Graphene Edges; Unconventional Electronic and Magnetic Properties

Toshiaki Enoki

Department of Chemistry Tokyo Institute of Technology

nanographene edge

Fundamental Aspects of Graphene and Other Carbon Allotropes" Kavli Inst. for Theor. Phys., Univ. of California, Santa Barbara January 9 - 13, 2012

graphene and edge effect for chemists and physicists

Dirac cone

chemistry aspect aromaticity

aromatic sextet

 k_{v}

V

Clar's aromatic sextet rule

graphene

aromaticity 1/3

physics aspect chemically active massless Dirac fermion (relativistic wave equation) in the bipartite lattice conduction band

zero-gap semiconductor with linear bands ($\propto p$)

 $\mathcal{H} = v_{\mathrm{F}}\sigma\mathbf{p}$

momentum p valence band Fermi velocity $v_F \approx (1/300)c$ pseudo-spin σ degree of freedom; 2

two sublattices A; ●, B; ○ two sites in the unit cell cutting a graphene sheet and terminating edge carbon atoms by hydrogen

Outline

1. Edge state at zigzag edge and the magnetic structure of edge-state spins

spin-polarized edge state

from theoretical and experimental understandings # what is the difference in the magnetic structure between the edge-state spins of π -electron origin and the σ -dangling bond spins nanographene (π) and fluorinated nanogrphene (π + σ)

2. Electron wave interference at armchair edge
resonance Raman G-band of armichair-edged graphene nanoribbons
STM superlattice and its fine structure in the vicinity of edge

3. Nanofabrication # graphene oxide, AFM tip zigzag-edged graphene nanoribbons

4. Conclusion

Outline

1. Edge state at zigzag edge and the magnetic structure of edge-state spins

spin-polarized edge state

from theoretical and experimental understandings # what is the difference in the magnetic structure between the edge-state spins of π -electron origin and the σ -dangling bond spins nanographene (π) and fluorinated nanogrphene (π + σ)

Electron wave interference at armchair edge
 # resonance Raman G-band of armichair-edged graphene nanoribbons
 # STM superlattice and its fine structure in the vicinity of edge

3. Nanofabrication
 # graphene oxide, AFM tip zigzag-edged graphene nanoribbons

4. Conclusion

T. Enoki, S. Fujii, K. Takai, M. Kiguchi, *Bull. Chem. Soc. Jpn.*, (2012), in press. T. Enoki, *Eur. Phys. Lett.*, (2012), in press. T. Enoki, *Proc. Nobel Symp. on Graphene and Quantum Matters*, (2012), in press.

S. Fujii and T. Enoki, J. Amer. Chem. Soc., (2012), submitted.

How physicists understand the edge state

zigzag edge

armchair edge

edge state (magnetic)

only one of the sublattices (A, B) exists in the zigzag edge broken symmetry of the pseudo-spin **†** in Dirac fermion

Clar's aromatic sextet rule (# of sextets)

most stable structure

maximal number of the sextets separated by the entirely empty rings

aromatic Kekulé molecules

armchair shaped

(2)

well stabilized

sextet

benzene ring with C atoms singly bonded to the surrounding

non Kekulé molecules (non-bonding π -state (π -radical))

(3)

0

0

zigzag shaped

(1)

0

localized around

zigzag edges

edge state

less stabilized ferromagnetic

Hund rule

less stabilized antiferromagnetic (open shell singlet)

electronic state of graphene edges hydrogen-terminated

experimental evidence of edge state (ultra-high vacuum-STM/STS)

armchair edge: long and continuous, energetically stable (aromatic)

Kobayashi, Fukui, Enoki, et al., Phys. Rev. B (2005)

electronic state of graphene edges hydrogen-terminated

Fujita, et al. J. Phys. Soc. Jpn. (1996)

electron confinement effect in zigzag edges

edge-state-absent site at zigzag edge (small local density of states (LDOS))

Kobayashi, Fukui, Enoki, et al., Phys. Rev. B (2006)

edge state of π -electron origin topological origin from the pseudo-spin in Dirac fermion

σ-dangling bond defect origin in the sp³ backbone

What difference?

