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Carbon and Graphene

Carbon Graphene

Hexagonal lattice;
1 p, orbital at each site

4 valence electrons

1 p, orbital

3 sp? orbitals

Michael S. Fuhrer KITP Graphene Week University of Maryland



Graphene Unit Cell

Two identical atoms in unit cell: ‘ ‘
A B

Two representations of unit cell:

s

Two atoms

1/3 each of 6 atoms = 2 atoms
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Band Structure of Graphene

Tight-binding model: P. R. Wallace, (1947)
(nearest neighbor overlap = vy,)
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Bonding vs. Anti-bonding

—© .
H= ’ E =1y,
- - — 70 0
Yo IS €nergy gained per pi-bond
L) “anti-bonding”

anti-symmetric wavefunction
1 |1
=5 k=47,

“bonding”
symmetric wavefunction

1|1
¥, :\/EL} L, =~y,
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Band Structure of Graphene — I point (k = 0)

Bloch states:
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Band Structure of Graphene — K point
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Bonding is Frustrated at K point
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Bonding is Frustrated at K point
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Band Structure of Graphene: k-p approximation

Hamiltonian:

E 0  k, —ik, ](FA (r)] (FA (r)j
hv, , =&
k. +ik, 0 F,(r) F,(r)

h,.(o-k)F(r)=¢elF(r)

Eigenvectors: Energy:
1 . _ibe—iek/Z
k=7 gan | e bm

linear dispersion relation

0, is angle k makes with y-axis “massless” electrons
b =1 for electrons, -1 for holes

electron has “pseudospin’
Y points parallel (anti-parallel) to momentum RPEYIZE Universitv of Marvland



Visualizing the Pseudospin




Visualizing the Pseudospin
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« Hamiltonian corresponds to spin-1/2 “pseudospin’
Parallel to momentum (K) or anti-parallel to momentum (K’)

* Orbits in k-space have Berry’'s phase of
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“Pseudospin”: Berry’s Phase in IQHE

20

QHE at T=2.3K,B=7.94T, Q7 [},

s |
£ 104 /

T Berry’s phase for electron orbits &
results in z-integer quantized Hall 51 0" |
effect LNV I

2 0 L L I B L -
o =—v— y= 4(,1 n lj 80 -60 -40 20 O 20 40 60 80
2 V, (V)

Lgsgv =2x2=4 LBerry’s phase =«
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1. Fabrication and Characterization of Graphene on SiO,
Micro-Raman spectroscopy
Cleaning graphene
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Graphene — Fabrication

single layer

Optical micrograph (layer
thickness verified by AFM)

Single layer device after e-
-« Starting material is single-crystal Kish graphite beam lithography
* Mechanically exfoliate on 300 nm SiO,/Si chips

Method adapted from Novoselov, et al. PNAS 102 10341 (2005)
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Raman spectroscopy of graphene

Raman Intensity [a.u.]

"N 1500 1650 24

Pristine Graphene |

2D or G’ band: AE

Raman

= 2hw(K)

D band: AE = hw(K)

Raman

K!

Michael S. Fuhrer

KITP Graphene Week

G band: AE

Raman
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Graphene fingerprint in Micro-Raman

« Raman G’ band is two-photon/two-phonon
resonant excitation; sensitive to electronic
structure of graphene

A) Monolayer: = exchanged

FI|.'.ICI]]CIJ] momentum

b

.-IE-

Electron energy
m

T,
’ 1
B} Bilayer:
| Hig |
[ I:
! Qs
\.]|A |
|
O:m

Ferrari, et al., PRL 97, 187401 (2006)
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araphils

140 layarns

b layers

2 layars

1 layar

Fuhrer group sample

B33 nm

O}

' 3000

/L

2000

1000

—— Single Layer
Lorentz Fit

0
1550

1600

" 2600

2700

2600 2700 2800

Wavenumber [cm'1]

single Lorentzian G’ peak indicates
single-layer graphene
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Removing Photoresist Residue from Graphene

