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Introduction to graphene transport mysteries

Figure from Novoselov et al. (2005)
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- Constant (and high) mobility over a wide 
range of density.  Dominant scattering 
mechanism?
- Minimum conductivity plateau ?
- Mechanism for conductivity without carriers?
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What could be going on?

- Honeycomb lattice: Dirac cone with
  trigonal warping, 
- Disorder: missing atoms, ripples, edges,
  impurities (random or correlated)
- Interactions: screening, exchange,
  correlation, velocity/disorder
  renormalization
- Phonons
- Localization: quantum interference
- Temperature
- ...

Exact solution is impossible -> reasonable hierarchy of 
approximations  

Graphene



Any small parameters?

- For transport, we can use a low energy effective theory 
i.e. Dirac Hamiltonian.  Corrections, e.g. band non-
linearities set in at close to breakdown current! 

EF = 0.3 eV 
 n ~ 1013 cm-2

  Vg ~ 100 V



Any small parameters?
- Physical limit is weakly interacting electrons, where 
graphene is a Fermi Liquid

- For massless Dirac Fermions, interaction strength is given by 
ratio of potential to kinetic energy

- Interactions are tuned NOT by carrier density, but by dielectric 
environment!



Any small parameters?
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Hierarchy of approximations

Honeycomb lattice (sp2 + pz) -> Tight binding gives low 
energy “Dirac Hamiltonian” 

Interactions -> “Bubble diagrams” give RPA screening

Disorder -> “Ladder diagrams” give semi-classical Boltzmann 
transport

Density inhomogeneity (at Dirac point) -> “Self-consistent 
Approximation”

Mean field theory -> Conductivity a function of effective 
carrier density
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A note about high density

1. The linear in density conductivity is 
due to screened Coulomb impurities.  
Dielectric screening increases mobility. 

suspendedSiO2

H2O (ice)

Hf O2

2. Short-range (i.e. delta-correlated scatterers) give a density 
independent conductivity.  Dielectric screening decreases 
conductivity.

Figure from Adam, Hwang and Das Sarma, Physica E (2008)



Low Density: self-consistent ansatz

Figure from Rossi, Adam and Das Sarma (2008)

System breaks up into electron and hole puddles -- 
conductivity is given by the Drude-Boltzmann conductivity of a 
homogenous system with an effective carrier density n*, where 
n* is calculated using a self-consistent “Fermi-Thomas” 
condition:           .  Here VD is the RPA-screened disorder 
potential of charged impurities and      denotes disorder 
averaging



Assumptions underlying the self-consistent ansatz

Q2. When can we map this highly inhomogeneous electron/hole 
puddle system into a homogeneous medium? 

Q3. What is the conductivity of this effective medium in terms of 
the “statistical properties” of the inhomogeneous system?  i.e Is it 
really that ?

Q1. Does the self-consistent procedure give meaningful results for 
the “statistical properties” of the inhomogeneous system?  i.e. How 
accurate is n*,   ? 



Why do we need a self-consistent theory?

Imagine increasing charged impurity density nimp.  
This increases the potential fluctuations which 
increases the induced carrier density.  But an 
increased carrier density screens more effectively 
which decreases the potential fluctuations and 
decreases the induced density.



Self-consistent approximation [1]

Calculating n*, the effective carrier density

f(n)g(n)
n*

Computing <VComputing <VD
2>: statistics problem of averaging over uncorrelated disorder



Predictions of the theory [1]

I. As one increases disorder, minimum conductivity is determined 
by the competition between the increased puddle carrier density 
(that increases conductivity) and increased scattering (that 
decreases conductivity).   

II. Minimum conductivity is a plateau (not a 
point): the plateau width is determined by 
the residual density n*.

III. Dirac point offset is determined by (disorder 
averaged) first moment of the screened Coulomb 
potential.



Predictions of the theory [2]
IV a. Screened Coulomb potential gives disorder potential 
correlation function with a power law tail.

IV b.  A Gaussian approximation for the correlation function 
captures many of the salient features.

C0(d2 n*, rs) and
D0(d2 n*, rs) are analytic functions 
reported in Adam et al. PRL (2008)
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Characterizing the Dirac Point

How do you characterize the
Dirac point in the presence of 
disorder?

- Distribution function P[n] (histogram of carrier density)
e.g. width of P[n] gives root mean square 
carrier density: nrms 

Dirac cone
(momentum space)

Real space 
inhomogeneity
-> puddles of 

electrons and holes

250 nm x 250 nm 

kx' ky'

E

- Screened potential correlation
e.g. Full width at half maximum of               is related              
 to the correlation length 

electrons

holes



Statistical properties of Dirac Point

Q1. Does the self-consistent procedure give meaningful results for 
the “statistical properties” of the inhomogeneous system?

