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- Constant (and high) mobility over a wide
range of density. Dominant scattering
mechanism?

- Minimum conductivity plateau ?

- Mechanism for conductivity without carriers?

Figure from Novoselov et al. (20C5)




Graphene - Honeycomb lattice: Dirac cone with
trigonal warping,

- Disorder: missing atoms, ripples, edges,
impurities (random or correlated)

- Interactions: screening, exchange,
correlation, velocity/disorder

renormalization

o - Phonons

i - Localization: quantum interference
mi il - Temperature

i
bbby

Exact solution is impossible -> reasonable hierarchy of
approximations



- For ftransport, we can use a low energy effective theory
l.e. Dirac Hamiltonian. Corrections, e.g. band non-
linearities set in at close to breakdown current!

hUF

E,~—~3eV
aQ

Ep ~ hpkmax ~ hupy/7.2 % 1000em=2/V x 100 V ~ 0.3 eV

B. Partoens® and F. M. Peeterr;*_ |
PHYSICAL REVIEW B 74, 075404 (2006)
n~ 105 cm>
Ve~ 100V
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- Physical limit is electrons, where
graphene is a Fermi Liquid

- For massless Dirac Fermions, intferaction strength is given by
ratio of potential to kinetic energy

PE [ekp’ R,
= RET | R
XS;0, ~ 0.8

- Interactions are tfuned NOT by carrier density, but by dielectric
environment!




Any small parameters?

Disorder

Regime of current

Landauer Formalism

Energy

experiments

= Functional

Minimization

Renormalization Group

Interactions

Away from Dirac poinf,
graphene is a Fermi liquid




Honeycomb lattice (Spz + pz) -> Tight binding gives low
energy ' Dirac Hamll’ronlan

Interactions -> "Bubble diagrams” give RPA screening

Disorder -> "Ladder diagrams” give semi-classical Boltzmann
transport

Density inhomogeneity (at Dirac point) -> “Self-consistent
Approximation”

Mean field theory -> Conductivity a function of effective
carrier density




Honeycomb lattice (Spz + pz) -> Tight binding gives low
energy ' Dirac Hamll’ronlan

Interactions -> "Bubble diagrams” give RPA screening

Disorder -> "Ladder diagrams” give semi-classical Boltzmann
transport



1. The linear in density conductivity is
due to
Dielectric screening increases moblll’ry

n e? 9 n

— A[2r, .
A A ]nimp RS e

i 3x*m 5 . arccos[l/x]

4 + 3x — 5 + x(3x — 2) =

2. Short-range (i.e. delta-correlated scatterers) give a
Dielectric screening decreases

1F T Ames e )ty
K, - Nimpt? Fo(x)

16
Fa(x) = g——\+ 40x° + 6mx?

conductivity.
o= By, | =

— 207x? + 8x%(5x° — 4.\‘)'

Figure from Adam, Hwang and Das Sarma, Physica E (2008)




A self-consistent theory for graphene transport

Shaffique Adam®, E. H. Hwang, V. M. Galitski, and S. Das Sarma

PHAS | MNovember 20, 2007 | wol 104 | no 47 | 183063

Figure from Rossi, Adam and Das Sarma (2008)

System breaks up info electron and hole puddles --
conductivity is given by the Drude-Boltzmann conductivity of a

, Where
n* is calculated using a self-consistent "Fermi-Thomas”
condition: £z = (V3). Here Vp is the RPA-screened disorder
potential of charged impurities and (--) denotes disorder
averaging



Q1. Does the self-consistent procedure give meaningful results for
the S1‘Cl1'IS1'ICCl| properties” of the inhomogeneous system? i.e. How
accurate is n* B

Theory of charged impurity scattering in two dimensional graphene

S. Adam, E. H. Hwang, E. Rossi, and S. Das Sarma

arX1v:0812.1795v1 [cond-mat.mes-hall] 10 Dec 2008

Q2. When can we map this highly inhomogeneous electron/hole
puddle system into a homogeneous medium?