Ishigami, et al., Nano Letters 7, 1643 (2007)
Residues from PMMA/MMA photoresist

Novel photoresist residue removal process

Anneal in flowing H, at 400°C

Complete removal of photoresist residues | | Atomically clean STM images
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1. Diffusive Transport in Graphene
Boltzmann Transport
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Electrical Characterization of Graphene

electrons

0 — 7T + T 1 1 - T T T T ~ T T T
-100 -80 -60 -40 -20 O 20 40 60 80 100
V (V)

* Ambipolar, symmetric conduction
* Finite minimum conductivity ~ [4-10]e?/h
* Field-effect mobility up to 20,000 cm?/Vs

Michael S. Fuhrer KITP Graphene Week University of Maryland



Electrical Characterization of Graphene

g 6 electrons
o ]
4
2_- Gin ~ 6€2/h
| T=2.1K |
o———m7FW—r——
100 -80 60 -40 -20 O 20 40 60 80 100
Vv (V)
g
« Ambipolar, symmetric conduction B _ldo 1 do
« Finite minimum conductivity ~ [4-10]e%/h " oedn ¢, dv,

* Field-effect mobility up to 20,000 cm?/Vs
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Boltzmann Transport

14

e’ VF D(E) is density of states 2] S

o= D(E)r tis momentum relaxation time o] ¢
Ve is Fermi velocity N
g
2 64
T
2EF 4 4

Graphene: D(F) =

2.2 2]
vy

But: Fermi’s Golden Rule:

1,27 k\V\k' " D(E)
-

D(E )7 oc constant!

—> |ois independent of E!

True for point defects, phonons

see e.g. Pietronero (1980), T. Ando (1996)
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How to explain linear o(V,)?

AV
| 27 NE 12- ,>
= o ==kl D(E) <
T h .
\—A 8_
A
< 6
o ]
4
Interaction must be g-dependent o
q= |k _ k’| ~ kF %00 80 €0 40 -2'0\'/9(2\/')2'0 40 60 80 100
Coulomb interaction: 1% . 27782 N.B. In graphene, screened
* 7 Coulomb ~— Ky Coulomb interaction remains ~1/k¢

See:
:> c~ EF1/2 ~n= Vg Ando, J. Phys. Soc. Jpn. 75, 074716 (2006)
Nomura & MacDonald PRL 98, 076602 (2007)
Cheianov & Fal'ko PRL 97, 226801 (2006)
Hwang, Adam, & Das Sarma, PRL 98, 186806 (2007)
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Minimum Conductivity of Graphene

« At minimum conductivity point, graphene breaks into electron and hole “puddles”
* Minimum conductivity decreases with increasing impurity concentration

o =n*el

min
f

Residual density in puddles

2 ~RPA
n* lmp[2r C, “(r, 4de)]
o 0.8y
p=—20%] n
Pimp h 0.6}  TF
E ‘ " |m|:|{1':| ? om’ } N£
| "*~.7_100 200 300 400 [ 2
Weak function of n,, r,, d - =
20 o 80
Adam, et al., PNAS 104, 18392 (2007) Density n (107~ cm %)
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1. Diffusive Transport in Graphene
Boltzmann Transport

Charged impuirities
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Charged Impurity Scattering: Potassium Doping in UHV

J. H. Chen, et al. Nature Physics 4, 377 (2008)

» Clean graphene in UHV at T=20 K
» Potassium evaporated on graphene from getter

Upon doping with K: 60 —

Doplng time &
1 S
X .

)
)
3) o
)
) O

mobility decreases

o(Vg) more linear

shifts to negative V 40

m|n

4) plateau around o, broadens

5

0,., decreases (slightly)
20

Conductivity [e*/h]

All these feature predicted for
Coulomb scattering in graphene

Adam, et al., PNAS 104, 18392 (2007)  feeeee=

O L 1 L 1 L 1 L

, o -80 -60 -40 -20 0 20
Magn!tUQe of scattering in 5x10''Vs Gate Voltage [V]
quantitative agreement u=—"—"

with theory: Minp
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1. Diffusive Transport in Graphene
Boltzmann Transport

Charged impurities — minimum conductivity
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Magnetoresistance at Minimum Conductivity Point

