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Chirality
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versus
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Chiral Electrons

5



Chiral Electrons

2D electron gas

Spin is independent of k

H =
k
2

2m∗
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Chiral Electrons

2D electron gas

Spin is independent of k

Graphene

Eigenstates are chiral

H = vFk · σ

H =
k
2

2m∗
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Chirality and Transport

Chirality tends to delocalize electrons

Weak antilocalization

e
i
2 2πσz = −σ0

Destructive interference

X. Wu, X. Li, Z. Song, C. Berger and W. A. de Heer, Phys. Rev. Lett. 98 136801 (2007)
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Chirality and Transport

Chirality tends to delocalize electrons

Klein paradox
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Chirality tends to delocalize electrons

Chirality and Transport

2DEG
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Chirality and Transport

Chirality tends to delocalize electrons
Graphene

T(q,kF)0 1

Metal

kxL = 2πn

T ∼ (k(lead)x L)−1
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Motivation of our work

We are interested in how 
exotic properties of 

graphene
 influence electron transport

10



Motivation of our work

How to drive a d.c. current?

11



Motivation of our work

How to drive a d.c. current?

Normally...

11



Motivation of our work

Strip of graphene contacted by 
two electrodes

A voltage source creates a 
voltage bias between the 

contacts , that drives a current 
through the strip

Normally...

I

V
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Motivation of our work

But there is another way...
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Quantum Pumping
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Quantum Pumping

An electron pump is a device that generates
a d.c. current between two electrodes that

are kept at the same bias
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Quantum Pumping

An electron pump is a device that generates
a d.c. current between two electrodes that

are kept at the same bias

Electrons are transferred between the reservoirs
by externally varying the scattering properties

of the pumping region over time
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How does chirality impact the response 
of electrons under local driving?

Quantum Pumping

A quantum pump

Frequency
Amplitude U

ω
Level 

spacing
EL

EN
L =

�2
2m∗L2

EG
L =

�vF
L
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Adiabatic limit

Weak driving

Strong driving

Non-adiabatic limit

Weak driving

Strong driving

Pumping Regimes

U � EL

U � EL

ω � EL

ω � EL

U � ω

U � ω
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Adiabatic Pumping

Phys. Rev. B 80, 245414 (2009)
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Adiabatic Pumping

Phys. Rev. B 80, 245414 (2009)
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Geometric formulation of pumping

Adiabatic Pumping

Assuming:

✦ Phase coherent system
✦ Negligible interactions
✦ Zero temperature

✦ Adiabatic driving at frequency

the charge pumped between two reservoirs is:

ω � 1/τD

dwell time X3

X1
X2
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Geometric formulation of pumping

Adiabatic Pumping

Assuming:

✦ Phase coherent system
✦ Negligible interactions
✦ Zero temperature

✦ Adiabatic driving at frequency

the charge pumped between two reservoirs is:

ω � 1/τD

dwell time

Q(m) =
e

π

�

A
dX1dX2

�

β

�

α∈m

Im
∂S∗

αβ

∂X1

∂Sαβ

∂X2

X3

X1
X2
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Adiabatic Pumping
Minimal setup: two parameter pumping

QL→R =
e

π
Im

��
dU1dU2 �∂U1sL|∂U2sL�
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Adiabatic pumping
Adiabatic pumping response

k LF

0

7

qL05 -5

Graphene (highly doped leads) Normal conductor (highly doped leads)

qL05 -5a) b)

0

E. Prada, P. San-Jose and H. Schomerus, Phys. Rev. B 80, 245414 (2009). 

χuq =
Qq

L→R

π (U/EL)
2

1

Np

Chirality enables pumping of 
evanescent modes close to q=0
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Total response: summing over modes

Adiabatic pumping

Universal response
 (W≫L)

� ∞

0
dq

sinh2(q) [2q cosh(2q)− sinh(2q)]

πq3 cosh4(2q)
= 0.0288
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Adiabatic Pumping
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Adiabatic Pumping

Chirality enables efficient pumping of 
evanescent modes in graphene
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Adiabatic Pumping

Chirality enables efficient pumping of 
evanescent modes in graphene

Not so in conventional pumps

Dirac point pumping is universal for 
weak driving in W>>L pumps - close 
analogy to the minimal conductivity of 
ballistic graphene.
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now...

NON-ADIABATIC PUMPING

ω � EL
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Minimal non-adiabatic pump

Minimal pumping requirements:
Non-Adiabatic Pumping

single-parameter driving + left-right asymmetry

M. Wagner and F. Sols, Phys. Rev. Lett. 83, 4377 (1999).
S. Kohler, J. Lehmann and P. Hänggi, Physics Reports 406 379 - 443 (2005)
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Non-Adiabatic Pumping
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It’s an out-of-equilibrium problem
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It’s an out-of-equilibrium problem

An ac force without net bias is 
transformed into a directed motion

Possible due to spatiotemporal 
symmetry breaking

It cannot be formulated in terms of 
geometrical phases

Floquet theory

Non-Adiabatic Pumping
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Floquet theory
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Floquet theory
Floquet theory: turns a periodic, time 
dependent problem into a static one
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Floquet theory: turns a periodic, time 
dependent problem into a static one

Floquet theorem for the stationary limit
If i∂t|Ψ(t)� = H(t)|Ψ(t)� and H(t) = H(t+ T ), then

|Ψ(t)� = e
−i�t|φ(t)�, with |φ(t+ T )� = |φ(t)�
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Floquet theorem for the stationary limit

