a continuous time random walk (CTRW) with measured hop statistics (no adjustable parameters).
- Aging is self-generating!
- All of the important physics has been captured

Accelerated dynamics: constant stress (creep)

- three different t_w and three stresses σ =0 (solid), σ =0.4 (dashed) and σ =0.5 (dotted)
- first hop time dist. narrows with increasing stress, power law tail steepens (see expts. Ediger group)
- persistence time distribution modified for large times
- power law exponent decreases below -2 → aging is stopped

Average hop rate and mobility

- strain rate is a universal function of hop rate
- data collapse for different stresses and ages

(Lee et al., Science (2009))

• qualitatively similar relationship observed in recent experiments

Accelerated dynamics: constant strain rate

- three different t_w and three strain rates &
- distributions "cut off" at times ~ 0.1/& but no change at small times
- aging stopped due to truncation of persistence time distribution

Acceleration ratio

 describe transformation of hop time dists through cumulatives

step strain
$$P(t) = \sum_{0}^{t} p(t_1) dt_1$$

• define an acceleration ratio through times when $P_u(t_1^u) = P_d(t_1^d)$

Warren and JR, PRL (2010)

- acceleration ratio collapses onto universal curve when plotted against total strain
- (local) strain is good variable to describe accelerated dynamics (see also SGR model)

Summary

- Simulations reproduce mechanical behavior typical of glasses. Slow relaxation (aging) changes yield stress and creep compliance.
- Molecular mobility controls mechanical response
- Reduction of aging exponent under subyield stress, but glass returns to original aging trajectory; erasure of aging only through plastic flow
- Robust picture of activated hopping dynamics with broad distribution of relaxation times
 - only first hop time waiting time dependent
 - particle/segment 'forgets' its age after one hop
 - supports picture of annealed disorder as assumed in trap model
- Accelerated dynamics: narrowing of relaxation time spectrum universal dependence of acceleration on strain

Funding: NSERC