S. Cho and M. S. Fuhrer, PRB 77, 084102(R) (2008)

» At minimum conductivity point, graphene breaks into electron and hole “puddles”
Hwang, et al., PRL 98, 186806 (2007); Adam, et al., PNAS 104, 18392 (2007)

0.8-

0.2

s (€’/h)

XX

8 6 4 2 0 2 4 6 8
B (T)
o Expt. T=300K
—— Two-fluid model o = 0.4
—— EMT model s =0.88

1

Large spike in Functional form of p(B):

magnetoresistance at Dirac point effective medium theory for
inhomogeneous e/h regions

[Guttal and Stroud, PRB 71 201304 (2005)]
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Charged Impurity Scattering: Minimum Conductivity

J. H. Chen, et al. Nature Physics 4, 377 (2008)

« At minimum conductivity point, graphene breaks into electron and hole “puddles”

* Minimum conductivity decreases with increasing impurity concentration

Adam, et al., PNAS 104, 18392 (2007)

8
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Doping time ()]
0 = ©
= 1° 0s 1 =
< 12's >
N - —
D —
> 12 1 O 4
2 -
5 e
£ | .82
S ] "
(@) g 4___ Omin
[ : |
0 2
O ' | | |
-80 -60 -40 -20 0

Gate Voltage [V]

Michael S. Fuhrer

KITP Graphene Week

4 6 38

Universit

10
1y, [Vs/m2] ~n_.

of Ma

land



1. Diffusive Transport in Graphene
Boltzmann Transport

Phonons

|

(

l
Michael S. Fuhrer KITP Graphene Week University of Maryland



Electron-Phonon Scattering

J. H. Chen, et al. Nature Nanotechnology 3, 206 (2008)

0.016 - T — . . PR Sample 1
_ - * Run1  Run2
e - e V=
S e * | & 20v a 20v
. -7 * = 30V A 30V
Linear T-dependence e 1= sov & sov
atlow T g2t | ' S
0.012} - L4 ./‘,x/./ |
Longitudinal acoustic “o P P -
phonons in graphene = L] o7 e
ootop < ' o
—_ _/:/ S e .« -7 | @ 4ov
P =Pyt AT DRt PPE i L
A=0.1Q/K A I S, |
4*""{ e> -7 .,.'(.
. [ [
A is independent of [
charge carrier density, as 0.006 — 50 00 00 400
predicted
h Dk, T
— A" B —
p,(T)=|— 5 —Dy=18*1eV
e”)16e’h" pv.v,

(good agreement w/CNT, graphite)
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Electron-Phonon Scattering

J. H. Chen, et al. Nature Nanotechnology 3, 206 (2008)

Sample 1 Sample 2

Activated T-dependence at high T

Consistent with:

LA phonons in graphene

e

pn,T)=p,+ AT +

o [n/e7]

_ 1 6.5
Bn™*® (59meV)/ kT + (155meV )/ kT
e 5 -1 e 55 —1

/ 0.01

polar optical surface phonons in SiO,
(see Fratini and Guinea, PRB 77, 195415 (2008))

0 200 40 O 200 400
T [K]
(3 global fit parameters for all curves)

Potential due to polar optical phonons is long-ranged; leads to density-dependent resistivity

Michael S. Fuhrer KITP Graphene Week University of Maryland



Limits in Graphene

J. H. Chen, et al. Nature Nanotechnology 3, 206 (2008)

Mobility
10° ¢

Room Temperature Limits:
Currently:
Urr ~ 10,000 cm?/Vs
(charged impurities) gmf, :
Substrate-limited: -
SiO, surface phonons: 2.
Uer ~ 40,000 cm?Vs =
Intrinsic: 10° |
acoustic phonons:
Urr ~ 200,000 cm?/Vs
@ n=10"?cm™> 10

"1 Graphene:

® Sample 1
A  Sample 2

| —1LA phonons
1------ SiO, phonons

Impurities:

1- - - Sample 1
1- - - Sample 2

| Total implied mobilities:

Sample 1
Sample 2

100
T [K]

1| At room temp.:
N| Si:

M =1,500 (e)
M =450 (h)

InSh: p=77,000 (e)

‘ Ballistic transport over >2 microns \

Room temperature mobility of 200,000 cm?/Vs possible!

