SOME ISSUES AND PERSPECTIVES IN GRANULAR PHYSICS

1

Jean-Noël Roux

Laboratoire des Matériaux et des Structures du Génie Civil Unité Mixte de Recherche LCPC-ENPC-CNRS Institut Navier, Champs-sur-Marne, France

Partly inspired by (or emerged from) the ...

Recent granular trimester at Institut Henri Poincaré

- January 5–April 8, 2005. Organized by A. Barrat (CNRS, LPTHE, Orsay), Ph. Claudin (CNRS, PMMH, Paris) and J.-N. Roux
- 12 resident, invited scientists for one month at least, and many participants for shorter durations (60, outside meetings)
- Sets of lectures :
 - dense granular flows (O. Pouliquen);
 - geophysical applications (B. Andreotti);
 - granular systems and glassy dynamics (J. Kurchan, D. Dean);
 - Geometry, rigidity and stability (R. Connelly) ; quasistatic rheology and microstructure (F. Radjai) ;
 - results on granular systems in soil mechanics (F. Tatsuoka)

Recent granular trimester at Institut Henri Poincaré

- many seminars, some gathered in one day on the same theme : Isostatic structures (D. Wu); Cosserat modelling (E. Grekova)
- 3 thematic meetings (2-3 days) :
 - liquid-solid transition (F. Chevoir, O. Pouliquen);
 - instabilities, bifurcations, localisation (J. Sulem, I. Vardoulakis);
 - discrete numerical simulations (S. Luding, J.-N. Roux)
- See web site http://www.ihp.jussieu.fr

Some results and perspectives about *solid-like* granular materials

- Currently investigated and debated issues
- Presentation will hopefully provoke discussions
- Relies heavily on discrete computer simulations of granular materials
- Focus on material behavior, *i. e.*, stress/strain/internal state relationships within homogeneous samples, to be applied locally in the general, inhomogeneous case (⇒ boundary value problem)

Outline

- Some basic features of macroscopic granular mechanics
- Ingredients of a microscopic model
- Grain-level approach to mechanical properties: selected topics
 - 1. Frictionless systems: isostaticity property (in the rigid limit), minimization property... and consequences
 - 2. Granular packings with friction: internal states, dependence on assembling procedure and micromechanical parameters
 - 3. Elasticity : elastic domain, prediction of elastic moduli
 - 4. Quasistatic (non-elastic) response, type I : deformation of contact network
 - 5. Quasistatic deformation, type II : rearrangements (network continuously broken and repaired)

Rheometry of solid granular materials: triaxial apparatus

- ϵ_v = "volumetric" strain (dilatancy)
- Dense and loose systems approach same "critical state" for large strains
- Irreversibility
- most accurate devices \Rightarrow measurements of $\Delta \epsilon \sim 10^{-6}$

Linear elasticity + Mohr-Coulomb plasticity criterion, here written with principal stresses $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge 0$:

$$f(\underline{\sigma}) = \frac{\sigma_1 - \sigma_3}{2} - \frac{\sigma_1 + \sigma_3}{2} \sin \varphi \le 0$$

+ flow rule (dilatancy). Plastic potential ($\dot{\epsilon}_p = \lambda \frac{\partial g}{\partial \sigma}, \lambda \ge 0$)

$$g(\underline{\sigma}) = \frac{\sigma_1 - \sigma_3}{2} - \frac{\sigma_1 + \sigma_3}{2} \sin \psi$$

Basic characteristics of solid material behaviour

Mohr-Coulomb model contains basic ingredients with essentially model-independent definition

- internal friction angle φ , associated with peak strength
- strain level necessary to mobilize internal friction
- dilatancy angle ($\psi < \varphi$)
- \rightarrow How could one obtain a prediction of those quantities ?