Crossover from quantum to Boltzmann transport in graphene

Shaffique Adam!. Piet W. Brouwer2. and S. Das Sarma!l

arX1v:0811.0609v] [cond-mat.mes-hall] 4 Nov 2008

Q3. What is the conductivity of this effective medium in terms of
the “statistical properties” of the inhomogeneous system? i.e Is it
really that onin =on™|?

Effectrve medium theory for desordered two-dimensional graphene

Enrieo Hossi’, Shaflqm Adam®, 5. Daes Serma’

arXiv:0809.1425v] [cond-mat.mes-hall] 8 Sep 2008




A self-consistent theory for graphene transport

Shaffique Adamt, E. H. Hwang, V. M. Galitski, and 5. Das Sarma

PHAS | MNowember 20, 2007 | wol 104 | no 47 | 18303

Imagine increasing charged impurity density Nimp.
This increases the potential fluctuations which
increases the induced carrier density. But an
increased carrier density screens more effectively
which decreases the potential fluctuations and
decreases the induced density.



Calculating n*, the effective carrier density

Ei = (V3)
/ n* \
g(n) . ., f(n)
h2 UpT :m;mpl%:l Cofr, a = ksd)

Computing <Vp?>: statistics problem of averaging over uncorrelated disorder



I. As one increases disorder, is determined
by the competition between the increased puddle carrier density
(that increases conductivity) and increased scattering (that

decreases conductivity).

4F (a) 2e 7,
(2 + 7r,)* 1T 2r,

CiPAr,,a)= — 1+

+ (1 + 2r, a)e™(Ey[2r.a] — E[a(1 + 2r,))),

n- " P

- RPA p / ' ik
: = 2rsC0 (rg, a = 4d \TTH )
Rimp

IT. Minimum conductivity is a plateau (not a
point): the

III. Dirac point is determined by (disorder
averaged) first moment of the screened Coulomb

potential.




IV a. Screened Coulomb potential gives disorder potential
correlation function with a power law tail.

2m—-1)!"
Cm= D2 - (204,

C(r) = Co(2g,d) + 2 (= 1)™(gq,r)™

m,. .\
m=0 2 m.

Coo(x)=[1/(2m)!](5™ ) [xeE  (x)].

IV b. A Gaussian approximation for the correlation function
captures many of the salient features.

K 2
V(V(0) = 2%2 exp[— .

Do(d? n*, rs) are analytic functions
reported in Adam et al. PRL (2008)
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E 250 nm x 250 nm
How do you characterize the

Dirac point in the presence of electrons
disorder? /
Dirac cone kx' ky'
(momentum space) holes

50 100 150 200 250

- Screened potential correlation <U(T)U(O)>

e.g. Full width at half maximum of (v(7r)v(0))is related
to the correlation length &

- Distribution function P[n] (histogram of carrier density)
e.g. width of P[n] gives root mean square

carrier density: Nrms



Q1. Does the self-consistent procedure give meaningful results for
the “statistical properties” of the inhomogeneous system?

- Does the self-consistency capture the right physics?
- What about many body effects: exchange, correlation?

Recall that in self-consistent procedure:

= e (V(O)V(0))

W(th)Q
Once n* is determined, the full distribution P[V(r) V(r2) ... V(r»)] can
be computed. In particular, characterizing all higher moments or

correlation functions becomes a matter of quadrature e.g.

e =/ (V) /[ (o)

(V(r)V(0)) = "-imp/dq[cﬁ(q,';z.*)]'ze'iq’r
~z M

- -

1'["'“.; —~ r!h \/3 + {nl][l[léi} !

2m(E[rs, dv/n")? e""[z(s[rs,dm)?

(From our perspective, potential correlation is a “second moment” of screened disorder
potential, whereas nrms is a “fourth moment”)




week ending

PRL 101, 166803 (2008) PHYSICAL REVIEW LETTERS 17 OCTOBER 2008

Ground State of Graphene in the Presence of Random Charged Impurities

Enrico Rossi and S. Das Sarma

PHYSICAL REVIEW B 78, 115426 (2008)

Density functional theory of graphene sheets

. . e . . ')
Marco Polini,"* Andrea Tomadin,! Reza Asgari.? and A. H. MacDonald?