Michael S. Fuhrer
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1. Diffusive Transport in Graphene
Boltzmann Transport
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r, in graphene?

2
a m*e |
v, =—= Problem: what 1s mass?
s 3/2 72 1/2 . :
da b A “eh’n (no characteristic length a, for massless particles)

There still exists a unitless quantity:

MM

U/ U = potential energy of two electrons at distance a U «a

\

assive particles:

— S
> K K=Kkinetic energy of electron with wavelength A = 2na _ K a, Yy

U-* 2
" dreq | > — € Independent
# | eV, of density!
K=hv,k=—=

a
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Graphene’s Fine Structure Constant?

62 1 a is fine structure constant
o = I~ “coupling constant” — describes
4 ﬂgohc 137.036 relative strength of Coulomb
interaction
62 Fine structure constant, with
For graphene, define: | = v, = p— c— Vg
TTENV gy — €
describes strength of Coulomb interaction
For: Graphene is:
Vg = 108 m/s = ¢/300 a o~ 1 weakly interacting for condensed matter,
c=9 3¢ strongly interacting for relativistic Fermions
=~ <0

Interesting opportunities:
Atomic collapse of hypercritical nuclei: Z_ = 1/a = 137 (difficult to achieve in nuclear physics),
Possible in graphene where Z_ = 1

Michael S. Fuhrer KITP Graphene Week University of Maryland



Tuning the “Fine Structure Constant”

C. Jang, et al. Physical Review Letters 101, 146805 (2008)

Conventional 2D electron system:

2
m*e
]/‘ j—
S 3/2 2 1/2
A “eh’n

Tune 7, thru density n

Graphene:

2 2
e e

o = p—
drehv, Ankghv, S

r - Trs R
R 3 bt 3

E=ty E=ECEELEE

TN Tt
LE S B . T ajm 3 ‘ E N
300 e, B

Graphene’s “Fine Structure Constant” T Eara Rt
a independent of n

But, can tune «!
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Two Effects of Dielectric Screening

C. Jang, et al. Physical Review Letters 101, 146805 (2008)

Reducing a:
* Reduces interaction of carriers with charged impurities
— Dominant effect for charged-impurity scattering
 Reduces screening by carriers
— Dominant effect for short-range scattering

Within RPA:
o = 2¢” I F(a)=rna’+.. Coulomb scattering reduced:
Y hom, F(a) - Mobility p, increases
o, = Oy : F.(a)= 7 3la L Short-ran_ge_ scattering increased:
Fo(a) 2 3 Conductivity og decreases
. . ) 1 e-h puddle density decreased,
Omin = N7€EH,, N-~Q , H ~ e mobility increased:

Min. conductivity o, constant
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Effects of Dielectric Screening

C. Jangq, et al. Physical Review Letters 101, 146805 (2008)

Add ice to clean graphene in UHV:

a (SiO,/vacuum) = 0.81

a (SiO,/ice) = 0.56

s (€°/h)

‘" Expt.

3 o Vacuum
2 |ce

Fit Eqn. 2

Vacuum

Ice
[ ] " [ ] " [ ] " [ ] " [ ]

-30 -20 -10

Michael S. Fuhrer

0 10 20 30 40.50
V, (V)

KITP Graphene Week

Fit:
o' = (ney ) + og”’

T A
|

Coulomb (long-range)
scattering

Short-range scattering

(slight asymmetry in
Coulomb scattering;
take symmetric

component of each)

University of Maryland



Dielectric Screening: Theory and Expt.

C. Jang, et al. Physical Review Letters 101, 146805 (2008)

: < 12000
Coulomb scattering reduced: - |
Mobility y, increases £ 10000}
3. 8000
280
TR 3 240)|
Short-range scattering increased:~y [
Conductivity og decreases & 200}
160
8E
: = T
e-h puddle density decreased,
T . ~ 6_ ] ] | ] = L] . -
mobility increased: <
Min. conductivity o,,, constant °  °f

o 1 2 3 4 5 6 7
Number of Ice Layers
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Graphene in high-K liquids — a mystery?

