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How more is different:
A quantum information perspective

Quantum Achievements
• Algorithms: polynomial-time factoring 
algorithm, based on the fast quantum 
Fourier transform.

• Cryptography: unconditionally secure 
quantum key distribution.

• Error correction: robust quantum 
computation, overcoming the pervasive 
effects of decoherence.  

• Hardware: working prototypes for 
quantum key distribution; coherent 
quantum gates in small-scale devices.

Shor

Bennett

Wineland
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Quantum Challenges
• Algorithms: exponential speedups beyond 
the abelian hidden subgroup problem.

• Cryptography: quantum enhancements of 
other cryptographic tasks.

• Error correction: physically robust quantum 
memory.

• Hardware: toward scalable devices.

???

Hallgren

Gottesman

Kitaev

1) Quantum Computation
2) Quantum Cryptography
3) Quantum Error Correction

Theoretical Quantum Information Science

The computer scientists seem to be setting the agenda ….
What problems do physicists usually grapple with?
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Challenges in theoretical (quantum) physics?

• “Dreams of a final theory.” What theory describes the 
fundamental constituents of matter and their 
interactions? (What computational model is realized in 
Nature?)

• “More is different.” What emergent collective 
phenomena can arise in condensed matter? (What is 
the potential complexity of quantum many-body 
systems?)

• “How come the quantum?” Why do the rules of 
quantum mechanics apply to Nature? (Is everything
information?)

Weinberg

Anderson

Wheeler

• “Dreams of a final theory.” Can computational approaches help 
us to answer “What is M theory?” How would we simulate M 
theory? Is M theory computationally more powerful than 
quantum field theory? Is physics computable?

• “More is different.” What are the robust universal properties of 
phases of matter? Can there be a “final theory” of condensed 
matter? Are there a finite number of classes of collective 
quantum phenomenon that can be explored with reasonable 
resources?

• “How come the quantum?” What deformations of quantum 
theory make sense? Can ideas about quantum error correction 
help us to understand why information loss (if it occurs) is not
evident at low energies. Is quantum mechanics attractive in the 
infrared limit?  

What can the study of quantum computation and 
quantum information tell us about physics?
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1) Quantum Computation
2) Quantum Cryptography
3) Quantum Entanglement
4) Quantum Error Correction
5) Quantum Hardware

Themes of quantum information science

Quantum 
Computation

Feynman ‘81 Deutsch ‘85 Shor ‘94
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Feynman ‘81 Deutsch ‘85 Shor ‘94

A computer that operates on quantum states can 
perform tasks that are beyond the capabilit y of 

any conceivable classical computer.

Finding Prime Factors
1807082088687 
4048059516561 
6440590556627
8102516769401
3491701270214
5005666254024
4048387341127
5908123033717
8188796656318
2013214880557

3968599945959
7454290161126
1628837860675
7644911281006
4832555157243

4553449864673
5972188403686
8972744088643
5630126320506
9600999044599

×=

Shor ‘94
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Black Box model (= oracle model)
The black box computes a function

Our task is to determine what the box is doing, as 
efficiently as possible. The “black box complexity’’ (or 
“oracle complexity’’) of the problem is the minimum 
number of “queries’’ to the box that will allow us to 
determine the function (or some property of the 
function). 

fx f(x)

Quantum Black Box model
The black box performs a unitary transformation

Again, we want to find f.  We can submit to the box 
either classical queries (computational basis states

) or quantum queries (general states). Claim: with 
quantum queries, in some cases we can solve the 
problem with an exponential speedup relative to what 
can be achieved with only classical queries.

Uf

| x〉 | x〉

| y〉 | ( )y f x⊕ 〉

| ,x y〉
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Hidden subgroup problem

The function
is constant and distinct on the cosets of the subgroup

The problem is to find the generator(s) of the “hidden 
subgroup” This problem is hard (classically) if the 
number of cosets is exponentially large.

Claim: the hidden subgroup problem can be solved 
efficiently in the quantum black box model for any finitely 
generated abelian 
group (e.g., in 
time polylog(|G/H|). 

