Dynamical heterogeneities, jamming

 and plasticity in solid-solid nucleation Surajit Sengupta (IACS \& SNBNCBS, Kolkata)Collaborators:
M. Rao (RRI \& NCBS, Bangalore) Jayee Bhattacharya, Arya Paul (SNBNCBS)

- Structure and dynamics of the critical nucleus.
- Single particle dynamics, dynamical heterogeneities.
- Structure and dynamics of interfaces; growth laws.
- Quench \Rightarrow glass
(bidispersity, geometrical frustration)

- Structure and dynamics of the critical nucleus.
- Single particle dynamics, dynamical heterogeneities.
- Structure and dynamics of interfaces; growth laws.
- Quench \Rightarrow glass
(bidispersity, geometrical frustration)

Barker et al. Physica A (I98I); ten Wolde et al. PRL (I995);Auer et al. Nature (200I); Gasser et al. Science, (199I);J. Hernandez-Guzman et al. PNAS (2009).

- Structure and dynamics of interfaces; growth laws.
- Quench \Rightarrow glass
(bidispersity, geometrical frustration)

Barker et al. Physica A (I98I); ten Wolde et al. PRL (I995);Auer et al. Nature (200I); Gasser et al. Science, (199I);J. Hernandez-Guzman et al. PNAS (2009).

- Structure and dynamics of the critical nucleus.
- Single particle dynamics, dynamical heterogeneities.

- Structure and dynamics of interfaces; growth laws.
- Quench \Rightarrow glass
(bidispersity, geometrical frustration)

Barker et al. Physica A (I98I); ten Wolde et al. PRL (I995);Auer et al. Nature (200I); Gasser et al. Science, (199|);J. Hernandez-Guzman et al. PNAS (2009).

Figure 6. (a) A high-resolution TEM micrograph (plan view) of $\mathrm{CO}_{0.75} \mathrm{Pt}_{0.25}$ film deposited with IBE 250 eV . Region A is FCC with zone axis [011] and evidence of distortion at B. (b) A schema of areas A and B in the micrograph; this is a projection on the $(011)_{c}$ plane.

Molinero et al. PRL (2006)
Purely repulsive system NVT - MD simulations
$N=10000-20000$

Tuning incompatibility - frustration

shear strain is the o.p. for the transition Rao, Sengupta, PRL, (1997)

$$
e_{3}=\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}
$$

J. Bhattacharya et al., J. Phys. Condens. Matt. (2008);

Q।

low T

Q2
high T

M- phase F-phase

Colors measure local coordination Blue $=4$ Red $=6$

Q।

low T

M- phase

Q2

high T

F-phase

Colors measure local coordination Blue $=4$ Red $=6$

Q।

low T

M- phase

Q2

high T

F-phase

Colors measure local coordination Blue $=4$ Red $=6$

SS, J. Bhattacharya, M. Rao, arXiv: (20I0)

- dynamical heterogeneities localized at the transformation front
- active - inactive transitions.
- active particles flow within channels in the free energy topography shaped by inactive particles.
- low temps - few channels - confining potential ballistic trajectory $\Rightarrow M$
- high temps - many intersecting channels - no confining potential - diffusive trajectories $\Rightarrow F$

How to characterize these excitations?

Comment on dynamical matrix. Improbable trajectories are not captured by dynamical matrix which measures the local elastic distortions.

How to characterize these distortions?