T. M. Mohiuddin et al. Arxiv:0809.1162 (Manchester group)
Mobility increases <50% in ethanol (k = 25) and liquid water (k = 80)
Concluded that charged impurities NOT dominant scatterers in graphene

1.0 L
A 300 K

"{I‘H ;1 o ’

in ethanol IRy

My Hre
in He gas In He gas
(b)
| | |
Yy =20 2 4

n (10’2 cm™)
Michael S. Fuhrer ersity of Maryland



Graphene in high-K liquids — our group

°© vacuum

u=5500 cm’/Ns ==

20 10 0 10 20
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Graphene in high-K liquids — our group

120 \\ -
Isopropanol
Sopropano u = 28,000 cm*/Vs :
K=19.9 100 - h
a=0.167 [ Frm———, :
Mobility up 510% :
80 . DDD ‘\\ DD
~~ DDD\\\ o
(Q\| _ o DD
qJ 60 Dﬁl DD
~— m\m o °© vacuum
o) i B - jsopropanol
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Graphene in high-K liquids — our group

Isopropanol 1 _ L, d
K=19.9 100 - ! 2 E
a=0.167 ety \u=45000cm/Vs o
Mobility up 510% B g,

DI Water =
— \

K =380 N\CD/ 60 -
©

vacuum
© isopropanol

a=0.047
Mobility up 820% - :

Possibly reaching limit set
by substrate polar optical
phonons

Michael S. Fuhrer KITP Graphene Week University of Maryland



What is the difference?

Hy o 300K 1 1= 28,000 cm?vs

in ethanol /1) 1 ]
.
Lo

n Heg

| 1= 45,000 cm’/Vs

o vacuum
s isopropanol
4 water

in He gas in He gas ]
20-
(b) | wesso0emivs e, WAL e
| | | -—
0—4 -2 0 2 Vg 0 -20 -10 0 10 20
n (102 cm?) Ve V)
graphene graphene
+++++++++ Au__
Sio, Sio,
g
Mohiuddin et al. : Our work :
- Used electrolyte as gate - Used SiO, back-gate
- Gate charges are ions — scatterers! - No add’l scatterers
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1. Diffusive Transport in Graphene
Boltzmann Transport

Corrugations
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Graphene Corrugation - Scattering

2 . .
o= 2iEFr l o 2_77 <k‘V‘k'>‘2D(E) q-depe_ndent m_teractlon
h T h — carrier-density dependent o(n)

1) Coulomb interaction: g = |k—k’|~ky =—> o~n

2) Corrugated graphenet: ([a(m) - h(O)f' ) r*" == o~ n?*!
N Y,

Y
height-height correlation function

TKatsnelson & Geim, Phil. Trans. R. Soc. A
366, 195-204 (2008)

What is exponent 2H?
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Graphene Corrugation

Model 1: Model 2:
Intrinsic graphene bending constrained Corrugations determined by strong
via interface confining potential direct interaction governed by height
vV variations of the substrate
gra{hene l h graphene

\/%\
/

Substrate

- Substrate

Height-height correlations will

1 1
F = EK[Vzh(X,y)]Z + EVhZ(X,y) match those of the substrate.
, Typical non-equilibrium surfaces
((h(r) = hO)) ) ~ 7 show:  ((h(r)~h(0))")~ r*"
with 2H = 1.
o(n)~n o(n) ~ constant
(mimics Coulomb scatting) (mimics short range scattering)

Michael S. Fuhrer KITP Graph :ne Week



Graphene Corrugations on SiO,

Non-contact AFM image in UHV

18mm BEBEE Z5-MAYBE

Height [nm]

M. Ishigami et al., Nano Letters 7, 1643 (2007)
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Graphene Corrugations on SiO,

Non-contact AFM image in UHV

G~
I ® Silicon
®m  Graphene
0.05 - .
2z
2
R
o
S
(&l
0.00 - N
-1.0 -0.5 0.0 0.5 1.0
Height [nm]