Insufficiencies of the Mohr-Coulomb model:

- no difference between peak and residual strength
- does not include role of initial density
- elasticity is non-linear and pre-peak response is predominantly non elastic (non reversible). "Elastic moduli" for slope of stress-strain curve = misleading term

Observations and models for sands

- Elasticity: moduli measured as slope of stress-strain curves if $\Delta \epsilon \leq 10^{-5}$ (typically). Values agree with sound propagation measurements
- Anisotropy : peak strength, pre-peak strains depend on initial (inherent) anisotropy
- effects of stress history (overconsolidation)
- Shear banding: both theoretical and experimental studies. Entails particle size effects
- Slow dynamics, creep

Well characterised and documented phenomena in soil mechanics literature. Phenomenological laws available. Practical importance (foundation engineering) established

Creep and elastic domain

di Benedetto et al.

Under constant stress, samples creep (for hours, days...). Elastic moduli measures on unloading... or cycling, or reloading at constant rate after creep period

Contact laws : schematic presentation

Role of geometry: rearrangements as origins of packing deformation

Example with frictionless, rigid disks, one mobile grain and two equilibrium positions

Macroscopic behavior \neq *naïve "average" of contact law*

Ingredients of a microscopic model. Dimensionless parameters

Model involves geometry, inertia, contact law + parameters of the experiment: strain rate $\dot{\epsilon}$, pressure *P*.

- Stiffness number κ, κ = K_N/P (linear 2D), κ = K_N/(Pa) (linear 3D), κ = (E/(1 ν²)P)^{2/3} for Hertz contacts.
 Rigid grain limit: κ → ∞
- K_N/K_T or Poisson coefficient ν of the grain material
- Reduced strain rate or inertia number $I = \dot{\epsilon} \sqrt{m/aP}$. Quasi-static limit: $I \rightarrow 0$
- ζ ratio of viscous damping to its critical value in a contact
- Friction coefficient μ

Granular disorder I : forces

Normal force intensity \propto line width

Granular disorder II : displacements

Non-affine part of displacement field between two neighbouring equilibrium configurations (biaxial compression). Non negligible, often dominant

Frictionless systems

- mechanical properties are *simpler*
- statistical properties are *more complicated*
- studied by several authors (C. Moukarzel, A. Tkachenko *et al.*, R. Ball..., JNR), often attributed exotic properties
- can be dealt with by rigidity theory (bar frameworks, tensegrities...
 R. Connelly's lectures at IHP) → discrete maths literature
- in the $\kappa \to \infty$ limit, properties reduce to geometry

Frictionless systems: minimization property

- The potential energy of external forces (+ elastic energy if deformable grains) is minimized in mechanical equilibrium.
- Applies to rigid grains ($\kappa = +\infty$), with impenetrability constraints. Normal contact forces are Lagrange multipliers
- Example: local density maximum in configuration space = stable mechanical equilibrium under isotropic pressure
- With cohesionless spheres, zero variation to first order means instability
- If minimization problem becomes convex, then the solution is unique. Happens:
 - for rigid cables
 - within the approximation of small displacements (ASD: linearize distance variations)

Frictionless systems, rigid grains: isostaticity property I

Isostaticity properties = properties of rigidity matrix \underline{G} . Its transpose expresses mechanical equilibrium conditions as linear relations between contact forces and external forces

- with generic disorder, absence of force indeterminacy. Sets upper bound on coordination numbers (4 for disks and 6 for general objects in 2D; 6 for spheres, 10 for axisymmetric objects and 12 in general in 3D– see Donev *et al.* on spheroids)
- Once contacts are known, contact forces resolving the load, if they exist, are uniquely determined (isostatic *problem*)
- if *uniqueness property* holds, then the list of force carrying contacts is also determined (not true in general)

Role of geometry: rearrangements as origins of packing deformation

Isostaticity of each equilibrium contact set, no uniqueness

Role of the ASD

With the ASD:

Uniqueness \Rightarrow elastic behaviour

x.

behaviour

Frictionless cohesionless rigid spheres: isosaticity property II

- In equilibrium, the force-carrying structure is devoid of force indeterminacy and devoid of mechanisms (floppy modes). It is an *isostatic structure*
- Matrix <u>G</u> is square and inversible: one-to-one correpondence between applied load and contact forces
- only true for spheres, for which there is a lower bound on coordination number z* (excluding rattlers). z* = 6 (3D), z* = 4 (2D)
- Apart from the motion of rattlers, equilibrium states are *isolated points* in configuration space. Particles rearrange by jumping to different configurations with different contact network topology

