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Phase Diagram of the High Tc Superconductors
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• Evidence for stripe charge order in underdoped HTS (LSCO
and YBCO) (Tranquada, Ando)

• Evidence of coexistence of stripe charge order and super-
conductivity in LSCO and YBCO (Mook, Tranquada)

• STM Experiments suggest existence of short range stripe
order and possibly broken rotational symmetry in BSCO
(Kapitulnik, Davis, Yazdani)
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Charge and Spin Order in Doped Mott Insulators

Many strongly correlated (quantum) systems exhibit spatially in-

homogeneous and anisotropic phases.

Stripe phases of cuprate superconductors

Stripe phases of manganites and nickelates

Anisotropic transport in 2DEG in large magnetic fields

Common underlying physical mechanism:

Competition→






effective short range attractive forces

long(er) range repulsive (Coulomb) interactions

uniform gapped state not allowed⇒ spatial inhomogeneity

Examples in classical systems: blockcopolymers, ferrofluids, etc.

Astrophysical examples: “Pasta Phases” of neutron stars

Analogues in lipid bilayers intercalated with DNA
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Soft Quantum Matter

or

Quantum Soft Matter
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Electron Liquid Crystal Phases
S. Kivelson, E. Fradkin, V. Emery, Nature 393, 550 (1998)

Doping a Mott insulator: inhomogeneous phases due to the com-
petition between phase separation and strong correlations

• Crystal Phases: break all continuous translation symme-
tries and rotations

• Smectic (Stripe) phases: break one translation symmetry
and rotations

• Nematic and Hexatic Phases: are uniform and anisotropic

• Uniform fluids: break no spatial symmetries

HTS: Lattice effects⇒ breaking of point group symmetries

If lattice effects are weak (high temperatures)⇒ continuous sym-

metries essentially recovered

2DEG in GaAs heterostructures⇒ continuous symmetries
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Electronic Liquid Crystal Phases in HTS

• Liquid: Isotropic, breaks no spacial symmetries;
either a conductor or a superconductor

• Nematic: Lattice effects reduce the symmetry to a
rotations by π/2 (“ Ising”); translation and reflec-
tion symmetries are unbroken; it is an anisotropic
liquid with a preferred axis

• Smectic: breaks translation symmetry only in one
direction but liquid-like on the other; Stripe phase;
(infinite) anisotropy of conductivity tensor

• Crystal(s): electron solids (“CDW”); insulating states.
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Schematic Phase Diagram of Doped Mott Insulators
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~ω̄ measures transverse zero-point stripe fluctuations of the stripes.

Systems with “large” coupling to lattice displacements (e. g. manganites) are

“more classical” than systems with “primarily” electronic correlations (e. g.

cuprates); nickelates lie in-between.

Transverse stripe fluctuations enhance pair-tunneling and superconductivity.
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Order Parameters for Charge Ordered States

Smectic (Stripe) State

• unidirectional CDW

• charge modulation⇒ charge stripe

• if it coexists with spin order⇒ spin stripe

• stripe state⇒ new Bragg peaks of the electron density at

~k = ± ~Qch = ± 2π

λch

êx

• spin stripe⇒ magnetic Bragg peaks at

~k = ~Qs = (π, π)± 1

2
~Qch

• Order Parameter: 〈n ~Qch
〉, Fourier component of the electron density at

~Qch.
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Nematic Order

Nematic State: broken rotational invariance but uniform

If the smectic (stripe) state melts (either quantum mechanically
or by thermal fluctuations)⇒ Local stripe ordered regions

fluctuate

To detect broken rotational symmetry alone we need any

quantity transforming like a traceless symmetric tensor

For example, in D = 2 one can use

S(~k) =

∫ ∞

−∞

dω

2π
S(~k, ω)

to construct

Q~k
=

S(~k)− S(R~k)

S(~k) + S(R~k)

S(~k, ω); dynamic structure factor
R = rotation by π/2.