fluorination of nanographene

M. Kiguchi, V. L. J. Joly, K. Takai, T. Enoki, R. Sumii, K. Amemiya, *Phys. Rev.* **B84**, 045421 (2011)

NEXAFS fluorinated ACFs (F/C= 0 - 1.2)

fluorine concentration dependence of NEXAFS intensity and localized spin # of Carbon atoms ~200~300 (nanographene 2-3 nm)

magnetism; edge state and σ -dangling bond state

internal exchange field

K. Takai, H. Sato, T. Enoki, N. Yoshida, F. Okino, H. Touhara, M. Endo, J. Phys. Soc. Jpn. 70, 175 (2001).

Outline

1. Edge state at zigzag edge and the magnetic structure of edge-state spins

spin-polarized edge state

from theoretical and experimental understandings # what is the difference in the magnetic structure between the edge-state spins of π -electron origin and the σ -dangling bond spins nanographene (π) and fluorinated nanogrphene (π + σ)

2. Electron wave interference at armchair edge
resonance Raman G-band of armichair-edged graphene nanoribbons
STM superlattice and its fine structure in the vicinity of edge

Nanofabrication
 # graphene oxide, AFM tip zigzag-edged graphene nanoribbons
 Conclusion

electron scattering at edges and interference

inter-valley scattering

interference from chemistry aspect (Clar's representation) infinite size graphene

3 states degenerate $\sqrt{3} \times \sqrt{3}$ superlattice

armchair-edged molecules

only one unique state standing wave

electron wave interference

zigzag-edged molecules

12 states degenerate (three fold symmetry: 4x3=12) S=1/2[1] no standing wave

armchair-edged graphene nanoribbon observed by resonance Raman experiments

Cançado, Kobayashi, Pimenta, Enoki, et al., *Phys. Rev. Lett.* **93**, 047403 (2004) Sasaki, Saito, Wakabayashi, Enoki, *J. Phys. Soc. Jpn.* **79**, 64082 (2010) Sasaki, Saito, Wakabayashi, Enoki, *J. Phys. Soc. Jpn.* **80**, 044710 (2011)

AFM image of single nanographene ribbon

single sheet of nanographene ribbon at a step edge

Resonance Raman experiments with polarized light

small nanographene ribbon can be easily heated by light

Intensity

G-band intensity (armchair edge) theoretical analysis

Sasaki, Saito, Wakabayashi, Enoki, J. Phys. Soc. Jpn. 79, 64082 (2010)

lattice deformation for active LO mode

transfer integral γ_0 modified

 $\begin{aligned} \mathbf{A}^{q} \Big(\delta \gamma_{0,1}, \delta \gamma_{0,2}, \delta \gamma_{0,3} \Big) &= \Big(A_{x}^{q}, A_{y}^{q} \Big) & \text{deformation-induced gauge field} \\ \mathbf{A} : \text{gauge field of the laser beam} \\ & \textbf{G-band intensity} & \left| M^{\text{opt}} (\mathbf{A}) \right|^{2} \propto \cos^{2} \theta \end{aligned}$

100 % armchair nanographene ribbon

STM superlattice and its fine structure

Sakai, Takai, Fukui, Enoki, Nakanishi, Phys. Rev. B81, 235417 (2010)

low temp.-STM measurement near an armchair edge

Sakai, Takai, Fukui, Enoki, Nakanishi, Phys. Rev. B (2010)

honeycomb a = 4.26 Å

 $\sqrt{3} \times \sqrt{3}$

1.5 × 1.2 nm² V = 20 mV, I = 0.32nA, 5.5 × 1.2 nm², 9 K

two types of superperiodic patterns: honeycomb and $\sqrt{3} \times \sqrt{3}$

appearance of 3-fold symmetric fine structure in the honeycomb area

<u>tight binding analysis:</u> <u>electronic structure of graphene with armchair edge</u>