Oxide-graphene boundary

* Ogxide = 3.-1AaNd 0 ppnene = 1.9 A

» Graphene 60% smoother than SiO,
M. Ishigami et al., Nano Letters 7, 1643 (2007)
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Graphene Corrugations on SiO,

Non-contact AFM image in UHV

g
A=)
~
<
S
= Graphene

0.01 - = Silicon Oxide -

10

Distance [nm]

Oxide-graphene boundary

Height-height correlations function a(n) ~ constant
<(h(r) - h(O))2> ~ 2 (mimics short range scattering)
with 2H = 1

M. Ishigami et al., Nano Letters 7, 1643 (2007)
Michael S. Fuhrer KITP Graphene Week University of Maryland



STM vs. NC-AFM topography

STM: 1V, ~50 pA NC-AFM: 4.6 Hz Af

Similar to Morgenstern group (preprint) Reproduces our earlier work
Ishigami, et al. Nano Letters 7, 1643 (2007)

* Both images acquired from same area, on 1-layer graphene device.
« Why does STM measure topography so differently?
« STM more strongly interacting — electro-mechanical effect
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1. Diffusive Transport in Graphene
Boltzmann Transport

Lattice defects
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Lattice defect scattering in graphene

I:x::.-;:z .'ll.-..-‘ ;..

Pry ~ e : .E:;:
';’z: ;’1::‘::: : i xx_::::z:: 88 8 z, ix’
L .-.S.! L ""‘:,.,‘:..,: :

Charged-impurity scattering:

A

Linear o(V,)
Intravalley scattering
No backscattering

weak anti-localization

Metallic

Michael S. Fuhrer

Defect scattering:

[Shon, & Ando, (1998)]

[Hentschel (2007);
Stauber (2007)]

Constant o(V,)?
Linear o(V,)?

Expect intravalley and intervalley scattering
Backscattering allowed
weak anti-localization or weak localization?

Metallic or insulating?
KITP Graphene Week

land
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Inducing lattice defects in graphene

« Sample is cleaned in H,/Ar at 300 °C
[Ishigami, Nano Letters 7, 1643 (2007)]

« Sample baked in UHV at 220 °C overnight

* Ne* or He* ion irradiation at 500 eV via sputter gun

si, 000 L0 E,002,8,0,0 0,200,
vttty tete® o .
R
v L :

Dose given by current collected by Faraday cup ,, s .?;:-...%S:ﬁm .:::x;-

« Sample annealed at 220 °C overnight between ion irradiation runs; mobility
partially recovers on annealing

Expect:

* One ion — one defect consisting of multi-atom vacancy

See e.g. G. M. Shedd and P. E. Russell, JVSTA 9, 1261 (1991)
J. R. Hahn, et al., PRB 53, R1725 (1996)
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Raman D peak - intervalley scattering

Pristine Graphene | 601 MOblllty

u = 8600 cm?/Vs

Raman Intensity [a.u.]

u = 1300 cm?/Vs

1200 1350 1500 1650 2400 2550 2700 2850
Wave Number [cm'1] g

B Cancado, et al.,
Graphitic particles of grainsize L;: L, = [2.4)(10_10nm:3 4(—} APL 88, 163106 (2006).

Point defects: identify L, with defect scattering length.
Our samples: L, =70 nm

b = 1300 cm?/Vs; n= 10" cm2 (in ambient) — |/

mfp = 20 NM

Defect scattering lengths from Raman and transport agree
Michael S. Fuhrer KITP Graphene Week University of Maryland




Defects in graphene

120 T T T | |
T=41K Ne" Dosage (10" cm™®)
0
—3.8
90 - 8.2 -
—18.2
38.7
= —T72.2
NE. 60 |- '
b
30 | '
0 T T T T T ' J '
-50 -25 0 25 50
V, [V]
Fit each curve to: o' = (nep)' + pg
T T “Short-range scattering”

“Long-range scattering”
Constant mobility
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Defects in graphene

Ne* irradiation K doping
(lattice defects) (charged impurities)