Eln| = Egin[n(r)] + Eg[n(r)] + Eepen[n(r)] - /

JA

- . 12 . 1)
\«‘nu{l‘)rf“r — / u‘(l‘,lrf"f'
J A

Then average over 500-1000 ensembles

How does the ground state obtained by "Energy Functional
Minimization” compare with the self-consistent Ansatz?



Large puddles
N, ~ Nms L? ~ 500

Small puddles
Ne fis nmax€2 ~ 2

Figure from Rossi, Adam and Das Sarma (2008)

How does this compare with predictions
of the self-consistent theory?



= 1012 cm‘2

Gaussian

SCA
TFD-LDA

n| 10"%em *1]

. 2.6

<V(r)V(0)>

100
X [nm]

SCA

TFD-LDA
d=0.3 SCA

TFD-LDA

Nimp = 102 em~2 and r, = 0.8.

Two approaches agree over a wide range of parameters




Observation of electron—hole puddies in
graphene using a scanning single-electron

transistor

J. MARTIN', N. AKERMAN', G. ULBRICHT?, T. LOHMANNZ, J. H. SMET?, K. VON KLITZING2
AND A. YACOBY!-3*

arXiv:0705.2180

we report a new technique of Dirac point mapping that we have used to determine

Origin of Spatial Charge Inhomogeneity in Graphene

Yuanbo Zhangl*§ Victor W. Brar? Caglar Girit2. Alex Zettl2. Michael F. [jthe origin of charge inhomogeneities in graphene. We find that fluctuations in

1\ raphene charge density are not caused by topographical corrugations, but rather
Crommie'?* arXiv:0902.4793 =" g y y topograp g

by charge-donating impurities below the graphene. These impurities induce

Similar results from Arizona and Riverside groups.
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Q2. When can we map this highly inhomogeneous electron/hole
puddle system into a homogeneous medium?

- Discuss the case of non-interacting electrons by solving
the fully quantum mechanical problem.

Landauer Formalism

Disorder

Energy
Functional
Minimization

Renormalization Group

Interactions



First lets look at the clean limit (no disorder): a problem 1n
quantum mechamcs Zitterbewegung, chirality, and minimal conductivity in graphene

M1, Katsnelson®

Eur. Phys. J. B 51, 157-160 { 2006) THE EUROPEAN
Dol 10,1140 /epib fe2006-00203-1 PHYS ICAL J OURNAL B

Disorder

PRL 96, 246802 (2006) PHYSICAL REVIEW LETTERS

Sub-Poissonian Shot Noise in Graphene

J. Tworzydio,' B. Trauzettel.”> M. Titov.> A. Rycerz,>* and C. W.J. Beenakker®

Interactions T 1

4e 4e? W
> Z o or W >

n=0
= X
o=G L/ 102

Omin —
Th

Same result as “static” Kubo formalism T-> O




- Consider non-interacting model but mechanical
- Electron interference gives (symplectic symmetry)

Disorder H — —ZhUF [0‘:,;833 O-yay]

H&e, H o,

DL Interactions

VOLUME 89, NUMBER 26 PHYSICAL REVIEW LETTERS 23 DECEMBER 2002

2
nU” iy, —er,) L

Crossover from Symplectic to Orthogonal Class in a Two-Dimensional Honeycomb Lattice

r = — —,
koks @) 25 ¢ (vp7g)?

Hidekatsu Suzuura® and Tsuneya Ando™

Due to quantum interference, disorder the conductivity




- So long as disorder 1s smooth,
even for strong disorder. No Anderson

localization in graphene!

