Granular flows at high Knudsen number

V. Kumaran
Department of Chemical Engineering
Indian Institute of Science
Bangalore 560 012

Rapid granular flows:

Dimensional variables

- Particle mass m,
- \bullet Particle diameter d,
- Strain rate $\dot{\gamma}$.

Dimensionless variables

- Volume fraction ϕ ,
- Coefficients of restitution e_n, e_t .

Constitutive relation $\sigma_{xy} = md^{-1}\dot{\gamma}^2 F(\phi, e)$.

Knudsen number:

- $Kn = (\lambda/L)$.
- Number density n, fluctuating velocity u.
- $\nu_{P \to W} \sim nu$
- $\nu_{P \to P} \sim n^2 d^2 u L$.
- $(\nu_{P\to P}/\nu_{P\to W}) \sim nd^2L$.
- High Knudsen number $\rightarrow \epsilon = nd^2L \ll 1$.
- Open vibrated bed $\epsilon = Nd^2$, where N is number of particles per unit area.

Low Knudsen number limit:

- Local rheology independent of macroscopic scale L.
- Conservation equations for conserved fields (density, momentum, ?energy?).
- Differential equations subject to prescribed boundary conditions.

Constitutive law:

$$\sigma_{ij} = B_{ij}^L(n, d, e_t, e_n)\dot{\gamma}^2$$

Low density $B_{ij}^L \sim (nd^4)^{-1}$ High density $B_{ij}^L \sim d^{-1}$.

High Knudsen number limit:

$$\sigma_{ij} = B_{ij}^H(n, d, L, e_t, e_n)\dot{\gamma}^2$$
$$B^H? \ge ?B^H$$

Analytical solutions

Low Knudsen number

- Energy dissipation in a collision \ll particle energy $(1-e) \ll 1$.
- Flow scale \gg mean free path.
- Locally distribution function close to MB distribution.
- Temperature determined by balance between source and sink.

High Knudsen number

- Energy dissipation in collision \sim particle energy $(1-e) \sim 1$.
- Flow scale \sim mean free path.
- Distribution function very different from MB distribution.
- ???
- Non equilibrium non perturbative solutions.

High Knudsen number gas dynamics:

Maxwell boundary condition:

Stochastic distribution of reflected velocity with the same temperature and mean velocity as the surface.

High Knudsen number limit

- Existence of steady solutions in the absence of binary collisions $(\epsilon = 0)$.
- Sensitivity of these solutions to the collision conditions at the wall.
- Effect of collisions in the limit $\epsilon \to 0$.
- Scaling of velocity moments (stress components) with ϵ .

Particle-wall interaction models

- Smooth particle, wall imparts a fraction of its translational velocity to the particle.
- Rough particle-wall interactions.
- More sophisticated sliding and sticking collision models.

Shear flow smooth particles

- Wall velocity $\pm U_w$
- Particle wall collisions

$$u_x' = u_x + e_t(\pm U_w - u_x)$$
$$u_y' = -e_n u_y$$

- Particle particle collisions inelastic.
- Parameter $\epsilon = (nd^2L) \ll 1$.

- Leading approximation neglect interparticle collisions.
- Particle with initial velocity (u_x, u_y) tends to final state with velocity $(\pm U, 0)$

$$U = \frac{(1 - e_t)U_w}{1 + e_t}$$

- After successive collisions $(U,0) \to (-U,0) \to (U,0) \dots$
- Recurrence relation for velocity after *i* collisions

$$u_x + (-1)^i (1 + (-1)^{i-1}) e_t^i U = e_t^i u_x^{(0)} \quad u_y = (-1)^i e_n^i u_y^{(0)}$$

where $(u_x^{(0)}, u_y^{(0)})$ is velocity before first collision.

Collision between particles with velocity $(\pm U, 0)$

Subsequent particle collisions with the wall

Subsequent particle collisions with the wall

Contours in velocity space

Steady distribution function:

• Flux into a differential length on the contour is equal to flux out of a differential length.

- Binary collisions between particles $(\pm U, 0)$.
- Error $\propto \epsilon^{1/2}$ for $u_y \sim \epsilon^{1/2} U$.
- Error O(1) for $u_y \sim U$. However, frequency of binary collisions $O(\epsilon^{1/2})$ smaller.
- Transfer between different contours only due to wall collisions.
- Frequency of binary collisions $O(\epsilon^{1/2})$ smaller than wall collisions for $u_y \sim U$.

Results

- $\bullet \ \langle u_x^2 U^2 \rangle \sim \epsilon U^2$
- $\bullet \ \langle u_y^2 \rangle \sim \epsilon U^2$
- $\langle u_x u_y \rangle \sim \epsilon \log(\epsilon) U^2$
- Normal stress highly anisotropic $(\tau_{yy}/\tau_{xx}) \sim \epsilon$.
- (Shear stress / Normal stress) $\tau_{xy}/\tau_{yy} \sim \log(\epsilon)$.

