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Recent granular trimester at Institut Henri Poincaré

• January 5–April 8, 2005. Organized by A. Barrat (CNRS, LPTHE,

Orsay), Ph. Claudin (CNRS, PMMH, Paris) and J.-N. Roux

• 12 resident, invited scientists for one month at least, and many participants

for shorter durations (60, outside meetings)

• Sets of lectures :

– dense granular flows (O. Pouliquen);

– geophysical applications (B. Andreotti);

– granular systems and glassy dynamics (J. Kurchan, D. Dean);

– Geometry, rigidity and stability (R. Connelly) ; quasistatic rheology

and microstructure (F. Radjai) ;

– results on granular systems in soil mechanics (F. Tatsuoka)
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Recent granular trimester at Institut Henri Poincaré

• many seminars, some gathered in one day on the same theme : Isostatic

structures (D. Wu); Cosserat modelling (E. Grekova)

• 3 thematic meetings (2-3 days) :

– liquid-solid transition (F. Chevoir, O. Pouliquen) ;

– instabilities, bifurcations, localisation (J. Sulem, I. Vardoulakis);

– discrete numerical simulations (S. Luding, J.-N. Roux)

• See web site http://www.ihp.jussieu.fr
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Some results and perspectives about solid-like granular materials

• Currently investigated and debated issues

• Presentation will hopefully provoke discussions

• Relies heavily on discrete computer simulations of granular materials

• Focus on material behavior, i. e., stress/strain/internal state relationships

within homogeneous samples, to be applied locally in the general,

inhomogeneous case (⇒ boundary value problem)
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Outline

• Some basic features of macroscopic granular mechanics

• Ingredients of a microscopic model

• Grain-level approach to mechanical properties: selected topics

1. Frictionless systems: isostaticity property (in the rigid limit),

minimization property... and consequences

2. Granular packings with friction: internal states, dependence on

assembling procedure and micromechanical parameters

3. Elasticity : elastic domain, prediction of elastic moduli

4. Quasistatic (non-elastic) response, type I : deformation of contact

network

5. Quasistatic deformation, type II : rearrangements (network

continuously broken and repaired)
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Rheometry of solid granular materials: triaxial apparatus

PSfrag replacements

ε̇1, σ1

σ3 σ3

• uniform stress and

strain

• σ2 = σ3

• σ ∼ 10 − 1000kPa

• ε ∼ 10−2

• role of density

• σ1/σ3 ≤ maximum

PSfrag replacements

ε1

q = σ1 − σ3

−εv

“peak”

• εv = “volumetric” strain (dilatancy)

• Dense and loose systems approach same “critical state” for large strains

• Irreversibility

• most accurate devices ⇒ measurements of ∆ε ∼ 10−6
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A simplified model

PSfrag replacements

ε1

σ1

σ3
1+sinΦ
1−sin Φ

slopeE

PSfrag replacements

εv

ε1

slope 1 − 2ν

slope 2 sinψ
1−sinψ

Linear elasticity + Mohr-Coulomb plasticity criterion, here written with
principal stresses σ1 ≥ σ2 ≥ σ3 ≥ 0:

f(σ) =
σ1 − σ3

2
−
σ1 + σ3

2
sinϕ ≤ 0

+ flow rule (dilatancy). Plastic potential (ε̇p = λ ∂g
∂σ , λ ≥ 0)

g(σ) =
σ1 − σ3

2
−
σ1 + σ3

2
sinψ
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Basic characteristics of solid material behaviour

Mohr-Coulomb model contains basic ingredients with essentially

model-independent definition

• internal friction angle ϕ, associated with peak strength

• strain level necessary to mobilize internal friction

• dilatancy angle (ψ < ϕ)

→ How could one obtain a prediction of those quantities ?

Insufficiencies of the Mohr-Coulomb model:

• no difference between peak and residual strength

• does not include role of initial density

• elasticity is non-linear and pre-peak response is predominantly non elastic

(non reversible). “Elastic moduli” for slope of stress-strain curve =

misleading term
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Observations and models for sands

• Elasticity: moduli measured as slope of stress-strain curves if ∆ε ≤ 10−5

(typically). Values agree with sound propagation measurements

• Anisotropy : peak strength, pre-peak strains depend on initial (inherent)

anisotropy

• effects of stress history (overconsolidation)

• Shear banding: both theoretical and experimental studies. Entails particle size

effects

• Slow dynamics, creep

Well characterised and documented phenomena in soil mechanics literature.