"off-diagonal" order parameter:

$$
\mathcal{O} / N \equiv \frac{1}{t_{o b s} N} \int_{0}^{t_{o b s}} d t \sum_{i}\left|\Delta_{\alpha \beta}^{i}(t)\right|^{2}
$$

with

$$
\begin{aligned}
\Delta_{\alpha \beta}^{i}(t) & =u_{i \alpha}(t) u_{i \beta}(t)(\alpha \neq \beta) \quad i \in \text { active } \\
u_{i \alpha}(t) & =r_{i \alpha}(t)-r_{i \alpha}(t-\delta t)
\end{aligned}
$$

"off-diagonal" order parameter:

$$
\mathcal{O} / N \equiv \frac{1}{t_{o b s} N} \int_{0}^{t_{o b s}} d t \sum_{i}\left|\Delta_{\alpha \beta}^{i}(t)\right|^{2}
$$

with

$$
\begin{aligned}
\Delta_{\alpha \beta}^{i}(t) & =u_{i \alpha}(t) u_{i \beta}(t)(\alpha \neq \beta) \quad i \in \text { active } \\
u_{i \alpha}(t) & =r_{i \alpha}(t)-r_{i \alpha}(t-\delta t)
\end{aligned}
$$

Regions of non-affine volume strain (NAZ) are automatically produced at the transformation front and are advected by it as transformation proceeds.

Tout

Regions of non-affine volume strain (NAZ) are automatically produced at the transformation front and are advected by it as transformation proceeds.

Regions of non-affine volume strain (NAZ) are automatically produced at the transformation front and are advected by it as transformation proceeds.

Regions of non-affine volume strain (NAZ) are automatically produced at the transformation front and are advected by it as transformation proceeds.

Regions of non-affine volume strain (NAZ) are automatically produced at the transformation front and are advected by it as transformation proceeds.

Regions of non-affine volume strain (NAZ) are automatically produced at the transformation front and are advected by it as transformation proceeds.

Regions of non-affine volume strain (NAZ) are automatically produced at the transformation front and are advected by it as transformation proceeds.

(b)

(d)

Effects of decreasing incompatibility:

- growth velocity increases
- but more fluctuations as TCP is approached - "tweed" like structures

Figure 5.13: Typical molecular dynamics simulation snapshots at (a) 1200 (b) 2000 (c) 5000 and (d) 10000 MD -timesteps showing the growth of a twinned martensite critical nucleus at a low temperature, $T=0.05$ quenched at $v_{3}=0.3383$. The equilibrated square parent lattice at $\rho=1.1$ has particles interacting via the anisotropic potential with $\alpha=1$. The colourscale goes from $\Omega_{i}=0$ (blue) representing the untransformed austenite to $\Omega_{i}=1$ (red) pertaining to the transformed martensitic microstructure.

Tuesday 25 May 2010

A. Paul et al.J. Phys. Condens. Mat. (2008)

- elasticity is not enough. $\nabla \times(\nabla \times \epsilon)^{T}=0$ Shenoy, Lookman, Saxena, Bishop, PRB, (I997)....etc
- elasticity is not enough. $\nabla \times(\nabla \times \epsilon)^{T}=0$ Shenoy, Lookman, Saxena, Bishop, PRB, (I997)....etc
- local plasticity at the growing interface produced when stress reaches a threshold.
- elasticity is not enough. $\nabla \times(\nabla \times \epsilon)^{T}=0$ Shenoy, Lookman, Saxena, Bishop, PRB, (I997)....etc
- local plasticity at the growing interface produced when stress reaches a threshold.
- amount of plasticity produced depends on the incompatibility.
- elasticity is not enough. $\nabla \times(\nabla \times \epsilon)^{T}=0$ Shenoy, Lookman, Saxena, Bishop, PRB, (1997)....etc
- local plasticity at the growing interface produced when stress reaches a threshold.
- amount of plasticity produced depends on the incompatibility.
- rate of production of plasticity vs. rate of transformation controls microstructure (Deborah number)
- elasticity is not enough. $\nabla \times(\nabla \times \epsilon)^{T}=0$ Shenoy, Lookman, Saxena, Bishop, PRB, (1997)....etc
- local plasticity at the growing interface produced when stress reaches a threshold.
- amount of plasticity produced depends on the incompatibility.
- rate of production of plasticity vs. rate of transformation controls microstructure (Deborah number)
- plasticity relaxes when transformation front moves away.