Frictionless systems, rigid grains, no cohesion: fragility property

Distribution of deviator stress intervals for which a given configuration is stable (biaxial compression of rigid frictionless disk assemblies satisfying isostaticity property in 2D), $1000 \le N \le 5000$ particles, Combe and Roux 2000

Consequences

- Response to stress increments involves rearrangements (except if $\delta \underline{\sigma} \propto \underline{\sigma}$)
- how forces distribute on isostatic network (ignoring sign conditions) : still open question (depends on fabric ?)
- isostaticity is compatible with elastic behaviour (cable networks). Arguments predicting exotic properties should not apply to cable networks
- what about soft grains ?

4900 disks in equilibrium (isotropic stress state, two wall d.o.f.). $n^* = 4633$ disks and $N^* = 2n^* + 2 = 9268$ contacts carry forces. Isostatic force-carrying structure

Generically disordered assemblies of spheres

(nearly) rigid, frictionless, cohesionless contacts

Triaxial tests on frictionless spheres

From initial isotropic state, apply:

$$\begin{cases} \sigma_1 = p - q/2 \\ \sigma_2 = p - q/2 \\ \sigma_3 = p + q \end{cases}$$

increasing stepwise q/p by 0.02, waiting for equilibrium

Triaxial tests on frictionless spheres

Packing fraction Φ and axial strain ϵ_3 vs. principal stress ratio. n = 1372 (small symbols), n = 4000 (connected dots)

Triaxial tests on frictionless spheres: conclusions

- Apparently, no clear approach to stress-strain curve (it was concluded before that no such curve existed, Combe 2000)
- evidence for a fabric/stress ratio relationship
- internal friction angle ~ 5 or 6 degrees
- no dilatancy, RCP density for different stress states

Cut through dense sphere packing

Difficult to obtain coordination number from direct observations

Microstructures of frictional packings

Much wider variety than with frictionless ones:

- different solid fractions Φ possible (while disordered frictionless packs never below RCP density)
- deposition anisotropy
- independence between density and coordination number. Example: Numerical procedure (C) designed to mimic vibration compaction produces high density (Φ ~ 0.635), low coordination number (z* ~ 4.5), high rattler fraction (13%) isotropic sphere packings under low pressure with μ = 0.3

Initial states, coordination number and packing fraction

Simulated glass bead packs (E = 70GPa), assembled in isotropic states by different procedures. Packing fractions (at 10 kPa):

 $\Phi_A = 0.637 > \Phi_C = 0.635 > \Phi_B = 0.625 > \Phi_D = 0.606$

- Effect of pressure increase on coordination number relatively moderate in most usual experimental range (no more than a few MPa)
- Both μ and ζ have influence (see e.g., Silbert *et al.*) on result of assembling process, while dense flow or quasi-static deformation are not sensitive to viscous dissipation
- More studies needed: incomplete experimental or numerical knowledge, no theory for the sudden arrest of flow and compression of a granular gas into a quiescent solid

ELASTICITY OF GRANULAR PACKINGS

- Elasticity of contact network (= spring network if friction not mobilized, which is usually the case at equilibrium)
- Effect of confining pressure on moduli
- Deviation from expected behaviour (e.g., from affine approximation) predicting growth as $P^{1/3}$ for Hertz contacts

Simulated glass beads: pressure-dependent elastic moduli

A = square dots
C = open circles
D = crosses
B not shown (close to A)

Moduli are shown with connected symbols

Estimates (bounds) are shown as symbols (not connected) for A and C

Elasticity of sphere packings under isotropic pressure

- bulk modulus *B* satisfactorily bracketed by simple approximations (Voigt-Reuss type bounds)
- Shear modulus exhibits more anomalous behaviour, especially in low-z systems
- pressure increase faster than expected not due to z increase (would affect B as well as G)
- related to anomalous distribution of eigenvalues of stiffness matrix in systems with low force indeterminacy (see O'Hern *et al.*, Wyart *et al.*) ?
- elastic moduli related to coordination number (rather than density)

ANELASTIC BEHAVIOUR OF CONTACT NETWORKS

- Emerging theme... see publications on set of possible contact forces, force indeterminacy... (McNamara *et al.*, Snoeijer *et al*...)
- Static problem, can be dealt with regarding contact set as network of springs and plastic sliders
- in the recent literature, focus on forces rather than (small) displacements.