Transport: use the resistivity tensor to construct Q

Q=
ρxx − ρyy

ρxx + ρyy
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Transport Anisotropy in 2DEG in large B Fields

M. Lilly et.al., Phys. Rev. Lett. 82, 394 (1999)
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Summary of the experiments

• High mobility samples (33× 107) and long mean-free path
(0.5 mm!)

• I − V curves are linear at low V and non-linear at high V ;
no thresholds in the anisotropic regime, sharp thresholds in
the IQHE reentrant regime.

• No noise in the anisotropic regime; broad band noise ob-
served in IQHE reentrant regime.

• It behaves like an anisotropic fluid with a temperature de-
pendent anisotropy!
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The 2DEG behaves like a Nematic fluid!

0 100 200 300
T (mK)

0

0.2

0.4

0.6

0.8

1

(ρ
xx

−ρ
yy

)/(
ρ xx

+ρ
yy

)

Experimental data
h/J=0.05 J=73.5 mK

Monte Carlo simulation of a classical 2D XY model with cou-
pling J and external field h, on a 100× 100 lattice, fitted to the
data of Lilly and coworkers, at ν = 9/2 (after deconvoluting ge-
ometric effects).
Best fit: J = 73mK, h = 0.05J = 3.5mK and Tc = 65mK.

E. Fradkin, S. A. Kivelson, E. Manousakis and K. Nho, PRL. 84, 1982 (2000).
K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer and K. W. , West,
PRB65, 241313/1-4 (2002)
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Phases of Smectic (Stripe) States

• Stripe states are quasi-one dimensional phases

• Charge degrees of freedom are “confined” to one dimensional struc-
tures, a.k.a “stripes”

• Stripe states can be described as arrays of “sliding” Luttinger liquids

• Forward scattering interactions are marginal→ many Luttinger param-
eters

• Physics depends on the possible existence of a spin gap

• Pair tunneling→ superconductivity

• Inter-stripe 2kF couplings→ crystals (CDW)

• Electron tunneling (if unsuppressed by a spin gap)→ 2D nematic Fermi
liquids
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Phase diagram with a spin gap
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V. J. Emery, E. Fradkin, S. A. Kivelson and T. C. Lubensky, PRL 85, 2160
(2000)
A. Vishwanath and D. Carpentier, PRL 86, 676 (2001)
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A Nematic “Fermi Liquid”

V. Oganesyan, S. A. Kivelson, and E. Fradkin, PRB 64, 195109 (2001)

• We can think of a quantum nematic either as a melted smectic (strong
coupling) or as a Fermi surface instability (weak coupling)

• The nematic order parameter for two-dimensional Fermi fluid is the 2×2
symmetric traceless tensor

Q̂(x) ≡ − 1

k2
F

Ψ†(~r)
(

∂2
x − ∂2

y 2∂x∂y

2∂x∂y ∂2
y − ∂2

x

)

Ψ(~r),

• In the nematic phase

Q ≡< Q̂ >≡ Qe2iθ = Q11 + iQ12 6= 0

• The Fermi surface spontaneously distorts into an ellipse (Pomeranchuk
instability) with an eccentricity ∝ Q

• this state is uniform and breaks rotational invariance (mod π)

• It is trivial to construct hexatic states as well
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Simple Fermi liquid model

H =

∫

d~r Ψ†(~r)ε(~∇)Ψ(~r) +
1

4

∫

d~r

∫

d~r ′F2(~r − ~r′)Tr[Q̂(~r)Q̂(~r ′)]

ε(~k) = vF q[1 + a(
q

kF
)2], where q ≡ |~k| − kF

F2(~r) =

∫

d2k

(2π)2
ei~q·~r F2

1 + κF2q2

F2 is a Landau parameter.

Landau theory of the Landau theory

Landau energy density functional:

V[Q] = E(Q)− κ̃

4
Tr[QDQ]− κ̃′

4
Tr[Q2DQ] + . . .

E(Q) = E(0) +
A

4
Tr[Q2] +

B

8
Tr[Q4] + . . .

A = 1
2NF

+ F2 NF is the density of states at the Fermi surface, EF ≡ vFkF

is the Fermi energy, and B =
3aNF |F2|3

8E2
F

.