:f G X→

.H G⊆

.H

G

Uf

| x〉 | x〉

| y〉 | ( )y f x⊕ 〉

Hidden subgroup problem
Claim: the hidden subgroup problem can be solved efficiently in 
the quantum black box model for any finitely generated abelian 
group 

This is so because the quantum Fourier transform can be 
implemented efficiently (time polylog(|G|) on a quantum computer. 
Hence:

1

. .

measure

0 0

. .

|0 |0 | |0 | | ( )

| | ( )

( ) |

fF T

x G x G

x H

F T

y H

x x f x

x x f x

phase y
−

⊥

∈ ∈

∈

∈

〉⊗ 〉 → 〉⊗ 〉 → 〉⊗ 〉

→ + 〉⊗ 〉

→ 〉

∑ ∑

∑

∑

.G

We determine the group 
by finding its dual (or 
reciprocal) group

H

.H ⊥
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.H r G= ⊆ =Z Z

Hidden subgroup problem
Example: finding the period of a function
Then:

or 

This is the problem solved by Shor (‘94) which is related to the
factoring problem by a number-theoretic classical reduction.

(We can’t really Fourier transform over      , but it suffices to 
consider        for )

Most known cases in which a quantum computer achieves an 
exponential speedup relative to a classical computer involve using 
the quantum Fourier transform to solve a (finitely-generated) 
abelian hidden subgroup problem. 

:f →Z Z

( ) ( )f x r f x+ =

Z
/ nZ Z ).(n r= poly

What are the integer solutions (x,y) to:

x2 - d y2 = 1
where d is an integer that is not a perfect square?

Quantum algorithm for Pell’s equation

Hallgren

This problem has been studied for over 1000 years, and 
seems to be more difficult than factoring, in that the best 
known classical algorithm for Pell’s equation is exponentially 
slower than the best known classical algorithm for factoring: 
O(exp(log d)1/2)). Sean Hallgren’s (2002) quantum algorithm 
solves it in time O(polylog d), breaking a proposed 
cryptosystem based on the presumed hardness of solving 
Pell’s equation.

Hallgren’s algorithm extends the solution of the hidden 
subgroup problem to an abelian group that is not finitely 
generated (finding an irrational period of a function on real 
numbers).
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The hidden subgroup is a two element group H, 
generated by a reflection, of the dihedral group 
DN, where N=2n . There are many such 
subgroups, related by conjugation, that are hard 
to distinguish.

Dihedral Hidden Subgroup Problem

and “steer” the outcome toward the irreps that provide useful information. 

The speedup is from the classical time 2O(n) to quantum time 2O(�n) . Can 
it be improved to Poly(n) ? 

Finding the shortest vector on a lattice (a problem with cryptographic 
applications) can be reduced to solving the dihedral hidden subgroup 
problem. 

H

Kuperberg ‘03

There are two one-dimensional irreps that can reveal a bit of information 
about the “slope” of the subgroup H. These are very unlikely to occur when 
we measure after doing the Fourier transform. But we can fuse  two two-
dimensional irreps…

k l k l k lV V V V+ −⊗ = ⊕

Childs, Cleve, Deotto, Farhi, Gutmann & Spielman ‘02

Two trees are connected with a random cycle. 
There are 2n nodes, labeled with randomly 
assigned 2n-bit strings. If queried with a valid 
name of a node, the oracle responds with the 
names of the adjacent nodes. The label of the 
entrance is given. The problem is to find the 
name of the exit.

Exponential speedup by quantum walk

Classically, this problem is hard. (Classical diffusion carries you to the 
center, away from the exit.)

Quantumly, the oracle is an operator that can be invoked to simulate a 
Hamiltonian that couples adjacent sites. A uniform superposition of all nodes 
in a column is preserved by the Schrödinger evolution. The exit (but not a 
path through the graph). can be found efficiently

Random walks on graphs have many applications in classical algorithms, 
and this example shows that quantum walks can enhance computational 
power. But are there less contrived problems with such speedups?
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“The rule of simulation that I 
would like to have is that the 
number of computer elements 
required to simulate a large 
physical system is only 
proportional to the space-time 
volume of the physical 
system”

R. P. Feynman, “Simulating 
Physics with Computers” 
(1981).

M. Greiner, O. 
Mandel, T. 
Esslinger, T. W. 
Hänsch, and I. 
Block, “Quantum 
phase transition 
from a superfluid
to a Mott insulator 
in a gas of 
ultracold atoms,” 
Nature 415, 39-44 
(2002).

