On the Threshold for Random [Max] k-SAT

Dimitris Achlioptas
Microsoft

Based on joint works with

Cris Moore (UNM/Santa Fe)
Assaf Naor (Microsoft)
Yuval Peres (Berkeley)

Satisfiability

Given a Boolean formula (CNF), decide if a satisfying truth assignment exists.

$$
\left(\bar{x}_{12} \vee x_{5}\right) \wedge\left(x_{34} \vee \bar{x}_{21} \vee x_{5} \vee \bar{x}_{27}\right) \wedge \cdots \wedge\left(x_{12}\right) \wedge\left(x_{21} \vee x_{9} \vee \bar{x}_{13}\right)
$$

Cook's Theorem: Satisfiability is NP-complete.

k-SAT: Each clause has exactly k literals.

Since the mid-70s a number of models have been proposed for Random SATisfiability.
Most models generate formulas that are too easy.

Random k-SAT

- Let $\mathcal{L}(n)$ be the set of $2 n$ literals $x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{n}, \bar{x}_{n}$.
- Form a random k-SAT formula $\mathcal{F}_{k}(n, m)$ as follows:

Generate $k \times m$ i.i.d. uniformly random literals from $\mathcal{L}(n)$

Does $\mathcal{F}_{k}(n, m)$ have a satisfying assignment?

Conjecture: For each $k \geq 3$, there exists a constant r_{k} such that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\mathcal{F}_{k}(n, r n) \text { is satisfiable }\right]= \begin{cases}1 & \text { if } r<r_{k} \\ 0 & \text { if } r>r_{k}\end{cases}
$$

In other words

The energy of a truth assignment $\sigma \in\{-1,+1\}^{n}$ in a k-SAT formula with clauses c_{1}, \ldots, c_{m}

$$
E(\sigma)=\sum_{c_{i}} \prod_{j=1}^{k}\left(1-\frac{1+\sigma_{i j} \ell_{i j}}{2}\right)
$$

So, random k-SAT is a mean-field, diluted, spin glass with k-wise interactions
Satisfying truth assignment are states with energy 0

First moment method

For any non-negative, integer-valued random variable X,

$$
\operatorname{Pr}[X>0]=\sum_{x>0} \operatorname{Pr}[X=x] \leq \sum_{x>0} \operatorname{Pr}[X=x] x=\mathbf{E}[X]
$$

Let X be the number of satisfying truth assignments of $\mathcal{F}_{k}(n, m=r n)$.

For every t.a. σ, by clause-independence, $\operatorname{Pr}[\sigma$ is satisfying $]=\left(1-\frac{1}{2^{k}}\right)^{m}$. So,

$$
\begin{aligned}
\mathbf{E}[X] & =\mathbf{E}\left[I_{1}+\cdots+I_{2^{n}}\right] \\
& =\left(2\left(1-\frac{1}{2^{k}}\right)^{r}\right)^{n} .
\end{aligned}
$$

But $2\left(1-\frac{1}{2^{k}}\right)^{r}<1$ for all $r \geq 2^{k} \ln 2$, implying $\mathbf{E}[X]=o(1)$ for such r. Thus,

$$
r_{k}<2^{k} \ln 2 .
$$

Unit-Clause Propagation

Repeat

- Pick an unset variable at random and assign it 0/1 at random
- While there are unit clauses
pick any one and satisfy it
- Value assignments are permanent (no backtracking)
- Failure occurs iff a 0-clause is ever generated
[Chao Franco 86]: For all $k \geq 3$, if

$$
r<\frac{2^{k}}{k}
$$

Unit-Clause propagation finds a satisfying t.a. with probability $\phi=\phi(k, r)>0$.

More previous work

- $\quad r_{k} \geq \frac{3}{8} 2^{k} / k$
[Chvátal Reed 92]
- $r_{k} \geq c_{k} 2^{k} / k$, where $\lim _{k \rightarrow \infty} c_{k}=1.817 \ldots$
[Frieze Suen 96]
- $r_{k} \leq 2^{k} \ln 2-d_{k}$, where $\lim _{k \rightarrow \infty} d_{k}=(1+\ln 2) / 2$
[Kirousis et al. 98]

No asymptotic progress over

$$
\frac{2^{k}}{k}<r_{k}<2^{k}
$$

in more than 15 years.