- PHYSICAL REVIEW LETTERS week ending
[ 2
| Disorder PRL 99, 106801 (2007 "7 7'°"~%%= ®=Y R =m0 0 m®® 7 SEPTEMBER 2007

One-Parameter Scaling at the Dirac Point in Graphene

J. H. Bardarson," J. Tworzydlo,2 P. W. Brouwer,”* and C. W. J. Beenakker'

Also: Nomura, Koshino, Ryu PRL (2007)
Interactions San Jose et al. PRB (2007)

Graphene

Spin-orbit
(Weak anti-localization)

Orthogonal
(Weak localization)




= 0, 0.25, and 1

Ballistic regime,
close to

universal value Diffusive

regime,

462 subjecg’r of our

A ) \ | | study
v /e L

T/ S 2 dld
~ Figure from Adam, Brouwer and Das Sarma, arXiv 0811.0609

L System size

| —

¢ Disorder correlation length
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G S PHYSICAL REVIEW LETTERS -

Measurement of Scattering Rate and Minimum Conductivity in Graphene

YW Tan ™" ¥, Zhang.* K Bolotin' Y. Zhao,' S. Adam.” E H. Hwong” S. Dias Sarma* H. L Ssoemer, and P Kim

Phase-Coherent Transport in
Graphene Quantum Billiards

F. Miao, S. Wijeratne, Y. Zhang,* U. C. Coskun,t W. Bao, C. N. Lau}

SCIENCE VOL 317 14 SEPTEMBER 2007

Conductivity

remrmmremry - Universal - Non-Universal
Aspect Ratlo WAL - Landauer formalism - Boltzmann formalism
o A self-consistent theory for graphene transport

PHYSICAL REVIEW LETTERS an Py ) —
23 JUNE 2006 Shaffique Adam®, E. H. Hwang, V. M. Galitski, and S. Das Sarma

PMAS | MNovember 20, 2007 | wol 104 | no 47 | 18303

PRL 96, 246802 (2006)

Sub-Poissonian Shot Noise in Graphene

I. Tworz.}-'d-lc,l B. Trauzertel_,g M. Titovf A, Rycerz_,g'-‘4 and C. W.J. Beenakker”

Zitterbewegung, chirality, and minimal conductivity in graphene

M.I. Katznelson®

Eur. Phys. 1. B 51, 157-160 | 2006) THE EUROPEAN
: PHYSICAL JOURNAL B




- Boltzmann and quantum theory give opposite predictions. WAL
implies cleaner samples will have lower conductivity, Boltzmann
predicts higher conductivity!

- How do we deal with a finite system size?

(a) Pick some large
value such that we are
always 1n the diffusive

regime e.g. L/& = 50

(b) Take I, — oo limit 0‘( [ = 505)
and then extrapolate
back to origin.

o = linlL_.oo[U(L) — 1 ln(L/&)]

Figure from Adam, Brouwer and Das Sarma, arXiv 0811.0609




Crossover from quantum to Boltzmann transport in graphene

e
-

Shaffique Adam!. Piet W. Brouwer?. and S. Das Sarmal

arX1v:0811.0609v1 [cond-mat.mes-hall] 4 Nov 2008

Away from Dirac point, transport is classical

Comparison of
Landauer (data points)
and Boltzmann (solid
lines) at high density
for different values of

20 40 60

impurity concentration % i




At the Dirac point, transport is "quantum” for low impurity
concentration, and consistent with “self-consistent” theory at large

impurity concentrafion Data points: Landauer

Ballistic
universal value

Intuitive picture:
Ky
27T

If Ne > 1.5 then transport is semiclassical and mapping to

— 7£*n* roughly corresponds to number of electrons per puddle Ne

homogeneous system works. If Ne < 1.5 then transport is quantum.




Figure from Rossi, Adam and Das Sarma (2008)

Large puddles
N, ~ Ny L? ~ 500

Small puddles

V, [eV]

e 0.45
S 00 . 2
: e N e N nm axf N 2
For realistic graphene, both the long-range correlation of the Coulomb potential, @ S8 52 7T Trms
and the effect of exchange both work in the favor of the semiclassical regime! 2 \/§

it e S 1012cm_2,7’8 =0.8,d=1 nm

— & ~5nm and Ky~ 2

i e 10tem™2,r, =0.8,d = 1 nm

— ¢~ 10 nm and Ko~ 1

B = 10%%m 2. r, =2,d = 0.5 nm
— &~ 10 nm and Ky ~ 0.3

For typical graphene

For very clean graphene

For suspended graphene
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Q3. What is the conductivity of this effective medium in terms of
the “statistical properties” of the inhomogeneous system? i.e Is it

really that omin = o|n’] ?