Simulation of a quantum phase transition: 
a tunable and nearly perfect (optical) lattice!

Jaksch Zoller
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The quantum 
computer can be 
an important tool 
for investigating 
the properties of 
quantum many-
body systems and 
exotic materials.

Simulation of a quantum phase transition: 
a tunable and nearly perfect (optical) lattice!

Adiabatic Quantum Computation
Farhi, Gutman, Goldstone & Sipser (2000) ..

An NP-hard problem: Find the ground state of an Ising spin 
glass on a three-dimensional cubic lattice.

problem , 1ij i j i
ij

H J σ σ σ
〈 〉

= − = ±∑
An “instance” of the problem is specified by

{ } 1 (ferromagnetic)
,

1 (antiferromag) ij ijJ J
+

=  −
Geometrically, domain walls terminate at frustrated 1-cycles; 
the ground state is a 2-surface of minimal area with a specified 
1-dimensional boundary.

Can we find the ground state by simulated annealing? 
Unfortunately, there are many local minima of the energy for 
typical hard instances, so the equilibration time is exponentially 
long...
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Adiabatic Quantum Computation
Perhaps a quantum algorithm can “tunnel” through barriers to 
find the global minimum more efficiently than a classical search. 
For example, we can find the ground state via adiabatic 
evolution:

°

°
begin problem

| ( ) ( ) | ( ) , ( ) ( / ) ,

( ) (1 ) , [0,1] .

d
i t H t t H t H t T

dt

H s s H s H s

ψ ψ〉 = 〉 =

= − + ∈

beginH

problemH

The beginning Hamiltonian could be a 
large magnetic field pointing in the 
transverse (x) direction, with a simple 
ground state. If the “run time” T is long 
enough, the  system remains in the 
ground state with high probability, and 
we can read out the Ising ground state 
by measuring all spins along the z-axis.

Adiabatic Quantum Computation
The run time T is determined by the minimum 
gap ∆ encountered as the Hamiltonian varies 
between Hbegin and Hproblem: the probability of 
successfully finding the ground state is 
appreciable provided that…

max
2

( )
d

H s
dsT

∆
?

beginH

problemH

where ( )[ 0,1] 1 0min ( ) ( )s E s E s∈∆ = −

Thus, if  1/ poly( )n∆ > then the adiabatic algorithm is efficient,  

while if  ( )exp cn∆ < − then it  is inefficient.  

Note that Hamiltonian evolution can be simulated efficiently on a 
“garden variety” quantum computer, so if the quantum adiabatic 
algorithm works, we can run it on any quantum computer.



How more is different: a quantum information perspective

John Preskil l, Caltech (KITP Glassy States Conf 5/23/03) 13

Adiabatic Quantum Computation

An Hproblem that encodes the 
solution to an NP-complete 
satisfiability problem (“exact 
cover”) has been studied by 
Farhi et al. For input size up to 
~10 bits, H(s) can be 
diagonalized numerically. 
Although typical spacings in 
the spectrum become very 
small for intermediate values of 
s, the gap between ground and 
first excited states remains 
large for all s. 

Adiabatic Quantum Computation

( )begin problem( ) (1 / ) /H t t T H t T H= − +
For input size up to n=20 bits, the Schrödinger equation with

has been integrated numerically. The time T needed to find the 
ground state with fixed success probability in typical “hard 
instances” (where the ground state is unique) seems to rise 
quadratically with the input size:
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Adiabatic Quantum Computation
Analytically, van Dam et al. (2002) have observed that there are 
particular types of problem Hamiltonians (high-valence formulas 
in which all triplets of bits are coupled together) for which the gap 
does become exponentially small. 

barrier

The small gap arises because there 
is a classical degeneracy, and the 
classical ground states are 
separated by a large barrier.

It is not clear whether this behavior is a generic feature when 
minimizing the problem Hamiltonian is hard classically. Might  
the quantum adiabatic algorithm be able to solve the typical 
hard instances of NP-complete problems? 

Adiabatic Quantum Computation

barrier

In some cases, a potential barrier that 
would foil e.g. simulated annealing 
can be easily penetrated by quantum 
tunneling. The adiabatic algorithm is 
harder to tool than a local classical 
search.