Phenomenological laws available. Practical importance (foundation engineering)

established
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Creep and elastic domain

di Benedetto et al.

Under constant stress, samples creep (for hours, days...). Elastic moduli measures

on unloading... or cycling, or reloading at constant rate after creep period
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Contact laws : schematic presentation

ijF N

ijUN

i

j

t ij

nij

ijF N

ijF N−µ

Uij
T

ijF T

µ

UN
ij = nij .(ui −uj)

UT
ij = tij .(ui−uj)+Riδθi+Rjδθj

(rigidity matrix G)

analogous to macro-

scopic laws, but...
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Role of geometry: rearrangements as origins of packing deformation

Example with frictionless, rigid disks, one mobile grain and two equilibrium

positions

� �

�

� �

�

Potential energy

minimization
Q = Fx/Fy vs. position x.

Macroscopic behavior 6= naı̈ve “average” of contact law
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Ingredients of a microscopic model. Dimensionless parameters

Model involves geometry, inertia, contact law + parameters of the experiment:

strain rate ε̇, pressure P .

• Stiffness number κ, κ = KN/P (linear 2D), κ = KN/(Pa) (linear 3D),

κ = (E/(1 − ν2)P )2/3 for Hertz contacts.

Rigid grain limit: κ→ ∞

• KN/KT or Poisson coefficient ν of the grain material

• Reduced strain rate or inertia number I = ε̇
√

m/aP .

Quasi-static limit: I → 0

• ζ ratio of viscous damping to its critical value in a contact

• Friction coefficient µ
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Granular disorder I : forces

Normal force intensity ∝ line width
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Granular disorder II : displacements

Non-affine part of displacement field between two neighbouring equilibrium

configurations (biaxial compression). Non negligible, often dominant
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Frictionless systems

• mechanical properties are simpler

• statistical properties are more complicated

• studied by several authors (C. Moukarzel, A. Tkachenko et al., R. Ball..., JNR),

often attributed exotic properties

• can be dealt with by rigidity theory (bar frameworks, tensegrities...

R. Connelly’s lectures at IHP) → discrete maths literature

• in the κ→ ∞ limit, properties reduce to geometry
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Frictionless systems: minimization property

• The potential energy of external forces (+ elastic energy if deformable grains)

is minimized in mechanical equilibrium.

• Applies to rigid grains (κ = +∞), with impenetrability constraints. Normal

contact forces are Lagrange multipliers

• Example: local density maximum in configuration space = stable mechanical

equilibrium under isotropic pressure

• With cohesionless spheres, zero variation to first order means instability

• If minimization problem becomes convex, then the solution is unique.

Happens:

– for rigid cables

– within the approximation of small displacements (ASD: linearize distance

variations)



18

Frictionless systems, rigid grains: isostaticity property I

Isostaticity properties = properties of rigidity matrix G. Its transpose expresses

mechanical equilibrium conditions as linear relations between contact forces and

external forces

• with generic disorder, absence of force indeterminacy. Sets upper bound on

coordination numbers (4 for disks and 6 for general objects in 2D; 6 for

spheres, 10 for axisymmetric objects and 12 in general in 3D– see Donev et al.

on spheroids)

• Once contacts are known, contact forces resolving the load, if they exist, are

uniquely determined (isostatic problem)

• if uniqueness property holds, then the list of force carrying contacts is also

determined (not true in general)
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Role of geometry: rearrangements as origins of packing deformation

� �

�

	 


�

Potential energy

minimization
Q = Fx/Fy vs. position x.

Isostaticity of each equilibrium contact set, no uniqueness
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Role of the ASD

With the ASD:

� 

�

� �

�

Minimization of potential

energy

Q = Fx/Fy versus position

x.

Uniqueness ⇒ elastic behaviour
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Cables versus struts

�

�

�

��

�

Minimization of potential

energy

Q = Fx/Fy versus position

x.

