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Rapid granular flows:

(u” m%

PN

Dimensional variables

e Particle mass m, Dimensionless variables

e Particle diameter d, e Volume fraction ¢,

e Strain rate 7. o Coefficients of restitution

en,et.

Constitutive relation o, = md~'y2F(d,€).




Knudsen number:

Kn = (\/L).

Number density n,
fluctuating velocity wu.

vp—w ~ Nnu

Vp_yp n2d2uL.

(VP—>P/VP—>W) ~ nd*L.

High Knudsen number
—~e=nd’L < 1.

Open vibrated bed € = Nd?,
where N is number of parti-

cles per unit area.




High Knudsen number limit:
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Low Knudsen number limit:
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Low Knudsen number limit:

e Local rheology independent
of macroscopic scale L.

e Conservation equations for
conserved fields (density, mo-

mentum, 7energy?).

e Differential equations subject
to prescribed boundary con-
ditions.

Constitutive law:

_ pL . 2
Oi5 = Bz’j(nada €t €n )Y

Low density B, ~ (nd*)™!
High density B,{;- ~d L.




High Knudsen number limit:
Oij = Bg(na da La €t, Gn)’.}/2

BH? >?7BH BH? «<<?7BL




Long run-out avalanches:




Filling from silos:
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Filling from silos:
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Analytical solutions

Low Knudsen number

e Energy dissipation in a colli-
sion < particle energy
(1-e) <K 1.

e Flow scale > mean f{free
path.

e Locally distribution function
close to MB distribution.

e Temperature determined by
balance between source and

sink.

High Knudsen number

e Energy dissipation in colli-

sion ~ particle energy
(1—e)~1.

Flow scale ~ mean free path.

Distribution function very
different from MB distribu-

tion.

777

Non - equilibrium non - per-

turbative solutions.




High Knudsen number gas dynamics:

UW Maxwell boundary condition:
' Stochastic distribution of re-

/\ flected velocity with the same
temperature and mean velocity as

(Uy, W)O (uy, W’) the surface.




High Knudsen number limit

e Existence of steady solutions in the absence of binary collisions
(e =0).

e Sensitivity of these solutions to the collision conditions at the
wall.

e Effect of collisions in the limit € — 0.
e Scaling of velocity moments (stress components) with e.
Particle-wall interaction models

e Smooth particle, wall imparts a fraction of its translational
velocity to the particle.

e Rough particle-wall interactions.

e More sophisticated sliding and sticking collision models.




Shear flow smooth particles

Wall velocity +U,,

Particle - wall collisions

Uy, = Uy + e (£Uy — uy)

’ _— —
U, = —€nly

Particle - particle collisions

inelastic.

Parameter € = (nd?L) < 1. A\
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Leading approximation — neglect interparticle collisions.

Particle with initial velocity (us,u,) tends to final state with
velocity (+U, 0)
(1 —e;)Uy

1+ e

After successive collisions (U,0) — (=U,0) — (U,0) ...

U —

Recurrence relation for velocity after ¢ collisions

Uz + (1" 1+ (1) NepU = euy? uy = (1)’ uq

where (uéo), uéo)) is velocity before first collision.




Collision between particles with velocity (+U, 0)




Subsequent particle collisions with the wall

b u




Subsequent particle collisions with the wall

b u




Contours in velocity space

$uy Steady distribution function:

e Flux into a differential
length on the contour is

equal to flux out of a
differential length.




e Binary collisions between ¢ Transfer between differ-
particles (£U,0). ent contours only due to

e Error  €'/2 for u, ~ €/2U. wall collisions.

e Error O(1) for u, ~ U. How- ® Frequency of binary collisions
ever, frequency of binary col- O(e'/2) smaller than wall col-
lisions O(e!/?) smaller. lisions for u, ~ U.




(uzuy) ~ €log (e)U?

Normal stress highly anisotropic (7yy/7zz) ~ €.

(Shear stress / Normal stress) 74, /7y, ~ log (€).




Comparison with simulations:




Comparison with simulations:
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Rough particle-wall interactions

(U’ w*')
(U ')
& /
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(uw

Collision rules:

/

gy — —€tgt

Smooth elastic e,, = 1,e; = —1; rough elastic e,, = 1;¢; = 1.




Rough particle-wall interactions

Steady state:
The Jacobian for the mapping of

the velocity after two successive

collisions is 1.
Uy = 0,uy = 0,w = (—2V,,/d).




Effect of binary collisions

Wall-particle collisions

X (nuy)

Particle-particle collisions
x n?Lo(u? + ui)l/2

Ratio
x (noL(u? + u§)1/2/uy)

o e(u? + )/ fuy)

Ratio x 1 —

(U /Uy) ~ e’




Transfer matrix for particle-wall collisions:

v = Pairs of particle-wall colli-

sions.