Recently, Aharonov, van Dam, Kempe, Landau, Lloyd & 
Regev (2003) have announced that adiabatic evolution with a 
local Hamiltonian is as powerful as the standard model of 
quantum computation (nearest-neighbor interactions in two 
dimensions among five-dimensional particles). Thus, in a 
sense the study of the power of quantum computing has been 
reduced to the study of spectral gaps!
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Quantum 
Cryptography

Bennett        Brassard  ’84

Eavesdropping on quantum information can 
be detected; key distribution via quantum 

states is unconditionally secure. 

Bennett        Brassard  ’84
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Privacy is founded on principles of 
fundamental physics, not the assumption 
that eavesdropping requires a diff icult 

computation. Gathering information about a 
quantum state unavoidably disturbs the state.

Alice

Bob

Eve

Quantum Cryptography

“Plug and play” quantum 
key distribution is 
commercially available:

QKD for sale!
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“Plug and play” quantum 
key distribution is 
commercially available:

BB84 QKD has been 
achieved through a 67 km 
optical fiber under Lake 
Geneva.

QKD for sale!

Quantum 
Entanglement

Bell ‘64

Pasadena Andromeda
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Quantum information can be nonlocal;
quantum correlations are a stronger 
resource than classical correlations.

Bell ‘64

Pasadena Andromeda

Quantum entanglement

A B
randomness

x

ba

y
Alice and Bob share an indefinite 
amount of randomness, each has 
an input bit (x for Alice, y for 
Bob), and each is to produce an 
output bit (a for Alice, b for Bob) 
Their goal is to choose outputs 
such that:

a b x y⊕ = ∧
Then, averaged over input bits, 

success 3/ 4 .75P ≤ =
But if Alice and Bob share an entangled pair of quantum bits (“qubits”), then

success

1 1
.854

2 2 2
P = + = is achievable.

(a Bell inequality).
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Bipartite Pure-State Entanglement

How to characterize it and quantify it, for pure states.

Cf., two qubits:

Ψ  AB
A B

Ψ  AB
A B

Ψ  AB
A B

Ψ  AB
A B

Ψ  AB
A B

Ψ  AB
A B

n
copies
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Ψ  AB
A B

Ψ  AB
A B

Ψ  AB
A B

Ψ  AB
A B

Ψ  AB
A B

n
copies Local

Operations
Local

Operations

n
copies Local

Operations
Local

Operations

Classical

Communication
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kmax

copies
(kmax ≤ n)

EPR ABA B

EPR ABA B

EPR ABA B

max
2lim ( ) , ( ) logn A

k
D S S tr

n
ρ ρ ρ ρ→∞

 = = = −  
Bennett, et al.... ‘95

( )( )| |00 |11 / 2EPR〉 = 〉 − 〉

( )⊗kEPR ABA B

Two party pure-state entanglement can be 
converted to a standard currency (EPR pairs)
…  and back again.

Ψ  AB
A B( )⊗n

min
2lim ( ) , ( ) logn A

k
E S S tr

n
ρ ρ ρ ρ→∞

 = = = −  
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Mixed state quantum entanglement

An inseparable state is entangled. Entangled pure states 
always violate Bell inequalities, but entangled mixed states 
sometimes admit a local hidden variable description. For 
example, the two-qubit state

( ) ( )| |i i i i iA B
i

pρ α α β β= 〉〈 ⊗ 〉〈∑

( ) ( )singlet (1 ) uniform tripletF Fρ = + −
is entangled for F > ½, but it is Bell-inequality violating only for 
F > 5/8 (Werner ’89).

Werner

A separable state can be prepared by two 
distantly separated parties who perform local 
operations and classical communication (LOCC):

Quantifying mixed state quantum entanglement
Bennett, DiVincenzo, Smolin, Wootters ‘96

An alternative measure is the maximal number of Bells pairs 
that can be distilled asymptotically from each copy of ρ :

minentanglement cost: ( ) lim
n

k
E

n
ρ

→∞
≡

For pure states E=D, but for some mixed states E > D
(asymptotic irreversibility of entanglement transformations). 
This is not surprising (information is discarded during the 
preparation of the state), but it was surprisingly difficult to 
prove (Vidal & Cirac ’02). There are even states with D=0 and 
E > 0 (bound entanglement, Horodecki ’97). Although bound 
entanglement is not distillable, it may not be useless …

As with pure states, we can quantify the entanglement of a 
bipartite mixed state ρ in terms of the minimal asymptotic cost
in Bell pairs needed to make a copy of ρ :

maxdisti llable entanglement: ( ) lim
n

k
D

n
ρ

→∞
≡
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What about 3 (or more) part pure-
state entanglement?