Uniqueness. No force indeterminacy, but stable mechanism (kernel of G). Elastic

behaviour
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Frictionless cohesionless rigid spheres: isosaticity property II

• In equilibrium, the force-carrying structure is devoid of force indeterminacy

and devoid of mechanisms (floppy modes). It is an isostatic structure

• Matrix G is square and inversible: one-to-one correpondence between applied

load and contact forces

• only true for spheres, for which there is a lower bound on coordination number

z∗ (excluding rattlers). z∗ = 6 (3D), z∗ = 4 (2D)

• Apart from the motion of rattlers, equilibrium states are isolated points in

configuration space. Particles rearrange by jumping to different configurations

with different contact network topology
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Frictionless systems, rigid grains, no cohesion: fragility property

Distribution of deviator stress intervals for which a given configuration is stable

(biaxial compression of rigid frictionless disk assemblies satisfying isostaticity

property in 2D), 1000 ≤ N ≤ 5000 particles, Combe and Roux 2000
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Consequences

• Response to stress increments involves rearrangements (except if δσ ∝ σ)

• how forces distribute on isostatic network (ignoring sign conditions) : still open

question (depends on fabric ?)

• isostaticity is compatible with elastic behaviour (cable networks). Arguments

predicting exotic properties should not apply to cable networks

• what about soft grains ?
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4900 disks in equilibrium (isotropic stress state, two wall d.o.f.). n∗ = 4633 disks

and N∗ = 2n∗ +2 = 9268 contacts carry forces. Isostatic force-carrying structure
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Generically disordered assemblies of spheres
(nearly) rigid, frictionless, cohesionless contacts
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Triaxial tests on frictionless spheres

From initial isotropic state, apply:














σ1 = p− q/2

σ2 = p− q/2

σ3 = p+ q

increasing stepwise q/p by 0.02, waiting for equilibrium
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Triaxial tests on frictionless spheres

Packing fraction Φ and axial strain ε3 vs. principal stress ratio. n = 1372 (small
symbols), n = 4000 (connected dots)
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Triaxial tests on frictionless spheres

Fabric parameter χ = 3〈n2

z〉 − 1 versus principal stress ratio.
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Triaxial tests on frictionless spheres: conclusions

• Apparently, no clear approach to stress-strain curve (it was concluded before that

no such curve existed, Combe 2000)

• evidence for a fabric/stress ratio relationship

• internal friction angle ∼ 5 or 6 degrees

• no dilatancy, RCP density for different stress states
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Cut through dense sphere packing

Difficult to obtain coordination number from direct observations
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Microstructures of frictional packings

Much wider variety than with frictionless ones:

• different solid fractions Φ possible (while disordered frictionless packs never

below RCP density)

• deposition anisotropy

• independence between density and coordination number. Example: Numerical

procedure (C) designed to mimic vibration compaction produces high density

(Φ ' 0.635), low coordination number (z∗ ' 4.5), high rattler fraction (13%)

isotropic sphere packings under low pressure with µ = 0.3
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Initial states, coordination number and packing fraction

Simulated glass bead packs (E = 70GPa), assembled in isotropic states by different

procedures. Packing fractions (at 10 kPa):

ΦA = 0.637 > ΦC = 0.635 > ΦB = 0.625 > ΦD = 0.606
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• Effect of pressure increase on coordination number relatively moderate in most

usual experimental range (no more than a few MPa)

• Both µ and ζ have influence (see e.g., Silbert et al.) on result of assembling

process, while dense flow or quasi-static deformation are not sensitive to viscous

dissipation

• More studies needed: incomplete experimental or numerical knowledge, no

theory for the sudden arrest of flow and compression of a granular gas into a

quiescent solid
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ELASTICITY OF GRANULAR PACKINGS

• Elasticity of contact network (= spring network if friction not mobilized, which

is usually the case at equilibrium)

• Effect of confining pressure on moduli

• Deviation from expected behaviour (e.g., from affine approximation) predicting

growth as P 1/3 for Hertz contacts
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Simulated glass beads: pressure-dependent elastic moduli

A = square dots

C = open circles

D = crosses

B not shown (close to A)

Moduli are shown with

connected symbols

Estimates (bounds) are

shown as symbols (not

connected) for A and C
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Elasticity of sphere packings under isotropic pressure

• bulk modulus B satisfactorily bracketed by simple approximations (Voigt-Reuss

type bounds)

• Shear modulus exhibits more anomalous behaviour, especially in low-z systems

• pressure increase faster than expected not due to z increase (would affect B as

well as G)

• related to anomalous distribution of eigenvalues of stiffness matrix in systems

with low force indeterminacy (see O’Hern et al., Wyart et al.) ?

