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Introduction

Two observed peculiarities of vibrated granular systems:

• Breakdown of energy equipartion ⇔ different species have different granular
temperatures
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• Both effects will be investigated here for a dilute mixture in the tracer limit
by means of kinetic theory. It will be shown that there is a close relationship
between them
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The system

- Low density gas of inelastic hard disks (d = 2) or spheres (d = 3) of mass m and
diameter σ. Coefficient of normal restitution: α

- Plus, one impurity/intruder (tracer limit) of mass m0 and diameter σ0.
Coefficient of normal restitution fluid-intruder: α0

- Uniform gravitacional external field of intensity g0

- The bottom wall, located at z = 0, is vibrating with small amplitude and high
frequency. There is no upper wall

- The system exhibits an inhomogeneous steady state with gradients only in the
direction of the external field (Huntley’s talk). The hydrodynamic profiles are not
affected by the presence of the impurity
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Temperature profiles

• T (z) and T0(z) are defined in the usual way from the average kinetic energies

• Assuming there is a hydrodynamic regime for the impurity and that the associated
’normal solution’ of the Boltzmann equation can be generated by the Chapman-
Enskog procedure ⇒

ζ(0)(z) = ζ
(0)
0 (z)

−→ Local Homogenous Cooling Rates for the fluid and the intruder are the
same

• This is not a small gradient approximation, but valid to all orders in the gradients.
Even more, it holds for any hydrodynamic state of the fluid

• ζ(0) and ζ
(0)
0 are functional of the distribution functions. A good approximation

for them is obtained by using Maxwellians*
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• In this way, it is obtained

(1 + φ)1/2

(
1− h

1 + φ

φ

)
=

β

h

φ =
mT0(z)
m0T (z)

h ≡ m(1 + α0)
2(m + m0)

β ≡ 1− α2

4
√

2

(σ

σ

)d−1

with σ ≡ (σ + σ0)/2
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4
√
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σ
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with σ ≡ (σ + σ0)/2

• Cubic equation for φ, with a unique real solution for all the physical values of h
and φ

• ⇒ φ does not depend on z (Feitosa and Menon, 2002), but it strongly depends on the
inelasticity. Outside the tracer limit, also densities dependence
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MD simulations I. Temperature profiles

- d = 2, N = 359, α = 0.95, σ0 = σ, S (width) = 50σ, wall moves in a sawtooth
way with vw = 5(σg)1/2

- m0
m = 1

2
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α0=0.95 h=0.65
α0=0.7 h=0.57
α0=0.5 h=0.5
α0=0.3 h=0.43
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MD simulations II. Profiles of the temperature ratio

- Same values of the parameters as in the previous figure
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Similar behavior for m0/m = 0.75, 1, 2
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MD simulations III. Comparison with the theoretical
predictions
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- φ can be larger than unity even if m/m0 < 1, and viceversa (more)
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Impurity density n0(z)

• In the steady state the associated flux jz must vanish
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Impurity density n0(z)

• In the steady state the associated flux jz must vanish

• To first order in the gradients, Chapman-Enskog gives

jz = −m0D∂zx0 −
mn

T (z)
D′∂zT −

m

T (z)
Dp∂zp(z)

with x0 ≡ n0/n, p = nT , D = diffusion coefficient, D′ = thermal diffusion
coefficient, Dp = pressure diffusion coefficient

Dp =
n0T0

mn

φ− 1
φ

(
ν − 3ζ(0)

2
+

ζ(0)2

2ν

)−1

φ =
mT0(z)
m0T (z)

ν= some collision frequency (*)
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• The position (maximum density or center of mass) of the intruder relative to
the fluid is determined by the sign of Dp. Similar to the elastic case (barometric
formule), where φ = m

m0
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• The position (maximum density or center of mass) of the intruder relative to
the fluid is determined by the sign of Dp. Similar to the elastic case (barometric
formule), where φ = m

m0

• −→ segregation criterium for this particular case

• General discussion quite complicated, but in a wide parameter region, defined by
β < h/2, the sign of Dp is determined by the value of φ

• -For φ > 1, the impurity position is ’higher’ than that of the gas

-For φ < 1, the impurity position is ’lower’ than that of the gas
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MD simulations IV. Normalized density profiles

- m0/m = 1/2, α = 0.95
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α0=0.95 h=0.65
α0=0.7 h=0.57
α0=0.5 h=0.5
α0=0.3 h=0.43

Qualitative agreement with theory (φ increases as α0 increases)
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MD simulations V. Ratio of the center of mass positions
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Some additional comments

• The analysis of the ratio of the temperatures in a mixture can be easily extended
beyond the tracer limit and also to high densities (keeping the Maxwellian
approximation)

• The segregation criterium is also easily extended beyond the tracer limit, but
it seems hard to extend to high densities, since explicit expressions of mass
transport coefficients are needed (Enskog theory?)

• Moreover, at high density, other effects also leading to segregation may become
relevant, as for instance those discussed in: D.C. Hong, P.V. Quinn, and S, Luding, Phys. Rev. Lett. 86,

3423 (2001); J.T. Jenkins and D.K. Yoon, Phys. Rev. Lett. 88, 194301 (2002)

• On the other hand, there is no reason to expect that the mechanism discussed
here be no important at high densities
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The local HCS cooling rates in the Maxwellian approximation

ζ(0)∗ ≡ ζ(0)(z)
n(z)σd−1vg(z)

=
√

2π(d−1)/2

Γ(d/2)d
(1− α2)

ζ
(0)∗
0 ≡ ζ

(0)
0 (z)

n(z)σd−1vg(z)
= ν∗0(1 + φ)1/2

(
1− h

1 + φ

φ

)
where n(z) is the number density of the gas,

vg(z) =
[
2T (z)

m

]1/2

h =
m(1 + α0)
2(m + m0)

ν∗0 =
8hπ(d−1)/2

Γ(d/2)d

(
σ

σ

)d−1

σ =
σ + σ0

2
φ =

mT0(z)
m0T (z)

.

(back)
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MD simulations IIIa. Comparison with theory
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- black symbols α = 0.95

- red symbols α = 0.8 (back)
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Diffusion coefficients

D =
nT0

m0

(
ν − ζ(0)

2

)−1

D′ = −ζ(0)

2ν
Dp

Dp =
n0T0

mn

φ− 1
φ

(
ν − 3ζ(0)

2
+

ζ(0)2

2ν

)−1

Here,

ν = νe
1 + α

2
(1−∆)1/2 (1 + φ)1/2

∆ =
m

m + m0
νe =

4
√

2π(d−1)/2

Γ(d/2)d
σd−1∆1/2n

(
T

m0

)1/2

(back)
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MD simulations Va. Ratio of the center of mass positions
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