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Simplest tight-binding model for pz orbitals:
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I. Introduction: Gapping the Graphene Spectrum
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Simple model:
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n wraps around 

Bloch sphere once

Chern number 1

…so expect edge states!



But: in practice gap appears to be unobservably small

mK5~
SO

 Min, et al. ‟06, Yao et al. „06

Analogous behavior observed in other materials:

M. Konig et al., Science (2007) 

Quantized Hall behavior

without magnetic field!



II. Non-zero Chern Numbers from Microwaves

E

Oka and Aoki, PRB (2009):

Consider  electronic states

in a rotating, spatially uniform

electric field

Floquet theorem: If H(t+T)=H(t), then (t) = e-i t u(t) 

with u periodic in time.  are quasienergies.
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Floquet spectrum 

has a band structure



Quasienergy spectrum is gapped at k=0!
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Berry Curvature

Occupation Berry curvature

Time-averaged matrix element
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• Hall conductance proportional to Chern number, if one band 

fully occupied 

• So obtain something like quantized Hall conductance!

• Must deal with occupation factors.  Can we use Fermi-Dirac 

with quasienergies instead of real energies?



Chern numbers in tight-binding calculations
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III. Edge States and Transport

Even without microwaves, graphene ribbons support edge states.   But not current-carrying.

To compute (Floquet) spectrum with microwaves, 
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Expand in Fourier harmonics in x and t, sites in y

Floquet spectrum (quasienergies) in extended zone scheme

…just as in TI spectrum.Current carrying states emerge…



Is edge state structure robust with respect to boundary conditions?

Continuum model with “infinite mass boundary conditions”

(valley preserving)

       WyxWyxyxyx
BABA

 ,,0,0, 

K K

So only 

one pair 

of edge 

states



So can consider transport via edge states in ribbon geometry.

But what are their occupations?

Simple two terminal geometry

Highly doped graphene.  No microwaves.

• No dissipation

• Leads support Fermi-Dirac 

distribution

• Generalization of  Tworzydlo

et al (2007)

• Edge state transport reflected 

in large L conductance



Since leads have no microwaves, can define transmission matrix

connecting transverse modes among various leads
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Current out of left lead

Current conservation + inversion symmetry 
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• Zero temperature conductance

• No charge pumping



Computing Transmission Probability

• Discrete time, intervals t

• Lead states analytically known, Floquet eigenvalues
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• Match this to states in scattering region with same Floquet eigenvalue. 

These are state of the form (y,t)exp(ikxx) which satisfy
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• Real space continuum model,  infinite mass BC, use H for K valley

•Note operator is non-Hermitian.  kx may be imaginary evanescent waves

• For given state (p,n=0) on left, match at x=0 and x=L to find transmission 

amplitude 
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Results

No microwaves

pmax= nmax/W

nmax=15,20,25

• Microwaves always increase conductance

•Edge state transport for large L

•Power law, superdiffusive behavior!



IV. Why power law behavior for L < W?
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Simpler question:

How does density decay in a 

nanotube geometry where half is 

held fixed at high density and half 

undoped but subject to microwaves?
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• For each ky , evanescent states at   =0

• Anticrossings of (kx )+m

• Decay length m ~ 1/ m

• Excess density due to occupation of these

states 

m =  2     1            0          1        2 

1

To estimate gaps: Define Floquet Green‟s function
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admixes Floquet copy m with (m 1)
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Gap shrinks very rapidly with m

Decay length grows very rapidly with m!
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• r‟s and t‟s linearly related by matching coeffs of e in y for both sublattices

• Include first order corrections to due to A0

• Obtain recursion relations for tn+1 in terms of  tn and tn-1
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Assume sum dominated by a single value of n
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• Density falls off approximately as a power law with x

• Power is a weak function of and A0

• Result of competition between rapidly increasing m and decreasing tm with m



Summary

• Floquet spectrum of irradiated graphene has non-trivial topology

similar to topological insulators

• Edge states, robust with respect to boundary conditions

• Can address question of occupation by including thermal

reservoirs as leads

• Time averaged conductance increased by time-dependent potential

• For large L transport dominated by edge states 

• For small L transport is dominated by evanescent states and

is anomalous

Z. Gu, HAF, D. Arovas, A. Auerbach, PRL 107, 216601 (2011)

Thank you!