If A < 0⇒ nematic phase
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Phase Diagram

• an isotropic Fermi liquid phase

• a nematic non-Fermi liquid phase

separated by a quantum critical point at 2NFF2 = −1

Physics of the Nematic Phase:

• Transverse Goldstone boson which is generically overdamped except
for φ = 0,±π/4,±π/2 (symmetry directions) where it is underdamped

• Anisotropic (Drude) Transport

ρxx − ρyy

ρxx + ρyy
=

1

2

my −mx

my + mx
=

Re Q

EF
+O(Q3)

• Quasiparticle scattering rate (one loop): In general

Σ′′(ε,~k) =
π√
3

(κk2
F)1/3

κNF

∣

∣

∣

∣

kxky

k2
F

∣

∣

∣

∣

4/3
∣

∣

∣

ε

2vFkF

∣

∣

∣

2/3

+ . . .

Along a symmetry direction:

Σ′′(ε) =
π

3NFκ

1

(κk2
F)1/4

∣

∣

∣

ε

vF kF

∣

∣

∣

3/2

+ . . .

• The Nematic phase is a Non-Fermi liquid with “nodal excitations”!

• At the quantum phase transition its behavior is the same as fermions
coupled to a fluctuating gauge field (c.f. P. A. Lee and collaborators)

• Preliminary work indicates that it favors an instability to extended s-
wave superconductivity (H-Y Kee and Y-B Kim, 2002 )
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Nematic States in the Strongly Coupled Emery Model of a CuO

plane

S.A. Kivelson, E.Fradkin and T. Geballe , cond-mat/0302163

V

t pd

pd

Vpp
Up

t pp
ε

U d

Energetics of the 2D Cu−O model in the strong coupling limit:

tpd/Up, tpd/Ud, tpd/Vpd, tpd/Vpp → 0

Ud > Up � Vpd > Vpp and tpp/tpd → 0

as a function of hole doping x > 0 (x = 0⇔ half-filling)

Energy to add one hole: µ ≡ 2Vpd + ε

Energy of two holes on nearby O sites: µ + Vpp + ε
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Effective One-Dimensional Dynamics at Strong Coupling

In the strong coupling limit, and at tpp = 0, the motion of an extra hole is

strongly constrained. The following is an allowed move which takes two steps.

The final and initial states are degenerate, and their energy is E0 + µ

a) b)

• Intermediate state for the hole to turn a corner; it has energy E0 +µ+

Vpp⇒ teff =
t2
pd

Vpp
� tpd

• Intermediate state for the hole to continue on the same row; it has en-

ergy E0 + µ + ε⇒ teff =
t2
pd

ε
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Physics of the Nematic State

• The ground state at x = 0 is an antiferromagnetic insulator

• Doped holes behave like one-dimensional spinless fermions

Hc = −t
∑

j

[c†jcj+1 + h.c.] +
∑

j

[εjn̂j + Vpdn̂jn̂j+1]

• at x = 1 it is a Nematic insulator, and it is also insulating at other
commensurate cases, e. g. x = 1/2

• the ground state for x→ 0 and x→ 1 is a uniform array of 1D Luttinger
liquids⇒ it is an Ising Nematic Phase.

• This result follows from the observation that for x→ 0 the ground state
energy of the nematic state is

Enematic = E(x = 0) + ∆c x + W x3 + O(x5)

where ∆c = 2Vpd + ε + . . . and W = π2~2/6m∗, while the energy of
the isotropic state is

Eisotropic = E(x = 0) + ∆c x + (1/4)W x3 + Veff x2

(Veff is an effective coupling for holes on intersecting rows and columns)
⇒ Enematic < Eisotropic

• A similar argument holds for x→ 1.