This talk

2^{k-1} \ln 2-2<r_{k}<2^{k} \ln 2
\]

\frac{r_{k}}{2^{k} \ln 2} \rightarrow 1
\]

[A., Naor, Peres '03]: For all $p \in[0,1]$, let $r_{k}(p)$ be the threshold for having a truth assignment that satisfies $\left(1-2^{-k}+p 2^{-k}\right) m$ clauses.

$$
\frac{r_{k}(p)}{2^{k} \ln 2} \rightarrow \frac{1}{p+(1-p) \log (1-p)}
$$

Second moment method

For any non-negative random variable X,

$$
\operatorname{Pr}[X>0] \geq \frac{\mathbf{E}[X]^{2}}{\mathbf{E}\left[X^{2}\right]}
$$

Let X be the number of satisfying truth assignments of $\mathcal{F}_{k}(n, m=r n)$.

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\mathbf{E}\left[\left(I_{1}+\cdots+I_{2^{n}}\right)^{2}\right] \\
& =\sum_{\sigma, \tau} \mathbf{E}\left[I_{\sigma} I_{\tau}\right] \\
& =\sum_{\sigma, \tau} \operatorname{Pr}[\text { Both } \sigma \text { and } \tau \text { are satisfying }] .
\end{aligned}
$$

Overlap is what matters. If σ, τ agree on $z=\alpha n$ variables and c is a random clause,

$$
\begin{aligned}
\operatorname{Pr}[\text { Both } \sigma \text { and } \tau \text { satisfy } c] & =1-2^{-k+1}+\frac{\alpha^{k}}{2^{k}} \\
& \equiv f(\alpha)
\end{aligned}
$$

Focus on the middle terms

$$
\begin{aligned}
\sum_{\sigma, \tau} \operatorname{Pr}[\text { Both } \sigma, \tau \text { are satisfying }] & =2^{n} \sum_{z=0}^{n}\binom{n}{z} f(z / n)^{r n} \\
& \geq 2^{n} \max _{z}\binom{n}{z} f(z / n)^{r n} \\
& \sim\left[\max _{\alpha \in[0,1]} \frac{2 f(\alpha)^{r}}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}\right]^{n} \quad(\alpha \equiv z / n) \\
& \equiv\left(\max _{\alpha \in[0,1]} g_{r}(\alpha)\right)^{n} .
\end{aligned}
$$

Observe that $\mathbf{E}[X]^{2}=g_{r}(1 / 2)^{n}$. So, g_{r} better be maximized at $\alpha=1 / 2$.

Random NAE k-SAT

Given a k-CNF, is there a truth assignment under which every clause has at least one satisfied literal and at least one unsatisfied literal?

Let X be the number of NAE-satisfying truth assignments of $\mathcal{F}_{k}(n, m=r n)$.

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\mathbf{E}\left[\left(I_{1}+\cdots+I_{2^{n}}\right)^{2}\right] \\
& =\sum_{\sigma, \tau} \mathbf{E}\left[I_{\sigma} I_{\tau}\right] \\
& =\sum_{\sigma, \tau} \operatorname{Pr}[\text { Both } \sigma \text { and } \tau \text { are NAE-satisfying }]
\end{aligned}
$$

Again, overlap is what matters. If σ, τ agree on $z=\alpha n$ variables and c is a random clause,

$$
\begin{aligned}
\operatorname{Pr}[\text { Both } \sigma \text { and } \tau \text { NAE-satisfy } c] & =1-2^{-k+2}+\frac{\alpha^{k}+(1-\alpha)^{k}}{2^{k-1}} \\
& \equiv f_{N}(\alpha)
\end{aligned}
$$

Focus on the middle terms (again)

$\sum_{\sigma, \tau} \operatorname{Pr}[$ Both σ, τ are NAE-satisfying $]=2^{n} \sum_{z=0}^{n}\binom{n}{z} f_{N}(z / n)^{r n}$

$$
\begin{aligned}
& =2^{n} \times \sum_{\alpha}\left[\binom{n}{\alpha n} f_{N}(\alpha)^{r n}\right] \\
& \leq C \times\left[\max _{\alpha \in[0,1]} \frac{2 f_{N}(\alpha)^{r}}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}\right]^{n} \\
& \equiv C \times\left(\max _{\alpha \in[0,1]} \psi_{r}(\alpha)\right)^{n} .
\end{aligned}
$$

Again, $\mathbf{E}[X]^{2}=\psi_{r}(1 / 2)^{n}$. So, for all r such that ψ_{r} is maximized at $\alpha=1 / 2$,

$$
\operatorname{Pr}[X>0] \geq \frac{\mathbf{E}[X]^{2}}{\mathbf{E}\left[X^{2}\right]} \geq 1 / C
$$