3 EPR pairs

A

B C

( )| |00 |11 / 2φ + 〉 = 〉 − 〉
2 “cat” (GHZ) states

A

B C

( )| |000 |111 / 2ψ 〉 = 〉 − 〉

But what about 3 (or more) part 
pure-state entanglement?

3 EPR pairs

A

B C

2 “cat” (GHZ) states

A

B C

These are not (asymptotically) interchangeable (Linden et al. ’00)  
Furthermore, EPR and GHZ states alone do not suff ice for reversible 
generation of other three-party pure states (Acin et al. ’02).

True n-particle entanglement exists for all n.
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The separable ball
Gurvits & Barnum ‘03

The “pseudo-pure state” (1 ) ( )
m

I
pure

d
ε ε− +

Thus, pseudo-pure states prepared using room-temperature 
liquid-state NMR are separable for m < 23 qubits. 

How “quantum” is NMR quantum information processing 
(Caves, Knill, Laflamme, etc.)?

For a state of m systems, each with dimension d, 
how large is the maximal ball of separable states 
centered at the uniform density operator?

( )/ 2 12 /m mdε − −≤is separable for 

Vidal

Efficient classical simulation of quantum 
systems with bounded entanglement

Consider the quantum state of n qubits, expanded in the standard basis:

There are 2n terms. But suppose the Schmidt rank is less than χ for all 
ways of dividing the system into two parts.  Then by iterating the Schmidt 
decomposition, we arrive at a much more succinct description:

1 1| |
n

i n

i i n
i i

c i iψ 〉 = 〉∑
K

K K

3 11 2

1 1 1 1 2 2 2 3 2 1 1 1

1 1

[3] [ 1] [ ][1] [ 2][1] [ 2] [ 1]n n

n n n n n

n

i n i n ii i n
i ic α α α α α α α α α α α

α α
λ λ λ−

− − − −

−

− −= Γ Γ Γ Γ Γ∑
K

K K

There are n-1 Schmidt vectors (the λα’s), each with at most χ components, 
and at most 2n χ2 parameters for the Γ’ s . We can easily update these 
quantities in a simulation of a circuit of quantum gates (Vidal, quant-
ph/0301063, Cf, also Jozsa & Linden ’02)!  For example, we can simulate a 
spin chain with a finite correlation length (or even a critical chain). 
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Quantum 
Error Correction

Shor ‘95        Steane ‘95

Shor ‘95        Steane ‘95

Quantum information can be protected,
and processed fault-tolerantly.
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Quantum
Computer

EnvironmentDecoherence

ERROR!

If quantum information is 
cleverly encoded, it can be 
protected from decoherence
and other potential sources of 
error. Intricate quantum 
systems can be accurately 
controlled.

Errors
The most general type of error acting on n qubits can be 
expressed as a unitary transformation acting on the qubits and 
their environment:

{ }aE
| Ea〉

0 1 0 1 0
, ,

1 0 0 0 1

i
X Y Z

i

−     
= = =     −     

{ }, , , ,
n

I X Y Z
⊗

| |0E a Ea C〉 = 〉

:| | 0 | |E a Ea
U E aψ ψ〉⊗ 〉 → 〉⊗ 〉∑

The states of the environment are neither normalized 
nor mutually orthogonal. The operators are a basis for 
operators acting on n qubits, conveniently chosen to be “Pauli
operators”:

where

The  errors could be “unitary errors” if or 
decoherence errors if the states of the environment are 
mutually orthogonal.
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Errors

Our objective is to recover the (unknown) state of the 
quantum computer. We can’t expect to succeed for arbitrary 
errors, but we might succeed if the errors are of a restricted 
type. In fact, since the interactions with the environment are 
local, it is reasonable to expect that the errors are not too 
strongly correlated.