• the density of mobile charge ∼ x but kF = (1− x)π/2

• For tpp 6= 0 this 1D state crosses over (most likely) to a 2D (Ising)
Nematic Fermi liquid state.
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Phase diagram in the strong coupling limit
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• In the “classical” regime, ε/tpd → ∞, with Ud > ε, the doped holes
are distributed on O sites at an energy cost µ per doped hole and an
interaction J = Vpp/4 per neighboring holes on the O sub-lattice

• This is a classical lattice gas equivalent to a 2D classical Ising anti-
ferromagnet with exchange J in a uniform “field” µ, and an effective
magnetization (per O site) m = 1− x

• The classical Ising antiferromagnet at temperature T and magnetization
m = 1− x has the phase diagram of the figure.

• For T � tpd/
√

t2pd + ε2, the classical phase diagram holds even for
0 < tpd/ε <∞

• Quantum fluctuations lead to a similar phase diagram, except for the
extra nematic phases at least near x ∼ 0, x ∼ 1 and x ∼ 1/2 ⇒
complex phase diagram in the quantum regime
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“Fluctuating Order”

Ordered states are characterized by a spontaneously broke sym-
metry⇒ Order Parameter

Order Parameter fluctuations grow as a (classical or quantum)
critical point is approached⇒ Fluctuations are evidence for the
proximate ordered state

quantum disordered state: fast fluctuations
τ ∼ E−1

G (EG ≡ Gap)⇒ unless EG → 0, τ is “short”

“Fluctuating Order” is an ill-defined concept unless the nearby
ordered state is found

Detecting Ordered States: Best way
1) detect the broken symmetry
2) detect fluctuations, e. g. measure S(~k, ω)
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Quantum Critical Point and Fluctuating Order
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Electronic Liquid Crystal Phases may be detected by X-ray and
neutron scattering (both are hard to do).

Local probes can be used to detect “local order”.

NMR, NQR, µSR and STM are quasi-static probes

They only work if the “fluctuating order” is pinned on the time

scale of these experiments

24



Fluctuating Order near a Quantum Critical Point

Consider a system in its quantum disordered phase near a QCP
e. g. charge order is absent as T → 0 (other types of order may
survive).

Sch(~k, ω) for ~k ≈ ~Qch measures collective fluctuations most sen-
sitive to the QCP.

Scaling⇒ ξ ∼ `−ν and τ ∼ `−νz ( ` = g − gc: distance to the
QCP)

Quantum Disordered Phase: EG ∼
~

τ
∼ `νz.

• ~ω > EG ⇒ Sch(~k, ω) has a pole corresponding to a
sharply defined excitation whose quantum numbers are dic-
tated by the nature of the nearby ordered state for ` < 0

• For ~ω > 3EG ⇒ Sch(~k, ω) has a multi-particle continuum

• For ~ω & EG we probe the quantum critical regime where
there are no sharply defined quasi-particles since the anoma-
lous dimension η 6= 0

• The continuum has a branch cut whose dispersion resem-
bles that of the Goldstone modes of the ordered state
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Classical vs. Quantum Critical Behavior

Near a classical critical point dynamics and thermodynamics are
not necessarily connected
Classical Fluctuation-Dissipation Theorem:

Structure Factor→ S(~k) = Tχ(~k)← Susceptibility

Growing peak in S(~k) at ~Qch with width |~k − ~Qch| ∼ ξ−1 and

S( ~Qch) ∼ |T − Tc|−γ reflects stripe order near Tc

Near a quantum critical point, dynamics is linked to thermody-
namics

• largest contribution to S(~k) comes from the multi-particle
continuum at large ω and it is small

• the largest contribution to χ(~k) comes from low ω

Near a QCP, χ′′(~k, ω) scales: S( ~Qch) ∼ τ−1χ( ~Qch)

⇒
{

χ( ~Qch) ∼ `−γ strong singularity

S( ~Qch) ∼ `−ν(2−z−η) weak singularity
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Weak disorder makes life simpler!

Pure system: S(~k, ω) has no information for ~ω . EG and static
experiments see nothing

Low quenched disorder, Vdisorder ∼ EG leads to important ef-
fects

• transfer of spectral weight to ~ω . EG, including ω → 0

• low frequency structure of S(~k, ω) is largest for ~k where
Spure(~k, ω) is large⇒ ~k ∼ ~Qch

• slow modes are most affected by weak disorder

• Lesson: weak disorder→ quasi-elastic peaks of Sch(~k, ω)

• disorder eliminates the spectral gap and affects weakly SΩ(~k)

27



Response functions for charge ordered states
How can we measure a response function for charge ordered
states?