"Critical yield analysis" formulation: consider *e.g.* an equilibrium state in 2D under $\sigma_1 = \sigma_2 = p$, apply $\sigma_1 = p + q$, $\sigma_2 = p$, by increments of q (biaxial compression). For which q value does the initial contact network become unstable ?

 \rightarrow Ask whether contact forces exist that are both *statically admissible* (they balance the load), and *plastically admissible* (they satisfy Coulomb inequalities).

This is a *necessary* condition for stability (supported load)

Is it sufficient?

Some bad news

For a solution to exist, it is necessary that contact forces both plastically and statically admissible exist.

For grains with Coulomb friction this is not sufficient. Example:

(Halsey-Ertas "ball in a groove" system, See study by S. McNamara, R. García Rojo and H. Herrmann)

Biaxial compression test: static elastoplastic calculation vs. MD

4900 disks. Identical results for static (dots) and MD (curves) calculations. Results with G. Combe (2001,2002)

Biaxial compression: other results and remarks

- Strains are inversely proportional to K_N (normal stiffness of contacts)
- Detailed comparisons show that static and dynamic methods *locally* give identical results (small systems)
- Static method applicable as long as initial network carries deviator (*type I strains*)
- It fails as soon as the network has to rearrange
- Contacts open, others yield in plastic sliding... non-elastic and non-linear behaviour
- Upper q limit of static method range appears to have finite limit q_1 as $n \to \infty$, even for $\kappa \infty$. Granular systems with friction are not "fragile"
- q_1 is strictly smaller than the deviator maximum

Properties of quasi-static regime I

- strains inversely proportional to κ (hence small), non reversible (plastic), but contained by contacts staying in elastic regime
- evolution *via* a continuous set of equilibrium states in configuration space (quasistatic in the strictest sense)
- little sensitivity to perturbations, return to equilibrium easy
- regime extends to large stress intervals when coordination number is high (large force indeterminacy), or upon unloading (friction being mobilized in the direction associated with loading)

Regime II

- Beyond stability of initial network,
- strains not sensitive to stiffness level κ
- larger fluctuations, slower approach to large system limit
- successive equilibrium states do not form continuous trajectory in configuration space: system has to evolve by dynamic crises. "Quasistatic" evolution in an extended sense (if details of the dynamics statistically irrelevant)
- Characteristic of quasistatic response of granular assemblies with low force indeterminacy

Triaxial compression, from isotropic initial state: influence of κ

Dense state ($\Phi \ge 0.635$ for large κ), coordination number $z^* \simeq 4.6$ if $\kappa \ge 10^4$ (10 kPa). Strain independent on κ (type II) except at very low ϵ_a (inset : slope = elastic modulus) Assembling method mimics compaction by vibration

Triaxial compression, from other isotropic initial state:

Dense state ($\Phi \simeq 0.637$ for large κ), coordination number $z^* \simeq 6$ if $\kappa \ge 10^4$ (10 kPa). Strain of order κ^{-1} .

Assembling method with $\mu=0$ (perfect lubrication). Type I strain regime

Internal state evolution in quasistatic deformation: contact orientations

Rothenburg (\sim 1990), Radjai, Kruyt and Rothenburg...

Microscopic theoretical approaches, attempted predictions

- Homogenization ideas (from continuum mechanics of disordered media): bounds, self-consistent estimates... → limited to regime I. (Jenkins & La Ragione...)
- \Rightarrow important to delineate regimes I and II !
- Attempts to describe internal state (complete list of state variables)... in other words : define an "ensemble"
- Variables include density, coordination number and fabric tensors (contact anisotropy)... Critical state = stationary state for such variables
- Neglect of specific geometry of granular packings, and of its variability... = pitfalls of modelling attempts