

Activated Hopping, Dynamic Heterogeneity, and Mechanical Response in Glassy *Particle* Fluids and Suspensions

Ken Schweizer

Departments of Materials Science, Chemistry, and Chemical Engineering Frederick Seitz Materials Research Laboratory University of Illinois @ Urbana-Champaign

Coworkers : 2003-present

Hard Spheres: Erica Saltzman, Vladimir Kobelev, Daniel Sussman
 Soft Colloids: Jian Yang
 Colloid-Polymer Gels: Yeng-Long Chen, Vladimir Kobelev
 Molecular Colloids & Liquids: Mukta Tripathy, Galina Yatsenko, Rui Zhang
 Polymer Melts & Glasses: Kang Chen, Erica Saltzman

Funding

Rensselaer-Illinois NSF Nanoscience & Engineering Center NSF-NIRT (w/ Mark Ediger, Juan dePablo, Jim Caruthers) DOE-BES FS-MRL Soft Materials Cluster

Kinetically "Vitrify": Relaxation Time > Expt time scale ~ 10,000 secs

CONFOCAL Microscopy & Simulations

"smooth, hydrodynamic like" Collective, small steps, ~Gaussian "High" volume fraction "Solid - Like"...intermittent hopping

Colloid Experiments & Computer Simulations

*But even in regime where can fit MCT, see large NONgaussian effects

Nongaussian parameter, Decoupling of diffusion & relaxation, Exponential tails in van Hove function, Growing dynamic length scale,....

.....suggests large amplitude, intermittent activated processes important

200 nm

GOAL: Predictive Microscopic Theory @ level of Forces

build on Ideal MCT: retain Structure, Forces, Slow Dynamics connection

.... allows NONuniversal chemical/materials aspects to be addressed

BUT go beyond to treat **Activated Intermittent Dynamics** at *Single Particle level : "theory of simulation or confocal microscopy trajectories"*

restores long time ergodicity, destroys "ideal" MCT glass transition

allows treatment of some space-time Dynamic Heterogeneity effects

can generalize to NONlinear Viscoelasticity

Diverse Material Classes:

Particle Suspensions : hard/soft, sphere/nonspherical, glass/gel/Janus Atomic & Molecular Liquids Polymersincluding nonequilibrium "plastics"

Avoid Fitting & Adjustable Parameters....1st Principles

DENSE Colloidal & Nanoparticle Brownian Suspensions

TODAY :

- I. Hard Spheres : basic concepts, Mean & Fluctuation phenomena
- II. Soft Spheres (microgels)....role of highly variable soft repulsion
- III. Uniaxial hard particle....role of shape, rotation
- IV. Nonlinear Rheology of hard spheres (likely no time)

Nonlinear Langevin Eqn Theory

Seek Stochastic Equation of Motion NOT closed equation for time correlation functions

r(t) = scalar **displacement of a particle** from initial position

D_s: dissipative, short time, "bare" process

Formally:
$$\frac{\partial \hat{\rho}_{s}(\vec{r},t)}{\partial t} = D_{s} \nabla^{2} \hat{\rho}_{s}(\vec{r},t) + D_{s} \nabla \hat{\rho}_{s}(\vec{r},t) \int d\vec{r} \, \dot{\rho}(\vec{r}',t) \nabla V(\vec{r}-\vec{r}') + \eta_{i} \nabla \hat{\rho}_{s}(r,t)$$

Physical Ideas & Technical Approx.

Saltzman & KSS

 $\hat{\rho}_{s}(\vec{r},t) = \delta\left(\vec{r} - \vec{r}_{i}(t)\right)$

JCP, 2003

Solid State View

CONTRACT to lowest level, $\mathbf{r}(t)$

DERIVATION:

KSS, JCP, 2005

* Key "slow variable" : *density fluctuations*ala MCT

* Average over local packings: dynamical caging constraints via S(q)

... Effective interparticle *pair force*: $\vec{f}(r) = k_B T \vec{\nabla} C(r)$ from Structure (ala MCT)

**** Local Equilibrium Approx**: relate 1 and 2 body dynamics

Dynamic "closure" ala Einstein solid or Vineyard

$$\frac{\rho^{(2)}(\vec{r},\vec{r}';t)}{\rho^{(1)}(\vec{r};t)} \approx \rho g(|\vec{r}-\vec{r}'|)$$

Nonlinear Langevin Eqn Theory

"Dynamic Free Energy" =

Spatially-resolved, Time Local Displacement-Dependent "Field"

Reduction to simplified Ideal MCT

$$\zeta_s \frac{\partial r(t)}{\partial t} = -\frac{\partial}{\partial r} F_{eff}(r(t)) + \eta(t)$$

* **RECOVER** Naive MCT Transition of Kirkpatrick-Wolynes IF:

