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Kinetic theory — elastic hard spheres
u

e Velocity distribution
f(x,u)dxdu. O dxdu

e Fluctuating velocity
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Equilibrium (no gradients)

Boltzmann equation:

Solution — Maxwell-Boltzmann distribution

f=©2rT)" 3% exp (—mu?/2T)




Non-equilibrium — Chapman-Enskog procedure:
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Asymptotic expansion in parameter e = (A/L); f = fo+€f1 + ...
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Y =0—f=fus.

Leading order

First correction

d(pfo) N _0U; 9(pcjfo) _ Oc(pfr)
ot 8:1:j 807; - ot




Steady homogeneous shear flow of inelastic particles:

ey a(pij) _ ac(pf)
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Nearly elastic collisions:
en < 1 — Dissipation < Particle energy
Expand in &, = (1 — e,)/2.
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Leading order =0— f=fus.

Rate of energy production ~ pG2, ~ (T*/?/d*)G2,.

Rate of energy dissipation ~ p?T3/2(1 — e2)'/2.

— Ggy ~ (1 — 2)V2TY2 ~ g, T2,




Collision rules — smooth particles
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Relative velocity w = u — u*

wy, = —epwi = —(1 — 2wy,
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Energy conserved for ¢,, = 0.




Collision rules — rough particles
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g'k=—e,gk

(I —kk).g' = —e;(I — kk).g

Energy conserved for e, = 0 and e; = +1.

Rough inelastic particles:
(I+e) =i <1
(1—e,) =621

Smooth inelastic particles:
ee=1;(1—e,) =¢c2 <1




Boltzmann Collision integral — dilute limit:

cpf / / f(e)f(c) (u—u*) k)




Boltzmann collision integral — dense gases

Enskog approximation:

cpf //C

Pair distribution function y(¢)
Accounts for the finite volume of

partilcles.




Boltzmann collision integral — dense gases

Enskog approximation:

Lo

Pair distribution function y(¢)
Accounts for the finite volume of

partilcles.




Pair distribution function
Carnahan-Starling pair distribu-

tion:
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Correlated collisions:
Conservative systems:

Oxy — nGwy -+ U’ny|ny|1/2 8

Related to long time tail in auto- L 7 \ e

correlation function: 8 8
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Correlated collisions:

Sheared systems:
No long time tail for long wave-

lengths.

(v(x,t)v(x,0) ~ t°

Expect regular coefficients for

large length scales.




Moments of Boltzmann equation
e ‘Slow’ Mass, Momentum & Energy, conserved in collisions.
e Other ‘fast’ moments decay over time scales ~ collision time.

Linear response

o f(c) = folc) + f(c)els )

e Linearised Boltzmann equation
oc; | =
3_|_ch:1:_ zga }f L[f]

o f(e) = XiLi Aiti(o)
° (SL;j + kX — Gy — Lij)Aj




Hydrodynamic modes for elastic system

e Number of eigenvalues de-
pends on number of basis

functions chosen.

For k — O,

Transverse momenta s; =

—(u/p)k*.

Energy s, = —Drk?.
Mass & longitudinal mom.

= dkypp — p (e +
4p/3)k2.

All other modes with neg-
ative eigenvalues, indicating

that other transients decay.




Hydrodynamic modes for smooth inelastic spheres

Energy not conserved.
Source of energy.

Rate of conduction
()\MTl/Q/L2).

Rate of dissipation
(1= T2/ 2yy).

Conduction length L.
(A /(1 —e)t/2.

Energy conserved L < L..
Adiabatic approx. L > L..

Local balance between source
and dissipation.




Hydrodynamic modes for smooth inelastic spheres

e Anguler momentum conserved

in a reference frame located at

the point of contact.

Angular momentum not con-
served in a reference frame lo-

cated at the particle center.

Length scale for decay of

angular momentum perturba-
tions ~ Ajs from the bound-

ary.




Smooth nearly elastic particles
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Coeflicients A - § identical to Burnett expansion for ¢, — 0.



Rough nearly elastic particles
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Flow down inclined plane: Leading solution

Momentum equations:

(dozy/dy) = —pgsin(0)
(doyy/dy) = pgcos(0)

Ratio (04y/0yy) = —tan (6)

Dimensional analysis, o,, =
Bxy((/5)’.72a Oyy ™ Byy(¢)72

tan (0) = — By (¢)/Byy (9)

¢ is independent of height in
adiabatic approximation.




Flow down inclined plane: Leading solution

Strain rate:

Navier-Stokes approx:
Aoz

py _ peT'? dy
p peT’

= i = pT"%5

tan (0) =
i~ y'/?

tan (6) ~ e, .
Density dependence: pg o x(¢).

Burnett approximation: . . .
e Strain rate increases continu-

L.Q — tan (0) ously from zero if x(¢) — oo
p— By for ¢ — ..

e Strain rate increases discon-
= tan (0) tinuously if x(¢) finite for

¢ = Pe.

peT /25
p¢T — B’y2




Flow down an inclined plane: Leading solution

& ¢ 03
e Variation of 8 with volume fraction in the flow.

e Minimum angle #. minimum angle at which flow ceases as

inclination is decreased.

e Maximum angle #,, is the maximum angle at which steady flow

1s sustained.




Flow down inclined plane — Navier-Stokes approx.
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Flow down inclined plane — Burnett approx

Smooth




Flow down inclined plane — Burnett approx.

Rough
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| 0 increases as ¢ decreases
- for €2 > 0.192.




Flow down inclined plane — Burnett approx.

Partially rough

= 0.05

=e2=0.1
=¢e2=0.2
=¢e2=0.3
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f increases as ¢ decreases
| for €2 > 0.099.
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Flow down inclined plane — smooth particles
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Flow down inclined plane — rough
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Flow down inclined plane — partially rough

2

tan(9

tan(@))




Flow down inclined plane:

Energy equation:

d
—K—+uy*—D=0
S ay T

Dense gas: K ~ x(TY/2/d?) = K4(T'/?/d?).
po x(TH?d%) = pg(TV?/d?).
D~ pAXTYRR(1 — ) ~ (XT/2/d) = Dy(T%2/a)

¥ =G($)(T"/?/d)
Scale y* = (y/H).

Scaled energy equation:

d
2 —K
dy* ¢

where the small parameter § = (d/H).




Flow down inclined plane:
Expansion ¢ = ¢(0 + §¢(H) 4+ §2¢(2)
Leading order (T9)3/2(44,G? — Dy) = 0

Leading solution ¢ = ¢(9); T = (p(OgH (1 — y*) cos (9)/192))@(0)))

First correction ¢ = 0

Second correction:




Final solution:

d
()
A T T

Analytical estimates:

K¢ ~ KCX

(20

2
=90+ 2

H? L.(1—¢€?)

Rough & partially rough particles: K. ~



Conclusions

e Constitutive relations for smooth particles — same form as

those for dense gases.

Constitutive relations for rough particles — antisymmetric part
of rate of deformation tensor at Burnett order. Significant

difference in coefficients.

Hydrodynamic modes — non-analytic scaling, significantly
different from those for a gas at equilibrium. Burnett

coeflicients have significant influence on structure of

hydrodynamic modes.

Steady state flow down inclined plane — sensitive to numerical
coefficients in constitutive relation, realistic results obtained
only when Burnett order terms are incorporated for restricted

sets of parameter values.