$$
L\left[e_{i}, e_{i}^{p}, \dot{u}_{x}, \dot{u}_{y}\right]=\sum_{\mathbf{r}}\left[\frac{m}{2}\left(\dot{u}_{x}^{2}+\dot{u}_{y}^{2}\right)-F\left[e_{i}(\mathbf{r}), e_{i}^{P}(\mathbf{r})\right]\right]
$$

$$
L\left[e_{i}, e_{i}^{p}, \dot{u}_{x}, \dot{u}_{y}\right]=\sum_{\mathbf{r}}\left[\frac{m}{2}\left(\dot{u}_{x}^{2}+\dot{u}_{y}^{2}\right)-F\left[e_{i}(\mathbf{r}), e_{i}^{P}(\mathbf{r})\right]\right] \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{u}}}\right)=\frac{\partial L}{\partial \mathbf{u}}-\frac{\partial R}{\partial \dot{\mathbf{u}}}
$$

$$
L\left[e_{i}, e_{i}^{p}, \dot{u}_{x}, \dot{u}_{y}\right]=\sum_{\mathbf{r}}\left[\frac{m}{\mathscr{2}}\left(\dot{u}_{x}^{2}+\dot{u}_{y}^{2}\right)-F\left[e_{i}(\mathbf{r}), e_{i}^{P}(\mathbf{r})\right]\right] \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{u}}}\right)=\frac{\partial L}{\partial \mathbf{u}}-\frac{\partial R}{\partial \dot{\mathbf{u}}},
$$

$$
R\left[e_{i}\right]=\frac{1}{2} \sum_{\mathbf{r}}\left[\gamma_{1} \dot{e}_{1}^{2}(\mathbf{r})+\gamma_{2} \dot{e}_{2}^{2}(\mathbf{r})+\gamma_{3} \dot{e}_{3}^{2}(\mathbf{r})\right]
$$

$$
\begin{aligned}
\mathcal{F}\left[e_{i}(\mathbf{r}), e_{i}^{P}(\mathbf{r})\right]= & \int\left[\frac{1}{2} a_{1}\left(e_{1}+e_{1}^{P}\right)^{2}+\frac{c_{1}}{2}\left(\nabla e_{1}\right)^{2}+\frac{1}{2} a_{2} e_{2}^{2}+\frac{c_{2}}{2}\left(\nabla e_{2}\right)^{2}\right. \\
& \left.\frac{1}{2} a_{3} e_{3}^{2}+V\left(e_{i}\right)+\frac{c_{3}}{2}\left(\nabla e_{3}\right)^{2}\right] d \mathbf{r}
\end{aligned}
$$

$$
e_{1}(\mathbf{r})=\frac{\partial u_{x}(\mathbf{r})}{\partial x}+\frac{\partial u_{y}(\mathbf{r})}{\partial y}
$$

$$
e_{2}(\mathbf{r})=\frac{\partial u_{x}(\mathbf{r})}{\partial x}-\frac{\partial u_{y}(\mathbf{r})}{\partial y}
$$

$$
e_{3}(\mathbf{r})=\frac{\partial u_{x}(\mathbf{r})}{\partial y}+\frac{\partial u_{y}(\mathbf{r})}{\partial x}
$$

$$
L\left[e_{i}, e_{i}^{p}, \dot{u}_{x}, \dot{u}_{y}\right]=\sum_{\mathbf{r}}\left[\frac{m}{2}\left(\dot{u}_{x}^{2}+\dot{u}_{y}^{2}\right)-F\left[e_{i}(\mathbf{r}), e_{i}^{P}(\mathbf{r})\right]\right] \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{u}}}\right)=\frac{\partial L}{\partial \mathbf{u}}-\frac{\partial R}{\partial \dot{\mathbf{u}}}
$$

$$
R\left[e_{i}\right]=\frac{1}{2} \sum_{\mathbf{r}}\left[\gamma_{1} \dot{e}_{1}^{2}(\mathbf{r})+\gamma_{2} \dot{e}_{2}^{2}(\mathbf{r})+\gamma_{3} \dot{e}_{3}^{2}(\mathbf{r})\right]
$$

