On the Threshold for Random [Max] k-SAT

Dimitris Achlioptas Microsoft

Based on joint works with

Cris Moore (UNM/Santa Fe) Assaf Naor (Microsoft) Yuval Peres (Berkeley)

Satisfiability

Given a Boolean formula (CNF), decide if a satisfying truth assignment exists.

$$(\overline{x}_{12} \lor x_5) \land (x_{34} \lor \overline{x}_{21} \lor x_5 \lor \overline{x}_{27}) \land \dots \land (x_{12}) \land (x_{21} \lor x_9 \lor \overline{x}_{13})$$

Cook's Theorem: Satisfiability is NP-complete.

k-SAT: Each clause has exactly k literals.

Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Random k-SAT

- Let $\mathcal{L}(n)$ be the set of 2n literals $x_1, \bar{x}_1, x_2, \bar{x}_2, \ldots, x_n, \bar{x}_n$.
- Form a random k-SAT formula $\mathcal{F}_k(n, m)$ as follows:

Generate $k \times m$ i.i.d. uniformly random literals from $\mathcal{L}(n)$

Does $\mathcal{F}_k(n, m)$ have a satisfying assignment?

Conjecture: For each $k \geq 3$, there exists a constant r_k such that

$$\lim_{n \to \infty} \Pr[\mathcal{F}_k(n, rn) \text{ is satisfiable}] = \begin{cases} 1 & \text{if } r < r_k \\ 0 & \text{if } r > r_k \end{cases}$$

In other words

The energy of a truth assignment $\sigma \in \{-1,+1\}^n$ in a k-SAT formula with clauses c_1,\ldots,c_m

$$E(\sigma) = \sum_{c_i} \prod_{j=1}^k \left(1 - \frac{1 + \sigma_{ij}\ell_{ij}}{2} \right)$$

So, random k-SAT is a mean-field, diluted, spin glass with k-wise interactions

Satisfying truth assignment are states with energy 0

First moment method

For any non-negative, integer-valued random variable X,

$$\Pr[X > 0] = \sum_{x > 0} \Pr[X = x] \le \sum_{x > 0} \Pr[X = x] x = \mathbf{E}[X]$$

Let X be the number of satisfying truth assignments of $\mathcal{F}_k(n, m = rn)$.

For every t.a. σ , by clause-independence, $\Pr[\sigma \text{ is satisfying}] = \left(1 - \frac{1}{2^k}\right)^m$. So,

$$\mathbf{E}[X] = \mathbf{E}[I_1 + \dots + I_{2^n}] \\ = \left(2\left(1 - \frac{1}{2^k}\right)^r\right)^n.$$

But $2\left(1-\frac{1}{2^k}\right)^r < 1$ for all $r \ge 2^k \ln 2$, implying $\mathbf{E}[X] = o(1)$ for such r. Thus,

$$r_k < 2^k \ln 2$$

Unit-Clause Propagation

Repeat

- Pick an unset variable at random and assign it 0/1 at random
- While there are unit clauses

pick any one and satisfy it

- Value assignments are permanent (no backtracking)
- Failure occurs iff a 0-clause is ever generated

[Chao Franco 86]: For all $k \geq 3$, if

$$r < \frac{2^k}{k}$$

Unit-Clause propagation finds a satisfying t.a. with probability $\phi = \phi(k, r) > 0$.

More previous work

• $r_k \ge \frac{3}{8} \ 2^k / k$

[Chvátal Reed 92]

- $r_k \ge c_k \ 2^k/k$, where $\lim_{k\to\infty} c_k = 1.817...$ [Frieze Suen 96]
- $r_k \le 2^k \ln 2 d_k$, where $\lim_{k \to \infty} d_k = (1 + \ln 2)/2$

[Kirousis et al. 98]

No asymptotic progress over

$$\frac{2^k}{k} < r_k < 2^k$$

in more than 15 years.