• Susceptibility: V~k
small non-uniform potential

⇒ 〈n~k
〉= χ(~k)V~k

• for |~k − ~Qch| . ξ−1 and EG . V ~Qch

⇒ 〈n ~Qch
〉 ∼ |V ~Qch

|1/δ, δ−1 = (d− 2 + η)/2

STM: sensitive to the local DOS N (~r, E)

• Pure system: N (~r, E) = N0(E)

• Weak disorder: N (~k, E) = χDOS(~k, E)V~k
,

N (~k, E) = F. T. [N (~r, E)]

χDOS(E,~k) =

∫

d~r dt dτ eiEt−i~k·~rθ(τ)〈[{Ψ†σ(~r, t+τ),Ψσ(~r, τ)}, n̂(~0)]〉

χch(~k,Ω = 0) =

∫

dEf(E) χDOS(~k, E)

f(E): Fermi function
Nematic order: χ(~k,Ω = 0) = χ(R~k,Ω = 0)
→ we need a non-linear response

Q~k
=

∫

d~p χnem(~k; ~p)[V~p − VR[~p]][V−~p + V−R[~p]] + . . .
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One-dimensional Luttinger Liquid at low T

• quantum critical CDW system with z = 1

• Luttinger parameters:
{

Kc ≤ 1, (repulsive interactions)

Ks = 1 (spin rotation invariance)

no electron-like quasiparticles:
spin-charge-separated solitons with vc & vs

• Charge Susceptibility:
χch(2kF + q) ∼ |q|Kc−1 −→∞ as q → 0

• Charge Density Structure Factor:

S(k, ω) =

∫ ∞

−∞
dt

∫ ∞

−∞
dx S(x, t)eikx−iωt

S(r, t) = S0(r, t)+[ei2kFrS2kF
(r, t)+c.c.]+[ei4kFrS4kF

(r, t)+c.c.]

quantum criticality⇒ scaling⇒

S(2kF + q, ω) =
1

vc

(

D

~vcq

)a

Φ2kF

(

ω

vcq
,

~ω

kBT

)

a = 1−Kc and Φ(x, y) depends on Kc and vc/vs
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STM of a 1D Luttinger Liquid and Charge Order

x

STM

impurity

Consider the effects of a single impurity in a TLL
Kc < 1 (repulsive)⇒ V2kF

≡ Γ is relevant (Kane and Fisher)
⇒ ∃ crossover scale TK ∼ Γ2/(1−Kc)

RG flow :

{

E � TK → Γ→ 0

E � TK → Γ→∞
At low energies the impurity⇔ boundary condition current= 0
Behavior of the 2kF component of the LDOS for E � TK :

N(q + 2kF, E) =
~B

E

(

E

D

)2b

Φ

(

2E

~vcq
,

E

kBT

)

b = (1−Kc)
2/4Kc
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Thermally Scaled STM (left) and ARPES (right)
spectra
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Low Temperature STM Spectra near 2kF
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E/kBT = 100; a) Kc = 0.5, b) Kc = 0.17.

N(k, E) = |N(k, E)| eiφ(k, E)
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Thermally Scaled Energy-integrated DOS Ñ(k, TK)

of a 1D Luttinger Liquid with an impurity
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Weakly interacting 2DEG: Fermi Liquid

DOS susceptibility (in 2D): ε~k
= ~2~k2/2m

χ0
DOS(E,~k) =

m

π~2

θ(ε~k
− 4E)

√

ε~k

(

ε~k
− 4E

)

It is singular (in 2D) at ε~k
→ 4E (closed curves, not peaks!)