Recall that in self-consistent procedure:

- Does the self-consistency capture the right physics?
- What about many body effects: exchange, correlation?

(From our perspective, potential correlation is a “second moment” of screened disorder 
potential, whereas nrms is a “fourth moment”)

Once n* is determined, the full distribution P[V(r1) V(r2) ... V(rn)] can
be computed.  In particular, characterizing all higher moments or 
correlation functions becomes a matter of quadrature e.g.   



How does the ground state obtained by “Energy Functional 
Minimization” compare with the self-consistent Ansatz?

Then average over 500-1000 ensembles

Local Density Approximation or “Poor man’s DFT” for graphene



What does the Dirac point really look like?

Large puddles

Small puddles

How does this compare with predictions 
of the self-consistent theory?

Figure from Rossi, Adam and Das Sarma (2008)



Comparison with self-consistent theory

SCA
TFD-LDA

Gaussian

Two approaches agree over a wide range of parameters
Self-consistent procedure captures most of the physics 

SCA
TFD-LDA

SCA
TFD-LDA

SCA
TFD-LDA



Results: Characterizing the inhomogeneity

arXiv:0705.2180 

arXiv:0902.4793 

Our theory was verified quantitatively by 
recent experiments...

Similar results from Arizona and Riverside groups.



Schematic

1. Introduction
    - Graphene transport mysteries

- Need for a hirarchy of approximations 
- Sketch of self-consistent theory: discussion of 
ansatz and its predictions

2. Characterizing the Dirac Point
- What the Dirac point really looks like
- Comparison of self-consistent theory and 
energy functional minimization results  

3. Quantum to classical crossover

4. Effective medium theory

5. Comparison with experiments



Q2. When can we map this highly inhomogeneous electron/hole 
puddle system into a homogeneous medium? 

- Discuss the case of non-interacting electrons by solving
the fully quantum mechanical problem.

Landauer FormalismDisorder

Interactions

Renormalization Group

Energy 
Functional 

Minimization



Fully quantum solution [1]

First lets look at the clean limit (no disorder): a problem in 
quantum mechanics 

Disorder

Interactions

x

y

Same result as “static” Kubo formalism T-> 0



Fully quantum solution [2]
- Consider non-interacting model but fully quantum mechanical 
- Electron interference gives anti-localization (symplectic symmetry)

Disorder

Interactions

Due to quantum interference, disorder increases the conductivity



Fully quantum solution [3]
- So long as disorder is smooth, quantum interference does not 
localize graphene electrons even for strong disorder.  No Anderson 
localization in graphene!

Disorder

Interactions

Spin-orbit
(Weak anti-localization)

Orthogonal
(Weak localization)

Also: Nomura, Koshino, Ryu PRL (2007)
San Jose et al. PRB (2007)

Graphene



Ballistic to diffusive crossover [1]

Ballistic regime, 
close to 

universal value Diffusive 
regime, 

subject of our 
study

Dirac point

Away from Dirac 
point

Figure from Adam, Brouwer and Das Sarma, arXiv 0811.0609



Ballistic 
transport

Diffusive 
transport

- Universal
- Landauer formalism

- Non-Universal
- Boltzmann formalism

Ballistic to diffusive crossover [2]

See also: Lewenkopf, 
Mucciolo and Castro Neto
PRB (2008)   



A note about Weak Anti-localization

- Boltzmann and quantum theory give opposite predictions.  WAL 
implies cleaner samples will have lower conductivity, Boltzmann 
predicts higher conductivity! 

- How do we deal with a finite system size?

(a) Pick some large 
value such that we are 
always in the diffusive 
regime e.g. 

(b) Take                limit 
and then extrapolate
back to origin.

Figure from Adam, Brouwer and Das Sarma, arXiv 0811.0609



Quantum to semi-classical crossover [1] 

Comparison of 
Landauer (data points) 
and Boltzmann (solid 
lines) at high density 
for different values of 
impurity concentration

Away from Dirac point, transport is classical



Quantum to semi-classical crossover [2] 
At the Dirac point, transport is “quantum” for low impurity 
concentration, and consistent with “self-consistent” theory at large 
impurity concentration

Ballistic
universal value

Data points: Landauer

Intuitive picture: 

roughly corresponds to number of electrons per puddle Ne

If Ne               then transport is semiclassical and mapping to 
homogeneous system works.  If  Ne                then transport is quantum.



Relation to experiments?

Large puddles

Small puddles

For realistic graphene, both the long-range correlation of the Coulomb potential, 
and the effect of exchange both work in the favor of the semiclassical regime! 

