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Examples of 2D Dirac fermions in condensed 
matter

Graphene

Dirac nodes due to:  
C3v symmetry of the wavevector (w/out SO)

•must fine-tune EF to sit at Dirac point

•breaking lattice symmetries 
(e.g. reflection about the bond)
generally lifts the degeneracy

•definite charge => cyclotron orbits +   
QHE

d-wave superconductors

Dirac nodes due to: 
the topology of the gap

• need not fine-tune EF to sit at Dirac    
point

• generally, breaking lattice symmetries 
DOES NOT lift the degeneracy
(e.g. YBCO is orthorhombic=> d+s)

•indefinite charge => no cyclotron orbits

http://www.ewels.info/img/science/graphite/index.html


Interacting massless Dirac fermions in 
graphene

“relativistic”

non-relativistic

•Short range interactions perturbatively irrelevant
•Disorder + interactions interesting, but will not be considered
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Interacting massless Dirac fermions in 
graphene: weak coupling approach

Interaction strength is given by “fine structure constant”

In weak coupling:
(equivalently H-F)

Gonzalez et. al. Nucl. Phys. B 424, 595 (1994)
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Note the divergent group velocity: the non-relativistic
approximation invalid when vF ∼ c. Must include retardation
and current-current coupling. Ultimate NFL fixed point @ vF = c.
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Since α ∼ 1, its hard to justify the weak coupling approach.



Interacting massless Dirac fermions in 
graphene: RPA

RPA (includes screening effects)
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Interacting massless Dirac fermions in 
graphene: thermodynamics
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To the leading order in large N expansion, which includes the screening 
effects, the free energy density is
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Interacting massless Dirac fermions in 
graphene: thermodynamics
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kB

≈ 1eV )For N = 4, vF ≈ 10
6m/s, ² ≈ 1 we get η ≈ 0.06

The correction is O(1) at T ≈ 2K

The free energy 
correction:

≡ ²λ



The free energy suppression

The expression δf
f0
= −2η ln TUV

T can be understood as the first non-trivial
term in the Taylor expansion of

f(T,Λ, η) = −2NkBT
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In the limit of e2 → 0, the above expression coincides with the free energy
calculated within the Hartree-Fock approximation. Thus the suppression of the
specific heat cV = −T∂

2f/∂T 2 relative to the non-interacting case persists when
the polarization effects are included.

The Coulomb interaction effectivelly suppresses the density of states.



One of the non-trivial predictions of this theory is the dependence of the suppression 
of cV on the dielectric constant ε. 

In the strict large N limit, the dependence on e2 drops out. We can compare the 
resulting suppression to the gauge theory without the time component of the gauge 
field  (Kim, Lee, and Wen PRL 1997) where the specific heat is enhanced.
This enhancement is exactly compensated by the suppression found here.
This follows from the Lorenz invariance of 2+1D QED where the two effects must 
cancel to each order in large N.

The specific heat suppression



Plasmons at the Dirac point
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In 2 dimensions the plasma oscillations obey the dispersion relation

ωpl ∼
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ξ
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where ξ is the screening length.
At the Dirac point, the screening length diverges as ξ ∼ vF

T which gives
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Plasmons at the Dirac point

vF q

T

Density plot of =mDret
RPA(Ω, q, T ) ∼ S(Ω, q, T )

Ω

T

At room temperature and for q−1 ≈ 400nm, ωp ≈ 6THz.
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Finite T plasmon and its coupling to light at Dirac point
Since the Hamiltonian is scale-free we can measure all energy scales in units

of kBT and all length in units of `T =
h̄vF
kBT

. The coupling of the thermal quasi-
particles to the three-dimensional electromagnetic radiation leads to a thermo-
plasma polariton mode. In dimensionless variables s =

ωp
T and t = k`T , the

thermoplasma polariton frequency ωp(k, T ) satisfies
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Plasmon-photon mixing

The mixing (at room T) @ k~1mm-1



Experimental observation of the plasmon-
polariton in 2DEG

Light cone
2D plasmon (th)

data



Frequency dependence of the atttenuation
length
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Surface plasma polariton

ξa

graphene plasma-polariton



Experimental demonstration of multimode 
interference between the two guided modes 
supported by a 4μ wide Au stripe as excited by a 
2μ wide input stripe. The dashed white lines 
indicate the outline of the Au structures. Frames 
(a) and (b) show near-field images acquired for 
symmetric and asymmetric alignment of the 
input stripe, respectively.

glass glass

Au
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Guiding graphene thermo-plasmons with temperature?

The group velocity vg =
∂ωp(q,T )

∂q ∼
q

T
q
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