$$
\begin{aligned}
& \mathcal{F}\left[e_{i}(\mathbf{r}), e_{i}^{P}(\mathbf{r})\right]= \int\left[\frac{1}{2} a_{1}\left(e_{1}+e_{1}^{P}\right)^{2}+\frac{c_{1}}{2}\left(\nabla e_{1}\right)^{2}+\frac{1}{2} a_{2} e_{2}^{2}+\frac{c_{2}}{2}\left(\nabla e_{2}\right)^{2}\right. \\
&\left.\frac{1}{2} a_{3} e_{3}^{2}+V\left(e_{i}\right)+\frac{c_{3}}{2}\left(\nabla e_{3}\right)^{2}\right] d \mathbf{r} . \\
& e_{1}(\mathbf{r})=\frac{\partial u_{x}(\mathbf{r})}{\partial x}+\frac{\partial u_{y}(\mathbf{r})}{\partial y} V\left(e_{i}\right)=\frac{1}{4} b_{3} e_{3}^{4}+\frac{1}{6} d_{3} e_{3}^{6} \\
& e_{2}(\mathbf{r})=\frac{\partial u_{x}(\mathbf{r})}{\partial x}-\frac{\partial u_{y}(\mathbf{r})}{\partial y}, 0_{0,2}^{0.4} \\
& e_{3}(\mathbf{r})=\frac{\partial u_{x}(\mathbf{r})}{\partial y}+\frac{\partial u_{y}(\mathbf{r})}{\partial x} . 0.0
\end{aligned}
$$

$$
\begin{aligned}
\rho \ddot{e}_{1} & =\nabla^{2}\left[a_{1}\left(e_{1}+e_{1}^{P}\right)-c_{1} \nabla^{2} e_{1}+\gamma_{1} \dot{e}_{1}\right]+2 \frac{\partial^{2}}{\partial x \partial y}\left(a_{3} e_{3}+\frac{\partial V}{\partial e_{3}}-c_{3} \nabla^{2} e_{3}+\gamma_{3} \dot{e}_{3}\right) \\
& +\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}\right)\left(a_{2} e_{2}-c_{2} \nabla^{2} e_{2}+\gamma_{2} \dot{e}_{2}\right), \\
\rho \ddot{e}_{2} & =\nabla^{2}\left(a_{2} e_{2}-c_{2} \nabla^{2} e_{2}+\gamma_{2} \dot{e}_{2}\right)+\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}\right)\left[a_{1}\left(e_{1}+e_{1}^{P}\right)-c_{1} \nabla^{2} e_{1}+\gamma_{1} \dot{e}_{1}\right], \\
\rho \ddot{e}_{3} & =\nabla^{2}\left(a_{3} e_{3}^{2}+\frac{\partial V}{\partial e_{3}}-c_{3} \nabla^{2} e_{3}+\gamma_{3} \dot{e}_{3}\right)+2 \frac{\partial^{2}}{\partial x \partial y}\left[a_{1}\left(e_{1}+e_{1}^{P}\right)-c_{1} \nabla^{2} e_{1}+\gamma_{1} \dot{e}_{1}\right] .
\end{aligned}
$$

$$
\begin{array}{rlr}
\dot{e}_{1}^{P} & =-\frac{1}{\nu} \int_{-\infty}^{t} \sigma_{1}\left(t^{\prime}\right) e^{-\frac{\left(t-t^{\prime}\right)}{\tau}} d t^{\prime}+c_{p} \nabla^{2} e_{1}^{P} & \quad \text { if }\left|\sigma_{1}\right|>\sigma_{1 c} \\
& =c_{p} \nabla^{2} e_{1}^{P} & \text { otherwise }
\end{array}
$$