Then  |φ(t)� =
�

n e
inωt|φn�, with ω = 2π/T
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Floquet theory
Floquet theory: turns a periodic, time 
dependent problem into a static one

Floquet theorem for the stationary limit

Then  

If 

|φ(t)� =
�

n e
inωt|φn�, with ω = 2π/T

H(t) = H
(0) + cos(ωt)U

If i∂t|Ψ(t)� = H(t)|Ψ(t)� and H(t) = H(t+ T ), then
|Ψ(t)� = e

−i�t|φ(t)�, with |φ(t+ T )� = |φ(t)�

�
H

(0) + n�ω
�
|φn�+

1

2
U (|φn+1�+ |φn−1�) = �|φn�
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Floquet Theory
Static Hamiltonian of coupled sidebands

VL VR

�L� �l� �r� �R�

�Ω

n��2
n��1
n�0
n�1
n�2

H =
�

n

�
H

(0) + n�ω
�
|φn��φn|+

1

2

�

n

U(x) (|φn+1��φn|+ |φn��φn+1|)
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Floquet Theory
The time-averaged pumped current is:

in terms of the sideband-resolved 
transmissions

Ī =
e

h

∞�

n=−∞

�
d�

�
T (n)
L→R(�)− T (n)

R→L(�)
�
f(�)

M. Wagner and F. Sols, Phys. Rev. Lett. 83, 4377 (1999).
S. Kohler, J. Lehmann and P. Hänggi, Physics Reports 406 379 - 443 (2005)

T (n)
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Floquet Theory
The time-averaged pumped current is:

in terms of the sideband-resolved 
transmissions

Ī =
e

h

∞�

n=−∞

�
d�

�
T (n)
L→R(�)− T (n)

R→L(�)
�
f(�)

dĪ

dEF
=

e

h

∞�

n=−∞

�
T (n)
L→R(EF )− T (n)

R→L(EF )
�
=

e

h
∆T (EF )

At zero temperature

M. Wagner and F. Sols, Phys. Rev. Lett. 83, 4377 (1999).
S. Kohler, J. Lehmann and P. Hänggi, Physics Reports 406 379 - 443 (2005)

T (n)
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Parameter Regime

Strong non-adiabatic pumping:
only one sideband �ω � EL

U � �ω

W � L

Weak driving regime:

Wider than long pumps:

29



Results

q ω
=

�ω
2m

∗ L �2

q ω
=

ω v F �
2�ω
U

�2

∆T (q, �)
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Results

q ω
=

�ω
2m

∗ L �2

q ω
=

ω v F

1

p
∆T (q, �)
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Remember...

For voltage-driven transport we had:
Graphene

T(q,kF)0 1

Metal

kxL = 2πn

T ∼ (k(lead)x L)−1
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Results

Purely evanescent pumping response

Rectified! (does not change sign)

2DEG
Graphene
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Evanescent mode mechanism

(b) (c)

�Evanescent modes are pumped only in one 
direction
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Evanescent mode mechanism

��
Evanescent modes are pumped only in one 
direction
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Chirality-enhanced evanescent pumping
Total pumped current

2DEG
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Some Numbers

k∞F = 12nm−1

m∗ = 0.067me

Relative pump performance:

Independent of L,W,ω, U
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Some Numbers

ν ≡ �IG�max

�IN �max
=

σmax
G

σmax
N

=
�k(∞)

F

m∗vF
≈ 20.9

k∞F = 12nm−1

m∗ = 0.067me

Relative pump performance:

Independent of L,W,ω, U
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Some Numbers

L = 5µm EG
L =

�vF
L

≈ 0.13meV

EN
L =

�2
2m∗L2

≈ 0.02µeV

W/L = 4

U = 40µeV

Length and energy scales

L = 1µm EG
L =

�vF
L

≈ 0.66meV

IGmax ≈ 15nA

IGmax ≈ 3nA

EN
L =

�2
2m∗L2

≈ 0.57µeV

U = 200µeV

W/L = 4

�ω = 10meV (≈ 2.4THz)

�ω = 2meV (≈ 500GHz)
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Conclusions
Chirality keeps the contacts always open in 
graphene (for evanescent and propagating modes)

Resonant conditions are required in N systems

Non-adiabatic driving pumps any evanescent 
mode that can be excited to propagating

There is a whole range of evanescent modes in 
graphene available in graphene - efficiency

In a 2DEG only isolated resonances contribute

All such modes are rectified (driven in the 
direction dictated by spatial asymmetry)
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Analytical Results

ĪG ≈ e

�
(U/2)2

EG
W

×
��

2− |EF |
�ω

�
EF
�ω , |EF | < �ω

±1, |EF | > �ω

ĪN ≈ e

�
(U/2)2

2k(∞)
F WEN

W

×






0, EF < −�ω
�
1 + EF

�ω
�2

, −�ω < EF < 0

1, EF > 0

Ī =
ge

h

�
U

2�ω

�2

W

� EF

−∞
d�

� ∞

−∞
dq

∆T

p
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Weak driving limit:
Analytical Results
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ĪN ≈ e

�
(U/2)2

2k(∞)
F WEN

W

×






0, EF < −�ω
�
1 + EF

�ω
�2

, −�ω < EF < 0

1, EF > 0
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Weak driving limit:

Semiclassical approximation

Analytical Results
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