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Satisfiability

Given a Boolean formula (CNF), decide if a satisfying truth assignment exists.

(x12 ∨ x5) ∧ (x34 ∨ x21 ∨ x5 ∨ x27) ∧ · · · ∧ (x12) ∧ (x21 ∨ x9 ∨ x13)

Cook’s Theorem: Satisfiability is NP-complete.

k-SAT: Each clause has exactly k literals.

Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.



Random k-SAT

• Let L(n) be the set of 2n literals x1, x̄1, x2, x̄2, . . . , xn, x̄n.

• Form a random k-SAT formula Fk(n, m) as follows:

Generate k ×m i.i.d. uniformly random literals from L(n)

Does Fk(n, m) have a satisfying assignment?

Conjecture: For each k ≥ 3, there exists a constant rk such that

lim
n→∞

Pr[Fk(n, rn) is satisfiable] =

{
1 if r < rk

0 if r > rk



In other words

The energy of a truth assignment σ ∈ {−1, +1}n in a k-SAT formula with clauses c1, . . . , cm

E(σ) =
∑
ci

k∏
j=1

(
1− 1 + σij`ij

2

)

So, random k-SAT is a mean-field, diluted, spin glass with k-wise interactions

Satisfying truth assignment are states with energy 0



First moment method

For any non-negative, integer-valued random variable X ,

Pr[X > 0] =
∑
x>0

Pr[X = x] ≤
∑
x>0

Pr[X = x] x = E[X] .

Let X be the number of satisfying truth assignments of Fk(n,m = rn).

For every t.a. σ, by clause-independence, Pr[σ is satisfying] =

(
1− 1

2k

)m

. So,

E[X] = E [I1 + · · ·+ I2n ]

=

(
2

(
1− 1

2k

)r)n

.

But 2
(
1− 1

2k

)r
< 1 for all r ≥ 2k ln 2, implying E[X] = o(1) for such r. Thus,

rk < 2k ln 2 .



Unit-Clause Propagation

Repeat

- Pick an unset variable at random and assign it 0/1 at random

- While there are unit clauses

pick any one and satisfy it

• Value assignments are permanent (no backtracking)

• Failure occurs iff a 0-clause is ever generated

[Chao Franco 86]: For all k ≥ 3, if

r <
2k

k

Unit-Clause propagation finds a satisfying t.a. with probability φ = φ(k, r) > 0.



More previous work

• rk ≥ 3
8

2k/k [Chv átal Reed 92]

• rk ≥ ck 2k/k, where limk→∞ ck = 1.817.... [Frieze Suen 96]

• rk ≤ 2k ln 2−dk, where limk→∞ dk = (1 + ln 2)/2 [Kirousis et al. 98]

No asymptotic progress over
2k

k
< rk < 2k

in more than 15 years.



This talk

[A., Moore ’02]:

2k−1 ln 2− 2 < rk < 2k ln 2

[A., Peres ’03]:
rk

2k ln 2
→ 1

[A., Naor, Peres ’03]: For all p ∈ [0, 1], let rk(p) be the threshold for having a truth assignment

that satisfies (1− 2−k + p2−k)m clauses.

rk(p)

2k ln 2
→ 1

p + (1− p) log(1− p)



Second moment method

For any non-negative random variable X ,

Pr[X > 0] ≥ E[X]2

E[X2]
.

Let X be the number of satisfying truth assignments of Fk(n,m = rn).

E[X2] = E[(I1 + · · ·+ I2n)2]

=
∑
σ,τ

E[IσIτ ]

=
∑
σ,τ

Pr[Both σ and τ are satisfying] .

Overlap is what matters. If σ, τ agree on z = αn variables and c is a random clause,

Pr[Both σ and τ satisfy c] = 1− 2−k+1 +
αk

2k

≡ f(α) .



Focus on the middle terms

∑
σ,τ

Pr[Both σ, τ are satisfying] = 2n

n∑
z=0

(
n

z

)
f(z/n)rn

≥ 2n max
z

(
n

z

)
f(z/n)rn

∼
[

max
α∈[0,1]

2f(α)r

αα(1− α)1−α

]n

(α ≡ z/n)

≡
(

max
α∈[0,1]

gr(α)

)n

.

Observe that E[X]2 = gr(1/2)n. So, gr better be maximized at α = 1/2.

But f ′(1/2) 6= 0 :-(
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Random NAE k-SAT

Given a k-CNF, is there a truth assignment under which every clause has

at least one satisfied literal and at least one unsatisfied literal?

Let X be the number of NAE-satisfying truth assignments of Fk(n,m = rn).

E[X2] = E[(I1 + · · ·+ I2n)2]

=
∑
σ,τ

E[IσIτ ]

=
∑
σ,τ

Pr[ Both σ and τ are NAE-satisfying] .