$$
\begin{aligned}
\nabla \times(\nabla \times \epsilon)^{T} \neq 0= & \nabla^{2} e_{1}^{P} \\
\frac{1}{2}\left(-\frac{\partial e_{1}^{P}}{\partial y}, \frac{\partial e_{1}^{P}}{\partial x}\right)= & \nabla \times \epsilon^{P} \\
= & \begin{array}{l}
\text { Burger's vector } \\
\\
\text { density }
\end{array}
\end{aligned}
$$

$$
\mathcal{F}=\mathcal{F}_{b} L W+2 N \mathcal{F}_{s}\left(\frac{L \xi}{N}+\eta W\right)+2 N c_{3} e_{0}^{2}\left(\frac{L / N}{\xi}+\frac{W}{\eta}\right)+\frac{a_{1} \lambda^{2} N}{4 \pi^{2}}\left(\frac{L}{N}\right)^{2}
$$

$$
+\frac{N a_{1} e_{0}^{p}(t)^{2}}{4}\left(\frac{L}{N}\right) \beta+\frac{a_{1} \lambda e_{0}^{p}(t) N}{\pi \sqrt{2 \pi}}\left(\frac{L}{N}\right)^{2} \quad e_{1}^{P} \quad \text { slow }
$$

$$
e_{3}(x, y)
$$

$$
e_{1}(x, y)
$$

$$
\mathcal{F}=\mathcal{F}_{b} L W+2 N \mathcal{F}_{s}\left(\frac{L \xi}{N}+\eta W\right)+2 N c_{3} e_{0}^{2}\left(\frac{L / N}{\xi}+\frac{W}{\eta}\right)+\frac{a_{1} \lambda^{2} N}{4 \pi^{2}}\left(\frac{L}{N}\right)^{2}
$$

$$
+\frac{N a_{1} e_{0}^{p}(t)^{2}}{4}\left(\frac{L}{N}\right) \beta+\frac{a_{1} \lambda e_{0}^{p}(t) N}{\pi \sqrt{2 \pi}}\left(\frac{L}{N}\right)^{2} \quad e_{1}^{P} \quad \text { slow }
$$

$e_{3}(x, y)$
$e_{1}(x, y)$

$$
\begin{aligned}
\mathcal{F}= & \mathcal{F}_{b} L W+2 N \mathcal{F}_{s}\left(\frac{L \xi}{N}+\eta W\right)+2 N c_{3} e_{0}^{2}\left(\frac{L / N}{\xi}+\frac{W}{\eta}\right)+\frac{a_{1} \lambda^{2} N}{4 \pi^{2}}\left(\frac{L}{N}\right)^{2} \\
& +\frac{N a_{1} e_{0}^{p}(t)^{2}}{4}\left(\frac{L}{N}\right) \beta+\frac{a_{1} \lambda e_{0}^{p}(t) N}{\pi \sqrt{2 \pi}}\left(\frac{L}{N}\right)^{2} \quad e_{1}^{P} \text { slow }
\end{aligned}
$$

$e_{3}(x, y)$
$e_{1}(x, y)$

$$
\begin{aligned}
\mathcal{F}= & \mathcal{F}_{b} L W+2 N \mathcal{F}_{s}\left(\frac{L \xi}{N}+\eta W\right)+2 N c_{3} e_{0}^{2}\left(\frac{L / N}{\xi}+\frac{W}{\eta}\right)+\frac{a_{1} \lambda^{2} N}{4 \pi^{2}}\left(\frac{L}{N}\right)^{2} \\
& +\frac{N a_{1} e_{0}^{p}(t)^{2}}{4}\left(\frac{L}{N}\right) \beta+\frac{a_{1} \lambda e_{0}^{p}(t) N}{\pi \sqrt{2 \pi}}\left(\frac{L}{N}\right)^{2} \quad e_{1}^{P} \text { slow }
\end{aligned}
$$