The random NAE k-SAT threshold

Theorem: There exists a sequence $\epsilon_{k} \rightarrow 0$ such that for all $k \geq 3$, if

$$
r \leq 2^{k-1} \ln 2-\frac{\ln 2}{2}-\frac{1}{2}-\epsilon_{k}
$$

then w.h.p. $\mathcal{F}_{k}(n, r n)$ is NAE-satisfiable.
[Refined f.m.]: There exists a sequence $\delta_{k} \rightarrow 0$ such that for all $k \geq 3$, if

$$
r \geq 2^{k-1} \ln 2-\frac{\ln 2}{2}-\frac{1}{4}-\delta_{k}
$$

then w.h.p. $\mathcal{F}_{k}(n, r n)$ is not NAE-satisfiable.

k	3	4	5	6	7	8	9	10	11	12
Upper bound	2.214	$49 / 12$	10.505	21.590	43.768	88.128	176.850	354.295	709.186	1418.969
Lower bound	$3 / 2$	4.969	9.973	21.190	43.432	87.827	176.570	354.027	708.925	1418.712

A challenge for 1-step RSB

1-step RSB matches the rigorous upper bound

$$
2^{k-1} \ln 2-\frac{\ln 2}{2}-\frac{1}{4}-o(1)
$$

Conjecture: The NAE k-SAT threshold occurs at the rigorous lower bound

$$
2^{k-1} \ln 2-\frac{\ln 2}{2}-\frac{1}{2}-o(1)
$$

Why?

Intuition: NAE-assignments look like a "mist" on $\{-1,+1\}^{n}$. SAT-assignments don't.

Where does the clustering come from?

Useful fact: $\mathcal{F}_{k}(n, m)$ is "equivalent" to k-SAT formulas generated by

- Step 1: Creating X_{i} copies of each literal, where $\left\{X_{i}\right\}_{i=1}^{2 n}$ are i.i.d. Poisson r.v.
- Step 2: Partitioning the literals randomly into k-clauses.

Modest assignments

- For a given $\sigma \in\{-1,+1\}^{n}$, let $S(\sigma)$ be the number of literal copies satisfied by s.
- At the end of Step $1, S$ is a smooth function on $\{-1,+1\}^{n}$.
- An exponential number of t.a. "can feel" the majority assignment...

Satisfiability and Populism

For a random truth assignment σ in a random formula with $m k$-clauses

$$
\mathbf{E}[S(\sigma)]=\frac{k m}{2}
$$

But if we condition on σ being a satisfying truth assignment in $\mathcal{F}_{k}(n, m)$,

$$
\mathbf{E}[S(\sigma)]=\frac{k m}{2} \times \frac{2^{k}}{2^{k}-1}
$$

Observe: But NAE-satisfiability does not increase the conditional expectation of $L(s)$.

Idea: Look for satisfying assignments with $S(\sigma)=\frac{k m}{2} \pm O(\sqrt{k m})$.

Modest assignments via weighting

- Given any k-SAT formula F, let $\mathcal{G} \subseteq\{-1,+1\}^{n}$ be the set of satisfying t.a. of F.
- Given $\sigma \in\{-1,+1\}^{n}$ let $H=H(\sigma, F)$ be the number of satisfied literal copies F under σ minus the number of unsatisfied literal copies.
- For any $0<\gamma \leq 1$, let

$$
X=X(F)=\sum_{\sigma} \gamma^{H(\sigma, F)} \mathbf{1}_{\sigma \in \mathcal{G}(F)}
$$

- Proof: Apply second moment method to $X\left(\mathcal{F}_{k}(n, m)\right)$ for the right value of $\gamma=\gamma(k)$.

For

$$
r \leq 2^{k} \ln 2-\frac{k}{2}-O(1)
$$

the maximum occurs at $\alpha=1 / 2$.

Modest assignments for random Max k-SAT

- Define H as before.
- Given $\sigma \in\{-1,+1\}^{n}$ let $U=U(\sigma, F)$ be the number of unsatisfied clauses by σ in F.
- For any $0<\gamma \leq 1$ and $0<\eta \leq 1$, let

$$
X=X(F)=\sum_{\sigma} \gamma^{H(\sigma, F)} \eta^{U(\sigma, F)}
$$

- Proof: Apply second moment method to $X\left(\mathcal{F}_{k}(n, m)\right)$ for the right combination of γ, η.
[A., Naor, Peres '03]: For all $p \in[0,1]$, let $r_{k}(p)$ be the threshold for having a truth assignment that satisfies $\left(1-2^{-k}+p 2^{-k}\right) m$ clauses.

$$
\frac{r_{k}(p)}{2^{k} \ln 2} \rightarrow \frac{1}{p+(1-p) \log (1-p)}
$$

$k=3$

$k=4$

Upper and lower bounds for $r_{k}(p)$ as a function of $1-p$.

$$
k=7
$$

$k=10$

Upper and lower bounds for $r_{k}(p)$ as a function of $1-p$.