Comparison with simulations:

Comparison with simulations:

Rough particle-wall interactions

Collision rules:

$$g_n' = -e_n g_n$$

$$g_t' = -e_t g_t$$

Smooth elastic $e_n = 1, e_t = -1$; rough elastic $e_n = 1; e_t = 1$.

Rough particle-wall interactions

Steady state:

The Jacobian for the mapping of the velocity after two successive collisions is 1.

$$u_x = 0, u_y = 0, \omega = (-2V_w/d).$$

Effect of binary collisions

Wall-particle collisions

$$\propto (nu_y)$$

Particle-particle collisions

$$\propto n^2 L \sigma (u_x^2 + u_y^2)^{1/2}$$

Ratio

$$\propto (n\sigma L(u_x^2 + u_y^2)^{1/2}/u_y)$$

 $\propto \epsilon (u_x^2 + u_y^2)^{1/2}/u_y)$

Ratio
$$\propto 1 \rightarrow (u_x/u_y) \sim \epsilon^{-1}$$

Transfer matrix for particle-wall collisions:

i = Pairs of particle-wall collisions.

Coupled $u_x \& \Omega = \omega + (2V_w/d)$.

$$\begin{pmatrix} u_x^{(i+1)} \\ \Omega^{(i+1)} \end{pmatrix} = A \begin{pmatrix} u_x^{(i)} \\ \Omega^{(i)} \end{pmatrix}$$

Eigenvalues of $A = \lambda_1 \ge \lambda_2$.

$$\lambda_x = |\lambda_1|.$$

$$u_y^{(i+1)} = e_n^2 u_y^{(i)}$$

$$\lambda_x > \lambda_y$$

Static steady state for

$$\lambda_x < \lambda_y$$
.

Comparison with simulations:

Static & dynamical steady states.

Lines theory, + static, \circ dynamical.

Evolution of mean square velocity.

$$e_t = 0.84$$

Dynamical steady state:

• Particle velocity scattered in binary collision.

Dynamical steady state:

- Subsequent wall collisions reduce translational velocity for $|u_x/u_y| \sim 1$.
- When $|u_x/u_y| \sim \epsilon^{-1}$, undergoes binary collision again.

Distribution in dynamical steady state: Evolution of velocity

$$u_{x}^{(i)} = \lambda_{x} u_{x}^{(i-1)} = \lambda_{x}^{i} u_{x}^{(0)}$$

$$u_{y}^{(i)} = \lambda_{y} u_{y}^{(i-1)} = \lambda_{y}^{i} u_{y}^{(0)}$$

$$\Omega^{(i)} = \lambda_{x} \Omega^{(i)} = \lambda_{x}^{i} \Omega^{(0)}$$

Flux balance:

$$u_y^{(i-1)} f_{i-1} = u_y^i f_i$$

Solution:

$$f_i = \lambda_y^{-1} f_{i-1} = \lambda_y^{-i} f_0$$

Determine f_0 by normalisation condition.

Velocity moments:

•

$$\langle u_y^2 \rangle \sim \epsilon^{\alpha}$$

$$-\langle u_x u_y \rangle \sim \epsilon^{\alpha}$$

$$\alpha = (\log(\lambda_y)/\log(\lambda_y/\lambda_x)) > 1$$

$$\langle u_x^2 \rangle \sim \epsilon^{\alpha}$$

$$\langle u_x^2 \rangle \sim \epsilon^{\alpha}$$

$$10^{-1}$$

$$\langle u_x^2 \rangle \sim \epsilon^{\alpha}$$

$$10^{-5}$$

$$10^{-5}$$

$$10^{-2}$$

$$10^{-1}$$

$$\langle u_x^2 \rangle \sim \epsilon^{2\log(\lambda_x)/\log(\lambda_y/\lambda_x)} \quad (\circ) \langle u_x^2 \rangle, e_t = 0.70, e_n = 0.75; (\triangle)$$
$$\langle u_y^2 \rangle, e_t = 0.70, e_n = 0.75; (\square)$$
for $\lambda_x^2 < \lambda_y$.
$$-\langle u_x u_y \rangle, e_t = 0.70, e_n = 0.75.$$

More realistic boundary conditions:

Flat walls; sticking & sliding friction:

More realistic boundary conditions:

Bumpy walls; sticking & sliding friction:

Bagnold coefficients:

