First principles simulations of supercooled liquids and glasses

M. Widom and P. Ganesh (CMU \rightarrow CIW \rightarrow ORNL) also S.J. Poon, G.J. Shiflet (UVa), M. Mihalkovic (Slovakia)

Outline:

- First principles calculation: what? why?
- Metallic glass: structure, formation and optimization
- Supercooled silicon: a liquid-liquid phase transition

Electronic Density Functional Theory

FCC Aluminum, one unit cell

- Born-Oppenheimer approximation
- Wavefunction $\Psi^{(N)}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$
- Schrödinger: $\mathbf{H}\Psi^{(N)} = E \Psi^{(N)}$

Hohenberg-Kohn/Kohn-Sham:

Transform $\Psi^{(N)}$ to *N* coupled 1-body problems for $\psi(\mathbf{r})$

$$\left(-\frac{1}{2}\nabla_{i}^{2}+V_{eff}\left(\mathbf{r}\right)-\varepsilon_{i}\right)\psi_{i}=0 \qquad E=\sum_{i=1}^{N}\varepsilon_{i} \text{ - (double counting)}$$

- $V_{eff} = V_{eff}[\rho(\mathbf{r})] \dots$ but $\rho(\mathbf{r}) = \Sigma_i |\psi_i(\mathbf{r})|^2$
- Evaluate $V_{eff}[\rho(\mathbf{r})]$ in LDA or GGA

Iron-Boron Phase Diagram

Enthalpy of formation

Tempering Molecular Dynamics

(Multiple) Histogram Method Ferrenberg & Swendsen (1989)

- Energy histogram at temperature T: $H_T(E)$
- Configurational density of states: $\Omega(E) \sim H_T(E) e^{+E/k_BT}$
- Partition function: $Z(T) = \int \Omega(E) e^{-E/k_B T} dE$
- Free energy (Helmholtz): $F(T) = -k_B T \ln Z(T)$
- Combine multiple temperatures:

 $\boldsymbol{\Omega}(\mathsf{E}) = \{\boldsymbol{\Sigma}_\mathsf{T} \; \mathsf{H}_\mathsf{T}(\mathsf{E})\} \; / \; \{\boldsymbol{\Sigma}_\mathsf{T} \; \mathbf{e}^{(\mathsf{F}(\mathsf{T})-\mathsf{E})/\mathsf{k}_\mathsf{B}}{}^\mathsf{T}\}$

• Averages:

 $U(T) = \int E\Omega(E)e^{-E/k_{B}T} dE, \quad P(T) = \int \langle P \rangle(E)\Omega(E)e^{-E/k_{B}T} dE$

Simulated Glassy Structure Fe₄₈B₆C₁₅Er₂Mo₁₄Cr₁₅

Iron Boron Carbon Erbium Chromium Molybdenum Carbon Pair Correlation Functions Liquid Fe₄₈B₆C₁₅Er₂Mo₁₄Cr₁₅ T=1000K (VASP-TMD)

Ternary Enthalpy Diagram ==>> Glass Formability

Conclusions (Metallic Glass)

 First-principles total energy, band structure and molecular dynamics
Method of high realism, but computationally intensive

Enthalpy (relative cohesive energy)
Predicts phase stability relevant to glass formation

 Interatomic bonding (∆Q and COHP) Can assist in predicting mechanical properties including ductility

Density of silicon

Crystal Structures open tetra-coordinated networks

Kobatake, et al. (2007) Motion of silicon grains floating on the surface of liquid silicon (top view)

Pressure-Volume Isotherms

Maxwell Equal Area Construction

Structure Comparison

Coexistence Simulation

T = 1032 K V = 19.8 Å³/atom P = -0.8 kBar

N = 200 atoms 5 picoseconds

Initial state: HDL (green) LDL (red) 100 atoms each

LDL is non-crystalline

HDL is metallic, LDL has pseudogap

Conclusions (Supercooled Silicon)

 Liquid silicon has two metastable phases in the supercooled regime Experiments are lacking but two amorphous states are known to exist

 Transition is between dense metallic structure and open structure with pseudogap Is the low density liquid semiconducting?

• Future work

Switch to constant pressure ensemble