This talk

[A., Moore '02]:

$$2^{k-1}\ln 2 - 2 < r_k < 2^k \ln 2$$

[A., Peres '03]:

$$\frac{r_k}{2^k \ln 2} \to 1$$

[A., Naor, Peres '03]: For all $p \in [0, 1]$, let $r_k(p)$ be the threshold for having a truth assignment that satisfies $(1 - 2^{-k} + p2^{-k})m$ clauses.

$$\frac{r_k(p)}{2^k \ln 2} \rightarrow \frac{1}{p + (1-p)\log(1-p)}$$

Second moment method

For any non-negative random variable X,

$$\Pr[X > 0] \ge \frac{\mathbf{E}[X]^2}{\mathbf{E}[X^2]} \ .$$

Let X be the number of satisfying truth assignments of $\mathcal{F}_k(n, m = rn)$.

$$\begin{split} \mathbf{E}[X^2] &= \mathbf{E}[(I_1 + \dots + I_{2^n})^2] \\ &= \sum_{\sigma, \tau} \mathbf{E}[I_{\sigma}I_{\tau}] \\ &= \sum_{\sigma, \tau} \Pr[\mathsf{Both} \ \sigma \ \mathsf{and} \ \tau \ \mathsf{are \ satisfying}] \ . \end{split}$$

Overlap is what matters. If σ, τ agree on $z = \alpha n$ variables and c is a random clause,

$$\Pr[\operatorname{Both} \sigma \text{ and } \tau \text{ satisfy } c] = 1 - 2^{-k+1} + \frac{\alpha^k}{2^k}$$
$$\equiv f(\alpha) \ .$$

Focus on the middle terms

$$\sum_{\sigma,\tau} \Pr[\mathsf{Both} \ \sigma, \tau \text{ are satisfying}] = 2^n \sum_{z=0}^n \binom{n}{z} f(z/n)^{rn}$$

$$\geq 2^n \max_z \binom{n}{z} f(z/n)^{rn}$$

$$\sim \left[\max_{\alpha \in [0,1]} \frac{2f(\alpha)^r}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}} \right]^n \qquad (\alpha \equiv z/n)$$

$$\equiv \left(\max_{\alpha \in [0,1]} g_r(\alpha) \right)^n.$$

Observe that $\mathbf{E}[X]^2 = g_r (1/2)^n$. So, g_r better be maximized at $\alpha = 1/2$.

But $f'(1/2) \neq 0$:-(

Random NAE k-SAT

Given a k-CNF, is there a truth assignment under which every clause has

at least one satisfied literal and at least one unsatisfied literal?

Let X be the number of NAE-satisfying truth assignments of $\mathcal{F}_k(n, m = rn)$.

$$\begin{split} \mathbf{E}[X^2] &= \mathbf{E}[(I_1 + \dots + I_{2^n})^2] \\ &= \sum_{\sigma, \tau} \mathbf{E}[I_{\sigma}I_{\tau}] \\ &= \sum_{\sigma, \tau} \Pr[\text{ Both } \sigma \text{ and } \tau \text{ are NAE-satisfying}] \;. \end{split}$$

Again, overlap is what matters. If σ, τ agree on $z = \alpha n$ variables and c is a random clause,

$$\begin{aligned} \Pr[\mathsf{Both}\ \sigma \ \mathsf{and}\ \tau \ \mathsf{NAE}\text{-satisfy}\ c] &= 1 - 2^{-k+2} + \frac{\alpha^k + (1-\alpha)^k}{2^{k-1}} \\ &\equiv f_N(\alpha) \end{aligned}$$

Focus on the middle terms (again)

$$\sum_{\sigma,\tau} \Pr[\mathsf{Both} \ \sigma, \tau \text{ are NAE-satisfying}] = 2^n \sum_{z=0}^n \binom{n}{z} f_N(z/n)^{rn}$$
$$= 2^n \times \sum_{\alpha} \left[\binom{n}{\alpha n} f_N(\alpha)^{rn} \right] \qquad (\alpha \equiv z/n)$$
$$\leq C \times \left[\max_{\alpha \in [0,1]} \frac{2f_N(\alpha)^r}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}} \right]^n$$
$$\equiv C \times \left(\max_{\alpha \in [0,1]} \psi_r(\alpha) \right)^n .$$

Again, $\mathbf{E}[X]^2 = \psi_r (1/2)^n$. So, for all r such that ψ_r is maximized at $\alpha = 1/2$,

$$\Pr[X > 0] \geq \frac{\mathbf{E}[X]^2}{\mathbf{E}[X^2]} \geq 1/C$$

The random NAE k-SAT threshold

Theorem: There exists a sequence $\epsilon_k \to 0$ such that for all $k \ge 3$, if

$$r \le 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} - \epsilon_k$$
,

then w.h.p. $\mathcal{F}_k(n, rn)$ is NAE-satisfiable.