Smooth walls:

$$B_{xx}^H \sim (nL^2)$$

$$B_{yy}^H \sim (nL^2)(nd^2L)$$

$$B_{xy}^H \sim (nL^2)(nd^2L)\log(nd^2L)$$

Rough walls:

$$B_{xx}^H \sim (nL^2)(nd^2L)^{\alpha}$$

$$B_{yy}^H \sim (nL^2)(nd^2L)^{\alpha}$$

$$B_{xy}^H \sim (nL^2)(nd^2L)^\alpha$$

Smooth walls:

$$(B_{xx}^H/B_{xx}^L) \sim \varepsilon(d/L)$$

$$(B_{yy}^H/B_{yy}^L) \sim \varepsilon^2 (d/L)$$

$$(B_{xy}^H/B_{xy}^L) \sim \varepsilon^2 \log (\varepsilon) (d/L)$$

Rough walls:

$$(B_{xx}^H/B_{xx}^L) \sim \varepsilon^{\alpha}(d/L)$$

$$(B_{yy}^H/B_{yy}^L) \sim \varepsilon^{\alpha}(d/L)$$

$$(B_{xy}^H/B_{xy}^H) \sim \varepsilon^{\alpha}(d/L)$$

Smooth: $(\sigma_{xx}/U_w^2) \sim n$

 $(\sigma_{yy}/U_w^2) \sim n\varepsilon$

 $(\sigma_{xy}/U_w^2) \sim n\varepsilon \log (\varepsilon)$

Rough: $(\sigma_{ij}/U_w^2) \sim n\varepsilon^{\alpha}$

Constant n

Constant nL

Conclusions:

- Asymptotic solutions of Boltzmann equation in high Knudsen number limit for smooth & rough particle-wall interactions.
- Stresses scale as a power of $\varepsilon \sim K n^{-1}$.
- Bagnold coefficient at high Knudsen number could be much lower than that at low Knudsen number.

Vibrated granular materials:

Two frequencies:

- Frequency of interparticle collisions ν_c .
- Frequency of collisions with surface ν_s .

Dilute limit $(\nu_c \ll \nu_s)$:

• Leading order — single particle on vibrating surface.

• For $(1-e) \ll 1$, $T \gg \langle U_s^2 \rangle$.

Dilute limit $\nu_c \ll \nu_s$):

1

• Distribution function $F(u_y)du_y$ = Probability of finding a particle in du_y about u_y at the surface.

Dilute limit $\nu_c \ll \nu_s$:

ł

• Flux balance at steady state

$$\langle (u_y'' + U)F(u_y'')du_y'' \rangle_S$$

$$= \langle (u_y' + U)F(u_y')du_y' \rangle_S$$

• Expand in $\epsilon = (1 - e)$, average over U (U uncorrelated at successive collisions)

$$2\langle U^2 \rangle_U \left(u_y \frac{d^2 F}{du_y^2} + \frac{dF}{du_y} \right)$$
$$-2\langle U \rangle_U \left(u_y \frac{dF}{du_y} + 2F \right)$$
$$+\epsilon \left(2F u_y + u_y^2 \frac{dF}{du_y} \right) = 0$$

• Symmetric base amplitude $\langle U \rangle_U = 0$

$$F(u_y) = \frac{1}{\sqrt{2\pi T_s}} \exp\left(\frac{-u_y^2}{2T_s}\right)$$

$$T_s = \frac{\langle U^2 \rangle_U}{2\epsilon}$$

• Asymmetric base amplitude $\langle U \rangle_U \neq 0$

$$F(u_y) = \frac{1}{\sqrt{2\pi T_a}} \exp\left(\frac{-(u_y \pm u_s)^2}{2T_a}\right)$$

$$u_s = \frac{2\langle U \rangle_U}{\epsilon} \quad T_a = \frac{2}{\epsilon^2} \left(\frac{\langle U^2 \rangle_U}{\langle U \rangle_U^2} - 1 \right)$$

Symmetric

Asymmetric

Symmetric base amplitude

$$\circ \ \varepsilon = 0.3$$

$$\triangle \ \varepsilon = 0.1$$

$$\Box \varepsilon = 0.03$$

$$\diamond \; \varepsilon = 0.01$$

Asymmetric base amplitude

$$\circ \ \varepsilon = 0.3$$

$$\triangle \ \varepsilon = 0.1$$

$$\Box \varepsilon = 0.03$$

$$\diamond \ \varepsilon = 0.01$$

Comparison with experiments $f(u_z^*)$

Points — experiments; line — theory. (No fitting parameters).

Dilute limit $\nu_c \ll \nu_s$

]

• Include effect of pair interactions due to collisions between particles near single particle distribution limit $\delta = (nd/\epsilon) \ll 1$

• Distribution function

$$f(u_x, u_y) = |u_x|^{c\delta - 1} f(u_y)$$

Dissipative limit

Conclusions:

- Analytical solution for distribution function.
- Highly non isotropic rheological properties.
- Good agreement with simulations.