Answer this ques’rlon using Effective Medium Theory

Range of validity:

1. Interface resistance 1s negligible

[Cheianov and Falko,PRB (2006)]
[Fogler, Novikov, Glazman, Shklovskii, PRB (2008)]

2. Several electrons per puddle

[Bruggeman, Ann. Physik (1935)]

[Landauer, J. Appl. Phys. (1952)]
[Rossi, Adam and Das Sarma, arXiv:0809.1425]
[Fogler, arXiv:0810.1755]

P[n] from TFD-LDA or SCA

[Rossi and Das Sarma, PRL (2008)]
[Adam, Hwang, Galitski and Das Sarma, PNAS (2007)]

Bulk conductivity from Boltzmann theory

with charged impurities

[Ando J. Phys. Soc. Jpn. (2006)]

[Nomura and MacDonald, PRL (2006), PRL (2007)]
[Cheianov and Falko, PRL (2006)]

[Hwang, Adam and Das Sarma, PRL (2007)]

[Adam, Hwang, Galitski and Das Sarma, PNAS (2007)]



Example of TDF-LDA
numerical data with givenn__

Gaussian distribution with
the same n_

Parameters fully specified by
normalization and Nrms

S OEMT
2\/§ nrms/(nimpFl(QTS))

g e (mxErf|x| + xE; [XQ])

0 ———d
5 4 -3 -2 -1

If P[n] 1s Gaussian with the same

n[1 0'° cm'2] s then

EM
2 - O- .
L soa _ 2e° n 1 s % 111111
Recall. “min ~ h Timp F1(2rs) ~~ \/§TL

1 0.9925 o252




If P|n| 1s Lorentzian with the

idth given by ™= then

Example of TDF-LDA E M T . S C A
numerical data with givenn__ O-m 1 n - O-m 1 n

Recently proposed by Fogler,
that for s — 0

P [72.-] = (1/V2 nms) exp[—v/2|n|/nms]

Again parameters fully specified by normalization and nems

Yy = OEMT
\/§ nrms/(nimpFl(er))

: ‘ ye'Ty| = 1/2

opMT ~ 0.7 ogCA

e 22 n* 1
. P
Recall T min h Mimp Fi(2r,)




(9 le+10 le+11 le+12

2
nimp [cm |

EMT results shows that conductivity calculated using self-consistent Ansatz
( Omin = o[n™] ) and numerical P[n] using Thomas-Fermi-Dirac local density
approximation agree for nimp > 10'° cm=. Adding corrections to SCA (e.g.
Gaussian approximation for P[n]) gives agreement down to very low imp.

concentration ~ 10° cm>
|
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Magnetoresistance Novoselov et al. Nature (2005)
Schedin et al. Nature Materials (2007)

Sample 1 Sample 2
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Samples showing an order of magnitude variation in mobility No fit parameter

rQIC ; ; < eck ending
PRL 99, 246803 (2007) FRYSICAL REVIRW LSTIERS 14 DEEch:aéab;‘l]ﬂT

Measurement of Scattering Rate and Minimum Conductivity in Graphene

Y.-W. Tan."* Y. Zhang."* K. Bolotin." Y. Zhao.' S. Adam.” E. H. Hwang.” S. Das Sarma.” H. L. Stormer.'* and P. Kim'

Clean Sample

- High mobility

- Small Vg offset
- Narrow plateau

n (102 cm?2)