For very clean graphene

For typical graphene

For suspended graphene

Figure from Rossi, Adam and Das Sarma (2008)
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Effective Medium Theory [1]

[Bruggeman, Ann. Physik (1935)]
[Landauer, J. Appl. Phys. (1952)]
[Rossi, Adam and Das Sarma, arXiv:0809.1425]
[Fogler, arXiv:0810.1755]

P[n] from TFD-LDA or SCA

Bulk conductivity from Boltzmann theory 
with charged impurities

[Ando J. Phys. Soc. Jpn. (2006)]
[Nomura and MacDonald, PRL (2006), PRL (2007)]
[Cheianov and Falko, PRL (2006)]
[Hwang, Adam and Das Sarma, PRL (2007)]
[Adam, Hwang, Galitski and Das Sarma, PNAS (2007)] 

[Rossi and Das Sarma, PRL (2008)]
[Adam, Hwang, Galitski and Das Sarma, PNAS (2007)] 

Range of validity:
1. Interface resistance is negligible

2.  Several electrons per puddle 

[Cheianov and Falko,PRB (2006)] 
[Fogler, Novikov, Glazman, Shklovskii, PRB (2008)]

Q3. What is the conductivity of this effective medium in terms of 
the “statistical properties” of the inhomogeneous system?  i.e Is it 
really that                  ? 
Answer this question using Effective Medium Theory



Effective Medium Theory [2]

Example of TDF-LDA
numerical data with given nrms

Gaussian distribution with 
the same nrms

Recall:

Parameters fully specified by 
normalization and nrms

If P[n] is Gaussian with the same 
nrms then



Effective Medium Theory [3]

Recall:

Example of TDF-LDA
numerical data with given nrms

Recently proposed by Fogler,
that for 

Again parameters fully specified by normalization and nrms



Comparison of EMT with self-consistent theory

-  EMT results shows that conductivity calculated using self-consistent Ansatz 
(                          )  and numerical P[n] using Thomas-Fermi-Dirac local density 
approximation agree for nimp > 1010 cm-2.  Adding corrections to SCA (e.g. 
Gaussian approximation for P[n]) gives agreement down to very low imp. 
concentration ~ 109 cm-2
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Manchester Experiments

B = 0 T B = 1 T

Magnetoresistance

Sample 1

nimp = 175 x 1010 cm-2nimp = 230 x 1010 cm-2

B = 0 T

Novoselov et al. Nature (2005)
Schedin et al. Nature Materials (2007) 

B = 1 T

Sample 2



Columbia Experiments [1]

Clean Sample
- High mobility
- Small Vg offset
- Narrow plateau

nimp = 20 x 1010 cm-2

nimp = 40 x 1010 cm-2

nimp = 45 x 1010 cm-2

nimp = 115 x 1010 cm-2

nimp = 185 x 1010 cm-2

Dirty Samples
- low mobility
- large Vg offset
- wide plateau

No fit parameterSamples showing an order of magnitude variation in mobility

Suspended graphene

See also: Du et al.  Nature Nanotechnology (2008)  



Adding charged impurities to graphene

Potassium Doping: Tuning the nimp knob! Potassium Doping

- Mobility decreases

- Sub-linearity vanishes

- Vg offset increases

- Plateau width increases

- Minimum conductivity decreases! 



Dielectric Screening



Graphene with gap: classical percolation [1]

Same physics observed in analysis of Columbia
Nanoribbon samples [Han et al. PRL (2007)] 

Prediction: If p-n junction resistance increases, e.g. gap (in a non-quasi 1D 
nanoribbon), or magnetic field, or electric field (bilayer); then physics should 
become a classical percolation transition 



Graphene with gap: classical percolation [2]

Nanoribbons have 4 different “gaps”
- Spectrum gap (i.e. in single particle spectrum)
- Transport gap (difference in nc for electrons and holes)
- Non-linear transport gap (by tuning Vsd)
- Activated gap as function of Temperature (~0.5 meV)

Han et al. PRL (2007)

Alternate explanations by: Sols, Guinea, and Castro Neto PRL, (2007); Martin and Blanter, 
arXiv:0705.0532

Percolation 
1 d chain of p-n junctionsBallistic transport Boltzmann transport

ξ

Length

Width

Mean free path

Disorder correlation length



Concluding Remarks
- We understand the experimental 
observation of graphene “minimum 
conductivity” that arises from 
interplay of disorder and screening
- Several interesting bits of physics 
at play including Klein tunneling, 
unusual screening properties of 
graphene, etc.

- We have tested the assumptions of the self-consistent theory using 
other methods such as Energy functional minimization and an Effective 
Medium Theory.

- Employed Landauer formalism to 
understand quantum to classical 
crossover

For more details see: PNAS 104, 18392 (2007); as well as arXiv:0809.1425, 
arXiv:0811.0609 and arXiv:0812.1795 for the more recent work. 
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