• elastic moduli related to coordination number (rather than density)
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ANELASTIC BEHAVIOUR OF CONTACT NETWORKS

• Emerging theme... see publications on set of possible contact forces, force

indeterminacy... (McNamara et al., Snoeijer et al....)

• Static problem, can be dealt with regarding contact set as network of springs and

plastic sliders

• in the recent literature, focus on forces rather than (small) displacements.

“Critical yield analysis” formulation: consider e.g. an equilibrium state in 2D under

σ1 = σ2 = p, apply σ1 = p+ q, σ2 = p, by increments of q (biaxial compression).

For which q value does the initial contact network become unstable ?

→ Ask whether contact forces exist that are both statically admissible (they balance

the load), and plastically admissible (they satisfy Coulomb inequalities).

This is a necessary condition for stability (supported load)

Is it sufficient ?
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Some bad news

For a solution to exist, it is necessary that contact forces both plastically and

statically admissible exist.

For grains with Coulomb friction this is not sufficient. Example:

n1t 1

n2

t 2

x

y

F
ext

Grain mobile

α α

Grain fixe Grain fixe
For α < ϕ (friction angle)

all external forces can be bal-

anced by contact forces in

Coulomb cone

(Halsey-Ertas “ball in a groove” system, See study by S. McNamara, R. Garcı́a

Rojo and H. Herrmann)
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Biaxial compression test: static elastoplastic calculation vs. MD
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4900 disks. Identical results for static (dots) and MD (curves) calculations.

Results with G. Combe (2001,2002)
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Biaxial compression: other results and remarks

• Strains are inversely proportional to KN (normal stiffness of contacts)

• Detailed comparisons show that static and dynamic methods locally give

identical results (small systems)

• Static method applicable as long as initial network carries deviator (type I

strains)

• It fails as soon as the network has to rearrange

• Contacts open, others yield in plastic sliding... non-elastic and non-linear

behaviour

• Upper q limit of static method range appears to have finite limit q1 as

n→ ∞, even for κ∞ . Granular systems with friction are not “fragile”

• q1 is strictly smaller than the deviator maximum



42

Properties of quasi-static regime I

• strains inversely proportional to κ (hence small), non reversible (plastic), but

contained by contacts staying in elastic regime

• evolution via a continuous set of equilibrium states in configuration space

(quasistatic in the strictest sense)

• little sensitivity to perturbations, return to equilibrium easy

• regime extends to large stress intervals when coordination number is high

(large force indeterminacy), or upon unloading (friction being mobilized in

the direction associated with loading)
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Regime II

• Beyond stability of initial network,

• strains not sensitive to stiffness level κ

• larger fluctuations, slower approach to large system limit

• successive equilibrium states do not form continuous trajectory in

configuration space: system has to evolve by dynamic crises. “Quasistatic”

evolution in an extended sense (if details of the dynamics statistically

irrelevant)

• Characteristic of quasistatic response of granular assemblies with low force

indeterminacy



44

Triaxial compression, from isotropic initial state: influence of κ

Dense state (Φ ≥ 0.635 for large κ), coordination number z∗ ' 4.6 if κ ≥ 104

(10 kPa). Strain independent on κ (type II) except at very low εa (inset : slope =

elastic modulus) Assembling method mimics compaction by vibration
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Triaxial compression, from other isotropic initial state:

Dense state (Φ ' 0.637 for large κ), coordination number z∗ ' 6 if κ ≥ 104

(10 kPa). Strain of order κ−1.

Assembling method with µ = 0 (perfect lubrication). Type I strain regime
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Internal state evolution in quasistatic deformation: contact orientations

Rothenburg (∼ 1990), Radjai, Kruyt and Rothenburg...
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Microscopic theoretical approaches, attempted predictions

• Homogenization ideas (from continuum mechanics of disordered media):

bounds, self-consistent estimates... → limited to regime I. (Jenkins & La

Ragione...)

• ⇒ important to delineate regimes I and II !

• Attempts to describe internal state (complete list of state variables)... in other

words : define an “ensemble”

• Variables include density, coordination number and fabric tensors (contact

anisotropy)... Critical state = stationary state for such variables

• Neglect of specific geometry of granular packings, and of its variability... =

pitfalls of modelling attempts