Dynamical Gaussian approximation for $\langle r^2(t) \rangle$

Mean Localization Length

$$r_{\rm LOC}^2 \equiv \left\langle r^2(t \rightarrow \infty) \right\rangle$$

$$= \frac{1}{r_{LOC}^2} = \frac{1}{18\pi^2} \int_0^\infty dq \ q^2 q^2 C^2(q) \rho S(q) \ e^{-\frac{q^2 r_{LOC}^2}{6} (1+S^{-1}(q))}$$
 Einstein solid
Debye-Waller
 $\left\langle \vec{f}(0) \cdot \vec{f}(t \to \infty) \right\rangle$

Reality : MCT "transition" = Dynamical Crossover

I. Dynamic Free Energy: Hard Spheres

* Naïve MCT "ideal glass transition" at $\phi_{\rm C} \sim 0.432$

Source of Rich Physics : Many Relevant Energy and Length Scales

Limiting Analytic Analysis : Real Space Picture & "Universality"

Predicts connections between slow dynamics on different time & length scales : e.g., late β /early α vs. final α

"SOLID" only at RCP Jamming

 $F_R \propto \phi g^2(\sigma) \propto \left(\phi_{RCP} - \phi\right)^{-2} \rightarrow \infty$

Double Pole

Full Numerical Soln: Includes Dynamic Fluctuation Effects

JCP & PRE 2006 & 2008

$$\zeta_s \frac{\partial r(t)}{\partial t} = -\frac{\partial}{\partial r} F_{eff}(r(t)) + \eta(t)$$

Noise-Driven Trajectory Fluctuations Heterogeneous Dynamics

 $r(t)/\sigma$ trajectories

φ=0.55 ; Barrier ~ 5

Reaction point Barrier Maximum force Localization length

Re-crossings "back-hops" Large Fluctuations

Limitations & Possible Caveats

* Full Dynamics ~ Sequence of Independent "local events"

evidence for weak space-time correlation of **rare** "hops" : Joerg Rottler simulations: EPL, 2009; PRL, 2010 successes of simple CTRW,...

* Single Particle vs. Cage vs. Stress Relaxation time ?

evidence closely correlated from simulation: Yamamoto-Onuki; Rottler ;..... and experiment

* Single particle Dynamic Heterogeniety vs. Many particle space-time?

expect connected if hopping controlled

We do find explicit connections

e.g. $\chi_4(t)$

Dasgupta & Sastry Szamel many others

dynamic length scale ξ

Daniel Sussman & KSS

Mean Square Displacement & Anomalous Diffusion

Extrapolate: $\phi_c \sim 0.58 \sim Experimental result based on fits to MCT$

Alpha (cage scale) Relaxation

MCT critical power law fits the NLE THEORY & EXPT over ~3 orders of magnitude..... then breaks down (no singularity)

NLE Prediction
(JCP, 2007)
$$\tau^* / \tau_0 \propto e^{\mathsf{F}_{\mathsf{B}}(\phi)} \qquad \propto \exp\left(\frac{B}{(\phi_{RCP} - \phi)^2}\right)$$

ala new expts

Self-Diffusion Constant

NONgaussian Spatial α–Relaxation: *a signature of hopping*

$$\mathsf{F}_{\mathsf{S}}(\mathsf{q},\mathsf{t}) = \langle \exp[i\vec{q}\cdot\vec{r}(\mathsf{t})] \rangle = \mathsf{F}.\mathsf{T}.\langle \delta(\mathsf{r}-\mathsf{r}_{\mathsf{1}}(\mathsf{t})) \rangle$$

q-dependent relaxation :

Grossly NONgaussian

$$F_{s}(q,t) \neq exp(-q^2Dt)$$

WHY?

Intermittent Hopping?

Growing NonFickian length scale ?

Growing Dynamical Length Scale

$$F_{S}(q,t) \equiv \exp(-D(q)q^{2}t)$$
$$\equiv \exp(-t/\tau(q))$$

Define:
$$R(q) \equiv q^2 D\tau(q) \rightarrow 1$$
, Gaussian $\approx MCT$

IF activated, Numerics described by:

$$\frac{1}{\tau(q)} = \frac{q^2 \mathbf{D}}{1 + (q\xi_{\mathbf{D}})^2} \equiv q^2 D(q)$$

$$D(q) \approx D(q\xi_D)^{-2}, q\xi_D >>1$$

 $\tau(q) \approx q-independent$

Growing length scale for recovery of Fickian diffusion

Consistent with BLJM Simulations (Szamel; Berthier)

Connection of Alpha Time and Growing Length Scale

Very different scaling than : Naive Adams-Gibbs Inhomogenous-MCT other thermo-based theories

Close to Dasgupta-Sastry BLJM simulations: (PNAS, 2009)

$$\ln(\tau_4) \propto (\xi_4)^{0.7}$$

4-point "susceptibility" $\chi_4(t)$: time scale & dynamic correlation length

"Decoupling" of Self-Diffusion & Alpha Relaxation

... failure of Stokes-Einstein behavior

Mass Transport ENHANCED (a) fixed "relaxation time"

$$\sim \left[\frac{D\tau^{*}}{(D\tau^{*})_{0}} \approx 10 - 20 ; \phi = 0.58 - 0.59 \right]$$

Sanat Kumar; Tom Truskett PD-Hard Sphere SIMS

"Decoupling length"

$$L_{d} \equiv \sqrt{D\tau^{*}} \propto \xi_{D} \propto \ln(\tau^{*})$$

WHY?