Again, overlap is what matters. If σ, τ agree on z = αn variables and c is a random clause,

Pr[Both σ and τ NAE-satisfy c] = 1− 2−k+2 +
αk + (1− α)k

2k−1

≡ fN(α) .



Focus on the middle terms (again)

∑
σ,τ

Pr[Both σ, τ are NAE-satisfying] = 2n

n∑
z=0

(
n

z

)
fN(z/n)rn

= 2n ×
∑

α

[(
n

αn

)
fN(α)rn

]
(α ≡ z/n)

≤ C ×
[

max
α∈[0,1]

2fN(α)r

αα(1− α)1−α

]n

≡ C ×
(

max
α∈[0,1]

ψr(α)

)n

.

Again, E[X]2 = ψr(1/2)n. So, for all r such that ψr is maximized at α = 1/2,

Pr[X > 0] ≥ E[X]2

E[X2]
≥ 1/C .
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The random NAE k-SAT threshold

Theorem: There exists a sequence εk → 0 such that for all k ≥ 3, if

r ≤ 2k−1 ln 2− ln 2

2
− 1

2
− εk ,

then w.h.p. Fk(n, rn) is NAE-satisfiable.

[Refined f.m.]: There exists a sequence δk → 0 such that for all k ≥ 3, if

r ≥ 2k−1 ln 2− ln 2

2
− 1

4
− δk ,

then w.h.p. Fk(n, rn) is not NAE-satisfiable.

k 3 4 5 6 7 8 9 10 11 12

Upper bound 2.214 49/12 10.505 21.590 43.768 88.128 176.850 354.295 709.186 1418.969

Lower bound 3/2 4.969 9.973 21.190 43.432 87.827 176.570 354.027 708.925 1418.712



A challenge for 1-step RSB

1-step RSB matches the rigorous upper bound

2k−1 ln 2− ln 2

2
− 1

4
− o(1)

Conjecture: The NAE k-SAT threshold occurs at the rigorous lower bound

2k−1 ln 2− ln 2

2
− 1

2
− o(1)



Why?

Intuition: NAE-assignments look like a “mist" on {−1, +1}n. SAT-assignments don’t.

Where does the clustering come from?

Useful fact: Fk(n,m) is “equivalent" to k-SAT formulas generated by

• Step 1: Creating Xi copies of each literal, where {Xi}2n
i=1 are i.i.d. Poisson r.v.

• Step 2: Partitioning the literals randomly into k-clauses.



Modest assignments

• For a given σ ∈ {−1, +1}n, let S(σ) be the number of literal copies satisfied by s.

• At the end of Step 1, S is a smooth function on {−1, +1}n.

• An exponential number of t.a. “can feel" the majority assignment...

 



Satisfiability and Populism

For a random truth assignment σ in a random formula with m k-clauses

E[S(σ)] =
km

2

But if we condition on σ being a satisfying truth assignment in Fk(n,m),

E[S(σ)] =
km

2
× 2k

2k − 1
.

Observe: But NAE-satisfiability does not increase the conditional expectation of L(s).

Idea: Look for satisfying assignments with S(σ) =
km

2
±O(

√
km).



Modest assignments via weighting

• Given any k-SAT formula F , let G ⊆ {−1, +1}n be the set of satisfying t.a. of F .

• Given σ ∈ {−1, +1}n let H = H(σ, F ) be the number of satisfied literal copies F under

σ minus the number of unsatisfied literal copies.

• For any 0 < γ ≤ 1, let

X = X(F ) =
∑

σ

γH(σ,F ) 1σ∈G(F ) .

• Proof: Apply second moment method to X(Fk(n,m)) for the right value of γ = γ(k).

For

r ≤ 2k ln 2− k

2
−O(1)

the maximum occurs at α = 1/2.



Modest assignments for random Max k-SAT

• Define H as before.

• Given σ ∈ {−1, +1}n let U = U(σ, F ) be the number of unsatisfied clauses by σ in F .

• For any 0 < γ ≤ 1 and 0 < η ≤ 1, let

X = X(F ) =
∑

σ

γH(σ,F ) ηU(σ,F ) .

• Proof: Apply second moment method to X(Fk(n,m)) for the right combination of γ, η.

[A., Naor, Peres ’03]: For all p ∈ [0, 1], let rk(p) be the threshold for having a truth assignment

that satisfies (1− 2−k + p2−k)m clauses.

rk(p)

2k ln 2
→ 1

p + (1− p) log(1− p)



k = 3

Our lower bound

[CGHS02]

Upper bound
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k = 4

Our lower bound

[CGHS02]

Upper bound
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k = 7

Our lower bound

[CGHS02]

Upper bound
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k = 10

Our lower bound

[CGHS02]

Upper bound
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