Define the “weight” w of a Pauli operator to be the number of 
qubits on which it acts nontrivially; that is X,Y, or Z is applied to w
of the qubits, and I is applied to n-w qubits. If errors are weakly 
correlated (and rare), then Pauli operators       with large weight 
have small amplitude

|ψ 〉

aE
.| Ea〉P P

:| | 0 | |E a Ea
U E aψ ψ〉⊗ 〉 → 〉⊗ 〉∑

Quantum error-correcting code
We won’t be able to correct all errors of weight up to t for 
arbitrary states But perhaps we can succeed 
for states contained in a code subspace of the full Hilbert space,

If the code subspace has dimension 2k, then we say that k
encoded qubits are embedded in the block of n qubits.

How can such a code be constructed? It will suffice if 

are mutually orthogonal.

If so, then it is possible in principle to perform an (incomplete) 
orthogonal measurement that determines the error Ea (without 
revealing any information about the encoded state). We recover 
by applying the unitary transformation Ea

��

.

 qubits.| nψ 〉 ∈ H

code  qubits.n∈H H

{ }{ }code Pauli operators of weight,a aE E t∈ ≤H
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Quantum error-correcting codes and entanglement

“Nondegenerate” quantum error-correcting code that corrects t 
errors in a block of n qubits: 

The expectation value of Ea vanishes in the code space, so that 
the density operator of any 2t qubits (if we trace out the 
remaining n-2t) is random. The states in the code space are 
profoundly entangled.

Maximally entangled states with n parts can be constructed such 
that the density operator of any k parts is random, for any k up to 
n/2. (But not for qubits: the dimension p of the parts is a prime 
number greater than n.) Such states are easily constructed with 
efficient quantum circuits, but cannot be an eigenstate of any 
local Hamiltonian (Haselgrove et al. ’03).

{ }code code Pauli operators of weight,   for 2a aE E t⊥ ∈ ≤H H

Topological quantum memory Kitaev ‘96

Qubits can reside in holes in a planar array, where the holes carry Z2

charge or flux.  Then the quantum memory is topologically stable, but 
nontopological couplings between holes are needed to complete a set of 
universal gates.

This scheme might be realizable in suitably designed Josephson-junction 
arrays, which have a phase that can be interpreted as a condensate of 
objects with charge 4e. A hole in the array can carry charge 2e or flux 
Φ0/2=2π/4e. Ioffe et al. ‘02
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time
create pairs

braid

braid

braid

annihilate pairs?

Kitaev

Topological quantum computation (Kitaev ‘97)

time

Physical fault 
tolerance with 
nonabelians:

uncontrolled 
exchange of 
quantum numbers 
will be rare if 
particles are widely 
separated, and 
thermal anyons are 
suppressed...

Topological quantum computation (Kitaev ‘97)
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Quantum vs. Classical

Very
Quantum

Very
Classical

There is a sharp boundary between classical phase (efficiently 
simulable by a classical computer) and quantum phase (not 
efficiently simulable).  For a quantum computer with a topological 
memory, it can be identified with the boundary between the 
confinement phase and the superconducting phase of a gauge 
theory with quenched randomness. 

[Dennis, Kitaev, Landahl & Preskill ’01; Wang, Harrington & Preskill ‘02]

Quantum Hardware
Two-level ions in a Paul trap, coupled to 
“phonons.”

Two-level atoms in a high-finesse microcavity, 
strongly coupled to  cavity modes of the 
electromagnetic field.

Charge in a Cooper-pair box; fluxons through 
a superconducting loop.

Electron spin (or charge) in quantum dots.

Bose condensates in optical lattices.

Nuclear spins in semiconductors, and in liquid 
state NMR.

Electrons floating on liquid He, etc.

Devoret

Kimble

Blatt

Wineland
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• We just beginning to appreciate the surprisingly rich 
implications of the tensor product structure of Hilbert space, and 
of many-body quantum entanglement: Quantum algorithms, 
quantum error correction, etc.

• Progress in understanding the power of quantum computing is 
slow but steady. There are strong connections with the theory of
spectral gaps in disordered quantum systems.

• We have learned a lot about bipartite quantum entanglement 
(pure and mixed). Less is understood about many-body 
entanglement, but there have been valuable insights.

• Future advances in our understanding of quantum computation 
and information will be closely linked to new insights about 
properties of quantum many-body systems and of quantum 
phase transitions.

The 2nd Quantum Century