Armchair edge

 $k_{X} \rightarrow -k_{X}$ **K** \rightarrow **K**' interference between **K** and **K**' $\psi_{A}(\mathbf{R}_{A}) \approx 0$ $\psi_{B}(\mathbf{R}_{B}) \propto (-\exp(-i\mathbf{K}\mathbf{R}_{B}) + \exp(i\mathbf{K}'\mathbf{R}_{B}))$

inter-valley scattering

K' K

two Dirac cones

honeycomb superperiodic reproduced

anti-phase coupling +phase: O -phase : •

2D mapping of squared amplitude of the wave function

theoretical analysis for the 3-fold fine structure: simulation of STM image

calculation model for tunneling current

matrix element

$$t_{R} = t_{0} w_{R} \exp\left(-\frac{d_{R}}{\lambda}\right) \cos\theta_{R}$$
$$w_{R} = \exp\left(-\alpha^{2} d_{R}^{2}\right) \left[\sum_{R'} \exp(-\alpha^{2} d_{R'}^{2})\right]^{-1}$$

t₀: scaling factor

$$\alpha^{-1} \sim 0.13$$
 nm (visual optimization)
 $\lambda = 0.085$ nm
 $\Delta = 0.5$ nm

wave function of tip-end atom: s-orbital

V. Meunier and Ph. Rambin, *Phys. Rev. Lett.* **81**, 5588 (1998). T. Nakanishi and T. Ando, *J. Phys. Soc. Jpn.* **77**, 024703 (2008).

current image (three fold symmetry)

anti-bonding coupling with a node between the nearest neighbor sites mediated by tip-end atom

the electronic structure in the vicinity of the armchair graphene edge, information about the phase of the wave function

3-fold symmetric LDOS distribution in honeycomb superperiodic pattern

Outline

1. Edge state at zigzag edge and the magnetic structure of edge-state spins

spin-polarized edge state

from theoretical and experimental understandings # what is the difference in the magnetic structure between the edge-state spins of π -electron origin and the σ -dangling bond spins nanographene (π) and fluorinated nanogrphene (π + σ)

Electron wave interference at armchair edge
 # resonance Raman G-band of armichair-edged graphene nanoribbons
 # STM superlattice and its fine structure in the vicinity of edge

3. Nanofabrication # graphene oxide, AFM tip **zigzag-edged** graphene nanoribbons

4. Conclusion

nanographene oxide

non-contact AFM

disordered structure

non-contact AFM

epoxide rings arranged along a zigzag direction

1D ordered wrinkles with a regular width of ca. 9nm zigzag nanographene ribbon (ca.4.5nm)

epoxy groups aligned \longrightarrow unzipping process T_{-1} liet al Phys PeV Lett 96 176101 (2006)

J.-L., Li et al. *Phys. ReV. Lett.* 96, 176101 (2006) oxygen

oxidation of graphene

(d)

unzipping process

1D oxidation line along the zigzag direction

nanofabrication using an AFM tip

nanofabrication using an AFM tip

ferromagnetic zigzag-edged nanographene ribbon

X. Gao et al^{b)}, JACS 131, 9663 (2009)

Edges modiy the electronic structure of graphene

zigzag edge; nonbonding edge state electronic, magnetic, chemical activities

armchair edge; electron wave interference

a variety of electronic properties & functions basic science & applications S. Fujii, K. Sakai, V. L. Joseph Joly, Y. Kobayashi, Y. Shibayama, M. Kiguchi, K. Takai, K. Fukui *Chem. Dept., Tokyo Inst. of Tech.*

> K. Tanaka, M. Koshino Phys. Dept., Tokyo Inst. of Tech.

A. Botello-Mendez, J. Campos-Delgado, F. Lpez-Uras Adv. Mater. Dept., IPICYT

H. Terrones Mexico Soc. of Nanosci. & Nanotech., SOMENANO

M. Terrones Phys. & Math. Dept., Universidad Iberoamericana

L. G. Cancado, B. R. A. Neves, A. Jorio, M. A. Pimenta, Univ. Fed. Minas Gerais

> K. Sasaki, K. Wakabayashi *NIMS*

> > T. Nakanishi AIST

R. Saito Phys. Dept., Tohoku Univ.

M. S. Dresselhaus Massachusetts Inst. of Tech.

R. Sumii, K. Amemiya Inst. of Mater. Str. Sci., High Energy Accel. Res. Org.