[Refined f.m.]: There exists a sequence $\delta_k \to 0$ such that for all $k \ge 3$, if

$$r \ge 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{4} - \delta_k$$
,

then w.h.p. $\mathcal{F}_k(n, rn)$ is not NAE-satisfiable.

k	3	4	5	6	7	8	9	10	11	12
Upper bound	2.214	49/12	10.505	21.590	43.768	88.128	176.850	354.295	709.186	1418.969
Lower bound	3/2	4.969	9.973	21.190	43.432	87.827	176.570	354.027	708.925	1418.712

A challenge for 1-step RSB

1-step RSB matches the rigorous upper bound

$$2^{k-1}\ln 2 - \frac{\ln 2}{2} - \frac{1}{4} - o(1)$$

Conjecture: The NAE k-SAT threshold occurs at the rigorous lower bound

$$2^{k-1}\ln 2 - \frac{\ln 2}{2} - \frac{1}{2} - o(1)$$

Why?

Intuition: NAE-assignments look like a "mist" on $\{-1, +1\}^n$. SAT-assignments don't.

Where does the clustering come from?

Useful fact: $\mathcal{F}_k(n,m)$ is "equivalent" to k-SAT formulas generated by

- Step 1: Creating X_i copies of each literal, where $\{X_i\}_{i=1}^{2n}$ are i.i.d. Poisson r.v.
- Step 2: Partitioning the literals randomly into k-clauses.

- For a given $\sigma \in \{-1, +1\}^n$, let $S(\sigma)$ be the number of literal copies satisfied by s.
- At the end of Step 1, S is a smooth function on $\{-1,+1\}^n.$
- An exponential number of t.a. "can feel" the majority assignment...

Satisfiability and Populism

For a random truth assignment σ in a random formula with m k-clauses

$$\mathbf{E}[S(\sigma)] = \frac{km}{2}$$

But if we condition on σ being a satisfying truth assignment in $\mathcal{F}_k(n,m)$,

$$\mathbf{E}[S(\sigma)] = \frac{km}{2} \times \frac{2^k}{2^k - 1}$$

Observe: But NAE-satisfiability does not increase the conditional expectation of L(s).

Idea: Look for satisfying assignments with $S(\sigma) = \frac{km}{2} \pm O(\sqrt{km}).$

Modest assignments via weighting

- Given any k-SAT formula F, let $\mathcal{G} \subseteq \{-1, +1\}^n$ be the set of satisfying t.a. of F.
- Given $\sigma \in \{-1, +1\}^n$ let $H = H(\sigma, F)$ be the number of satisfied literal copies F under σ minus the number of unsatisfied literal copies.
- For any $0 < \gamma \leq 1$, let

$$X = X(F) = \sum_{\sigma} \gamma^{H(\sigma,F)} \mathbf{1}_{\sigma \in \mathcal{G}(F)}$$

• **Proof:** Apply second moment method to $X(\mathcal{F}_k(n,m))$ for the right value of $\gamma = \gamma(k)$.

For

$$r \le 2^k \ln 2 - \frac{k}{2} - O(1)$$

the maximum occurs at $\alpha = 1/2$.

Modest assignments for random Max k-SAT

- Define H as before.
- Given $\sigma \in \{-1, +1\}^n$ let $U = U(\sigma, F)$ be the number of unsatisfied clauses by σ in F.
- For any $0 < \gamma \leq 1$ and $0 < \eta \leq 1$, let

$$X = X(F) = \sum_{\sigma} \gamma^{H(\sigma,F)} \eta^{U(\sigma,F)}$$

• **Proof:** Apply second moment method to $X(\mathcal{F}_k(n, m))$ for the right combination of γ, η .

[A., Naor, Peres '03]: For all $p \in [0, 1]$, let $r_k(p)$ be the threshold for having a truth assignment that satisfies $(1 - 2^{-k} + p2^{-k})m$ clauses.

$$\frac{r_k(p)}{2^k \ln 2} \rightarrow \frac{1}{p + (1-p)\log(1-p)}$$

Upper and lower bounds for $r_k(p)$ as a function of 1 - p.

2000 0000 Upper bound 8000 6000 4000 · Our lower bound 2000 · [CGHS02] 0.1 0.2 0.3 0.5 0.7 0 0.4 0.6

Upper and lower bounds for $r_k(p)$ as a function of 1 - p.

k = 7

k = 10