⇒ DOS modulations induced by weak disorder are quite differ-
ent from the effects of a proximate CDW QCP

2D Charge Susceptibility→ weak singularity as |~q| → 2kF

χ0(~q) =
m

2π~2



1− θ(q − 2kF)

√

1− 4k2
F

q2





→ Friedel Oscillations

Fermi Liquid (RPA)

χch(~k) = [1− U~k
χ0(~k)]

−1χ0(~k)

χDOS(~k, E) = [1− U~k
χ0(~k)]

−1χ0
DOS(

~k, E).

Near a CDW QCP

χDOS(~k, E) ≈ [1− U~k
χ0(~k)]

−1χ0
DOS(

~Qch, E).

Prefactor: singular at ~Qch
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Diffraction from Stripes with and without LRO

Comparison of constant-energy scans at ~ω = 3 meV through

an incommensurate magnetic peak (along path shown in inset)

for (a) La1.85Sr0.15CuO4 and (b) La1.48Nd0.4Sr0.12CuO4. Both

scans are at T = 40 K > Tc; J. Tranquada, N. Ichikawa and S.

Uchida, Phys. Rev. B 59, 14712 (1999).
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Induced stripe order in LSCO by Zn impurities

300

200

100

0

I 7K
 (a

rb
. u

ni
ts

)

-0.2 0.0 0.2



800

400

0

I 7K
-I

80
K

 (a
rb

. u
ni

ts
)

-0.2 0.0 0.2
(0.5+h,0.5,0) (0.5+h,0.5,0)

La1.86Sr0.14Cu0.988Zn0.012O4 La1.85Sr0.15CuO4

∆E = 0 ∆E = 0

∆E = 1.5 meV ∆E = 2 meV
(a)

(b)

(c)

(d)

-0.2 0 0.2
400

800

1200

T = 1.5 K
T = 50 K

Intensity  (arb. units)

100

0

-0.2 0.0 0.2

Intensity  (arb. units)

Comparison of magnetic scattering measurements with and
without Zn; K. Himura et. al., Phys. Rev. B 59, 6517 (1999); K.
Hirota, Physica C 357-360, 61 (2001); K. Yamada et. al., Phys.

Rev. B 57, 6165 (1998). all scans are along Q = (1
2
+ h, 1

2
,0),

measured in reciprocal lattice units. (a) Scan at E = 1.5 meV and T = 7 K,

and (b) difference between elastic scans measure at 7 K and 80 K, both for

La1.86Sr0.14Cu0.988Zn0.012O4 (Tc = 19 K). (c) Scan at E = 2 meV and

T = 38 K, and (d) elastic scans at T = 1.5 K (circles) and 50 K (triangles),

for La1.85Sr0.15CuO4 (Tc = 38 K).
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STM evidence for local stripe/nematic charge order in

superconducting Bi2Sr2CaCu2O8+δ

C. Howald et. al., cond-mat/0201546
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STM quasiparticle spectrum in superconducting

Bi2Sr2CaCu2O8+δ

Data from J. E. Hoffman et. al., Science 297, 1148-1151 (2002)

black curves: fits with Norman’s ARPES band structure with a d-wave gap

Both quasiparticles and induced order are seen!
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Integrating the spectrum up to some energy reveals
static induced local order
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Real part of the FT of the LDOS in BSCCO along the CuO bond
direction for T � Tc (data from Kapitulnik’s group). The same
effect was found above Tc by Yazdani’s group.

Similar striking effects were found earlier by J. Hoffman et. al.,

Science 295, 466 (2002), who studied order induced by a vortex
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Conclusions

• Liquid Crystal phases are a generic feature of doped Mott insulators.

• We gave a phenomenological characterization of these phases

• Smectic (stripe) phases lead to phase diagrams with competing orders

• Nematic phases are non-Fermi liquid like (if unpinned by the lattice)
and appear naturally in the strong coupling regime of simple strongly
correlated models.

• We discussed the origin of the nematic phases from two points of view

1. As an instability of a Fermi Liquid State

2. As the strong coupling limit of the Emery Model

• We reviewed the concept of fluctuating (charge) order and discussed
ways of measuring it

• We gave examples in the 1DEG and 2DEG of fluctuating charge order

• We discussed evidence for fluctuating charge order in neutron scatter-
ing and STM experiments in HTS
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