$e_{3}(x, y)$
$e_{1}(x, y)$

$$
\mathcal{F}=\begin{array}{|l}
\mathcal{\mathcal { F } _ { b } L W}+2 N \mathcal{F}_{s}\left(\frac{L \xi}{N}+\eta W\right)+2 N c_{3} e_{0}^{2}\left(\frac{L / N}{\xi}+\frac{W}{\eta}\right)+\frac{a_{1} \lambda^{2} N}{4 \pi^{2}}\left(\frac{L}{N}\right)^{2} \\
\hline+\frac{N a_{1} e_{0}^{p}(t)^{2}}{4}\left(\frac{L}{N}\right) \beta+\frac{a_{1} \lambda e_{0}^{p}(t) N}{\pi \sqrt{2 \pi}}\left(\frac{L}{N}\right)^{2} \\
\hline
\end{array}
$$

$e_{3}(x, y)$
$e_{1}(x, y)$

Elastic coupling makes energy of parent product interfaces go as $(L / N)^{2}$. This favors a twin structure.

Elastic coupling makes energy of parent product interfaces go as $(L / N)^{2}$. This favors a twin structure.

$$
\left(\frac{L}{N}\right)^{2}=\frac{16 \pi^{2} e_{0} \sqrt{c_{3} \mathcal{F}_{s}}}{a_{1}\left(\lambda^{2}+4 \sqrt{\frac{\pi}{2}} \lambda e_{0}^{p}(t)\right)} W
$$

Elastic coupling makes energy of parent product interfaces go as $(L / N)^{2}$. This favors a twin structure.

$$
\left(\frac{L}{N}\right)^{2}=\frac{16 \pi^{2} e_{0} \sqrt{c_{3} \mathcal{F}_{s}}}{a_{1}\left(\lambda^{2}+4 \sqrt{\frac{\pi}{2}} \lambda e_{0}^{p}(t)\right)} W
$$

$$
e_{0}^{P}(t) \rightarrow-\lambda \sqrt{\frac{1}{8 \pi}}
$$

$$
\frac{L}{N} \quad \rightarrow \quad \infty
$$

Elastic coupling makes energy of parent product interfaces go as $(L / N)^{2}$. This favors a twin structure.

$$
\begin{array}{rlll}
\left(\frac{L}{N}\right)^{2}=\frac{16 \pi^{2} e_{0} \sqrt{c_{3} \mathcal{F}_{s}}}{a_{1}\left(\lambda^{2}+4 \sqrt{\frac{\pi}{2}} \lambda e_{0}^{p}(t)\right)} W & e_{0}^{P}(t) & \rightarrow & -\lambda \sqrt{\frac{1}{8 \pi}} \\
\frac{L}{N} & \rightarrow \infty
\end{array}
$$

Too much of plasticity destroys twinned structure because it screens elastic interactions and makes them short ranged.

M-phase

M-phase

e_{3} e_{1}
e_{2}
e_{1}^{P}

F-phase

F-phase

$\sigma_{1 c}$
given by local elastic modulus times atomic strain threshold (<13\%)

$\sigma_{1 c}$
given by local elastic modulus times atomic strain threshold (<13\%)
$\underline{\nu}$ is a Deborah number $=$ γ_{3}

Growth velocity
plasticity production rate

- Is this phenomenon generic? Other models in 2D and 3D showing structural transitions between incompatible solids.
- Other kinds of approaches: intermediate scale dynamics for NAZs - connections with STZ theory.
- Spin $(S= \pm I, 0)$ models with plasticity.
- and

Is there a solid-solid route to microstructural glass?

Glass $=$ frozen-in liquid
Microstructural glass = a messed up solid
when size of NAZ comparable to grain size (ferrite)

$$
D=D_{0} \exp \left(-\xi_{10} / T_{\text {eff }}\right) \quad \text { Vogel-Fulcher! }
$$

"Microstructural glass"?
How different will this be from quenching from liquid?

The dynamical heterogeneities which will get larger as one gets into the microstructural glass phase, will also be characterized by such stress behaviour. The inherent structures that these configurations will fall into will be `proximal' or have some memory of the crystalline phase (and hence will be different from the conventional glass).