Coupled u, & Q = w + (2V,,/d).

uf)

0O)

Eigenvalues of A = A1 > Aso. (UoW)
Az = | A1)

(i+1) _
Yy

2,,@)
€, Uy,

U

Dynamical steady state for
Az > Ay

Static steady state for

Az < Ay.



Comparison with simulations:

Static & dynamical steady states. :
) | Evolution of mean square velo
ity.
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Dynamical steady state:

e Particle velocity scattered in

binary collision.




Dynamical steady state:

e Subsequent wall collisions re-
duce translational velocity for

|uw/uy| ~ 1.

1

e When |u,/uy| ~ €', under-

goes binary collision again.




Distribution in dynamical steady state:

Evolution of velocity

ug) = )\xug_l) = )\;ug‘”
u?(f) )\yu?(f_l) = )\;u?so)

0@ = )\xQ(i):)\fEQ(O)

Flux balance:

ul N i1 =l f;

Solution:

fi=X fic1=X"fo

Determine fy; by normalisation

condition.




Velocity moments:
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—(UgpUy) ~ €

a = (log (Ay)/log (A\y/Az)) >

=
<
N

w2 0w - Duyu, O
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for A2 > A,
o

(u2) ~ 2108 (Aa)/10g (Ay/As)

),ee = 0.70,e, = 0.75; ()
for A2 < \,. —(uzuy), e; = 0.70, e, = 0.75.




More realistic boundary conditions:

Flat walls; sticking & sliding friction:
Smooth
7

—
=




More realistic boundary conditions:

Bumpy walls; sticking & sliding friction:

%
¥




Bagnold coefficients:




Smooth walls: Rough walls:

By, ~ (nL?) BE ~ (nL?)(nd?L)°

ny ~ (nL*)(nd*L) B} ~ (nL?)(nd’>L)"

~ (nL?)(nd*L)log (nd*L)




Smooth walls: Rough walls:

(Bze/Bzy) ~ €(d/L) (Bow/Bzo) ~ €%(d/L)

(Byy/By,) ~ €°(d/L) (BIL/BL ) ~ e%(d/L)

(Bay/Bay) ~ €”log (¢)(d/L) (Bay/Bay) ~€*(d/L)




Smooth: (04 /U2) ~n
(0yy/Us) ~ me
(729/U2) ~ nelog (¢)
Rough: (0;;/UZ2) ~ ne®

Constant n
Constant nL




Conclusions:

e Asymptotic solutions of Boltzmann equation in high Knudsen
number limit for smooth & rough particle-wall interactions.

e Stresses scale as a power of e ~ Kn~!.

e Bagnold coefficient at high Knudsen number could be much

lower than that at low Knudsen number.




Vibrated granular materials:

(1-¢
A

~1
Two frequencies:

e Frequency of in-

terparticle colli-

sions V.

e Frequency of \ (V. /v)~n
|

collisions with Near MB
T Distribution

surface v;.




Dilute limit (v, < vs):
e Leading order — single particle on vibrating surface.

A Symmetric

X o <L
AR

Asymmetric

(u,-U)y=-e(y-U) \

e For (1—e) <1, T > (U2).




Dilute limit v, < vy):
}

e Distribution function F'(u,)du, = Probability of finding a
particle in du, about u, at the surface.

AF(u))

\\\\\: v




Dilute limit v, < vg,:
1

e Flux balance at steady state u

y

((uy +U)F(uy)duy)s ﬂi\
= ((uy, + U)F(uy)duy)s

e FExpand in € = (1 — e), average over \

U (U uncorrelated at successive col-

lisions)

d’F dF
2<U2>U (uy + )

du?  du,

—2U)y ( a 2F>

Y du,

dF
Yy




Symmetric
Fu)
A

e Symmetric base amplitude (U)

Flu,) = 1 —uz
W= e, P\ o
(U
2€
e Asymmetric base amplitude (U)y #

T, =

Asymmetric
Fu,)
A




Symmetric base amplitude

1.0 ]

0.8 | it

0.6 8
F(u,/T4?)
0.4

0.2
i e a
0.0 L 0.8 1.2

0.0
(u,/TE?




Asymmetric base amplitude
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Comparison with experiments

f(uz)

Points — experiments; line — theory. (No fitting parameters).




Dilute limit v, < v,
1

Include effect of pair interactions due to collisions between

particles near single particle distribution limit § = (nd/e) < 1

|
/D7
r

Distribution function

flug,uy) = ‘uw|66_1f(uy)




Dissipative limit

Conclusions:
e Analytical solution for distribution function.
e Highly non - isotropic rheological properties.

e Good agreement with simulations.