\ nm}/z

Py

=

T

S

5 irty Sampl

S Dir amples

Q y P Ultrahigh electron mobility in suspended graphene
i IOW m0b| llfy K.L Bolotin®*, K.J. Sikes®, Z. Jiang‘“-‘d, M. Klima®, G. Fudenberg?, J. Hone®, P. Kim?,

|ar e V O F Fse 1_ H.L. Stormer®P=®
ge vg Solid State Communications 146 (2008) 351355

e W | de P la‘l'edu Fast-track communication

Transport in suspended graphene

S.Adam?*, S. Das Sarma

=185x 1010 cmZ

1mp

Solid State Communications 146 (2008) 356-360




Charged-impurity scattering in graphene

J.-H. CHEN'.2.3* C. JANG'-2:3* S. ADAM2-3-4 M. S. FUHRER™-2:3, E. D. WILLIAMS'-2.3.5.6
AND M. ISHIGAM|2-314

nature physics | VOL 4 [ MAY 2008 |

Potassium Doping: Tuning the n; knob! Potassium Doping

- Mobility decreases

- Sub-linearity vanishes

- Vg offset increases

- Plateau width increases

- Minimum conductivity decreases!

\ ¢ Run1
v = Run?2
L i
» 4 Run3
° v Run4
‘.
-

Conductivity [ﬂz.-"lh]

Theory(d=0.3nm)
., s » Theory(d=1nm) .-
80 04 o * * e
A - .

] o2
s A =
wlvad v

o
- o
o".'c :9 Do
_____________________________________

e, 4 - .
O7"A aAavVoa o [+ a

Gate Voltage [V]

1, [Vs/m] i, [Vs/m]



week ending

PRL 101, 146805 (2008) PHYSICAL REVIEW LETTERS 3 OCTOBER 2008

Tuning the Effective Fine Structure Constant in Graphene: Opposing Effects of Dielectric
Screening on Short- and Long-Range Potential Scattering

C.Jang,' S. Adam,” J.-H. Chen."” E. D. Williams,"” S. Das Sarma,"” and M. S. Fuhrer'”

% e (ot )

%" Expt.
"~ o Vacuum
A Jece
Fit Eq. 2
Vacuum

Mumber of lce Layers

TABLE I. Summary of our results and corresponding theoretical predictions.

Theory Experiment
Mo _ Fila™) Ref. [4] 1.26 1.31

Miym  Fila'™)

Short-range (symmetric): fi‘:ﬂ = L™ Ref. [22 0.62 0.62

Tyym F, (')

Minimum conductivity: % = (@™ )Fi(a™) Ref. [4] .99 1.00

min 1 (@™E)Fi(a")

Long-range (symmetric):




week endin
PRL 101, 046404 (2008) PHYSICAL REVIEW LETTERS 25 JULY 2008

Density Inhomogeneity Driven Percolation Metal-Insulator Transition
and Dimensional Crossover in Graphene Nanoribbons

S. Adam,1 S. Cho,2 M.S. Fuhrer,2 and S. Das Sarma'?

Prediction: If p-n junction resistance increases, e.g. gap (in a non-quasi 1D
nanoribbon), or magnetic field, or electric field (bilayer); then physics should
become a classical percolation transition

Same physics observed in analysis of Columbia
Nanoribbon samples [Han et al. PRL (2007)]




Nanoribbons have 4 different "gaps”

- Spectrum gap (i.e. in single particle spectrum)

- Transport gap (difference in n. for electrons and holes)
- Non-linear transport gap (by tuning Vsq)

- Activated gap as function of Temperature (70.5 meV)

Percolation
1 d chain of p-n junctions

s 10 Pl i
P2 e .
(<] 4 1 ".' ~———_
* DI l 1 77
+ D2
. P 0 30 i) 90
L Length | ¢ Mean free path g 100 200 300 400
. - . . 10 -2
W Width £ Disorder correlation length e 1100 cm 7]

Ballistic transport Boltzmann transport

Alternate explanations by: Sols, Guinea, and Castro Neto PRL, (2007); Martin and Blanter,
arXiv:0705.0532




- We understand the experimental
observation of
that arises from

- Several interesting bits of physics
at play including )
unusual of
graphene, efc.

100 <

- Employed to 2
understand quantum to classical

crossover

- We have tested the assumptions of the self-consistent theory using
other methods such as and an

For more details see: PNAS 104, 18392 (2007); as well as arXiv:0809.1425,
arXiv:0811.0609 and arXiv:0812.1795 for the more recent work.
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