Mobility Bifurcation and Exponential Tails PRE, 2008

II. Soft Repulsive Spheres ~ **MICROGELS**...important materials !

Vary Single Particle Stiffness (crosslinks)interparticle repulsion strength

• Massive Change in Dynamic Fragility

finite range Hertzian Contact Model :

$$V(r) = \frac{4}{15} E^* \sigma^3 \left(1 - \frac{r}{\sigma}\right)^{5/2} , r \le \sigma$$
$$= 0 , r > \sigma$$

Packing Complexity as function of **\$\$\$ and E***

NLE Theory: Activated Kramers Time

Yang & KSS submitted

"Bends over" as "soft jamming" approached due to qualitative change of packing

Dynamic Fragility: Tunable via Particle Softness

Angell Fragility Plot based on Kinetic Glass Criterion

ala Weitz et al, Nature, 2009

"Thermal Fragility" at Fixed Volume Fraction

MASSIVELY Enhanced Thermal Fragility as Volume Fraction grows

PHYSICS: below vs. above HS "jamming" per Berthier-Witten scaling argument

BEYOND SPHERES : Hard Uniaxial Particles

COUPLED Translation-Rotation Dynamics

Zhang & KS PRE 2009

Cumulative angular rotation

$$|\vec{\theta}(t)| = |\int_{0}^{t} dt' \vec{\omega}(t')|$$

Center-of-Mass displacement

CM Force & Torque **Naïve MCT**

Time correlations

Vibrate Librate

2 coupled self-consistent localization eqns

NLE Activated Dynamics Theory

Dynamic Free Energy SURFACE

$$-\zeta_{T} \frac{d}{dt} r_{CM} - \frac{\partial}{\partial r_{CM}} F_{eff}(r_{CM}, \theta) + \delta f_{T} = 0$$
$$-\zeta_{R} \frac{d}{dt} \theta - \frac{\partial}{\partial \theta} F_{eff}(r_{CM}, \theta) + \delta T_{R} = 0$$

Dynamic Crossover Diagram (naive MCT "ideal glass")

"Most Difficult to Vitrify" state....analogous to granular jamming !

Physical Mechanism: "packing frustration"....weakest short range caging order

Dynamical Free Energy Surface (double glass regime)

Cooperative Translate-Rotate Activated Path.....barrier varies with "eigenvector" depends mainly on particle shape

Mechanistic picture of Alpha Relaxation ala chemical reaction

Relaxation Rate: Multi-Dimensional Kramers-Langer Theory

$$\frac{\tau}{\tau_s} = \frac{2\pi}{\lambda^+} \left(\frac{|\det \mathbf{K}_{\mathbf{B}}|}{\det \mathbf{K}_o} \right)^{1/2} \exp(F_{B,SP})$$

Saddle Trajectory + local fluctuations

• Supra-Arrhenius Growth

NON-monotonic L/D
Less rotation @ saddle

L/D	φ _g
1	0.60
1.25	0.693
1.43	0.700
1.8	0.642
2	0.588
3	0.554

Connection between ideal *MCT* and activated *NLE*

Nonlinear Viscoelasticity: Simple Stress Perspective

Classic Idea: External Deformation Reduces Barriers to Flow

Incorporation of Stress in NLE Theory

PRE 2005

Kobelev+KSS

External force on particle

Mechanical Work

ala Eyring @ "instantaneous dynamical variable" level

$$F(r;\tau) = F(r;\tau=0) - \#\sigma^2\tau r$$

"tilted landscape"

STRESS: Reduces Modulus
Accelerates Relaxation
"Absolute YIELD"
$$\longrightarrow$$
 Barrier destroyed

$$\boxed{\overline{\tau}_{hop}}_{\tau_0} = \frac{2\pi g(\sigma)}{\sqrt{K_0(\tau) K_B(\tau)}} e^{F_B(\tau)}$$

$$G'(\tau) = \frac{1}{60\pi^2} \int_0^\infty dq \ q^4 \left(\frac{\partial \ln S(q)}{\partial q}\right)^2 e^{-q^2 r_{LOC}^2(\tau)/3S(q)}$$

Viscosity, Flow Curve, Shear Thinning,... Constitutive eqn: Chen + KSS, Macromolecules, 2008

Steady State NLE Theory Predictions

PRE, 2005 JPCM,2008

Viscosity Thinning & Flow Curves