80 ! 1 | ! | 80 T T T T T T T

= 41K Ne' Dosage (10" cm) K dose (10 cm™?) o
gs - 2 0 A
ol 38 | w - 160 N
——18.2
38.7

— 722

Conductivity [e*/h]
5
Conductivity [e/h]

N
o
T

T T T T T 0 1 ] . ] . ] . ] . ] .
-50 -25 0 25 50 -80 -60 -40 -20 0 20 40
Gate Voltage [V] Gate Voltage [V]
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Defects in graphene

14 T T T T T T T T T T T T T
12l = ¢ Neirradiation " | Defects: . _
ol + v He'imadiation 1 Defects change the linear term in o(V,)
— _ Like charged impurities!
E s - -
n L - :
21 6 . 1+ Linear o(V,) scattering 4x stronger than for
= L a 1 . . iy
= 4l L | same concentration of charged impurities
of g7 - Charged -
- ___-----"""Impurities (K) |
0 T 'T'T T T T T T T T T T T
0 2 4 6 8 10 12
Dosage [1011 cm'2]
6 T T T T T T T
- | Defects:
= [ Lot 1 < Carrier-density-independent p_ scattering does
S 4 - 1 not change
C\IB F ugttn W : V. n ’ |
= 3t Vv " M - .
= | ] " | * pscorresponds to /¢, ~2 microns
g2+ -
: nl =« Ne'irradiation | — P, cannot be the scattering seen in
Q + . T
- + v He'irradiation | Raman D band
O T T T T T T T T T T T T T

0 2 4 6 8 10 12
Dosage [1011 cm'z]
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Defects in graphene — Minimum conductivity

I I T I I

6 B ..I -
I...
. /'ym 4
Mh.g—0——0 D”.".’— ) . A“ At
NE 4 B [ ) ‘ I.. AA¢:V i
& °
o -'
2+ Ne+ irradiation
____________ A v He+ irradiation
— o — K Dosing
0 T y T " T ' ' I
0.0 0.2 0.4 0.6 0.8
n [m°/Vs]

Michael S. Fuhrer

Charged impurities:

Nimp iINCreases: J decreases, n* increases
changes very weakly

- O-min

Defects:

Nyetect INCreases: y decreases, n* constant
— O,,,i, Proportional to p

Minimum conductivity: &_. =n*eu

n* is carrier density in “puddles”
n* is function of charged impurity density

n* 1

— 1 K
Gin_n =72 ul

m

N n* const.
Gmin =N elu U l
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Defects in graphene — Metal or Insulator?

S "~ | Ne'irradiated | Theory:
\\URT = 2,500 cm*/Vs 1 Ve Vomn = Graphene with only intravalley
S~ 1—=—0V scattering is metallic (weak anti-
S~ | e 14V localization)
o —Aa— 30V
1 Pristine Graphene with intervalley scattering
Vo = is insulator (weak localization)
_Dm/ﬁf —o0—0QV [Bardarson, et al. PRL 99, 106801 (2007)]
NQ 01p = — 1—o0— 14V
= ]—>— 30V
a -] Experiment:
— ——aaa df— Graphene with charged impurities
- shows metallic p(T) at low T
[Novoselov, Nature 438, 197 (2005)]
M/ N [Chen, Nature Nano 3, 206 (2008)]
’ /
A
f Graphene with defects shows
Mgr = 13,000 cm?/Vs /- diverging p(T) at low T even for
001L ——m T | modest mobilities (~2,000 cm?/Vs)!
10 100
Temperature [K]
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Midgap states - Theory

[Hentschel & Guinea, PRB 76, 115407 (2007); Stauber, Peres, & Guinea, PRB 76, 205423 (2007)]

» Defect potential modeled as circular well of radius R, depth g, intervalley scattering A.
» Spectrum inside the potential well is gapped by A; has bound midgap states.
» Conductivity is: )

2e” n

O, =ney, ZTH_IHZ(kFR)
d

—
N

« Ne'irradiation
s+ v He'irradiation

Experimentally, u, = [1.2 x 10" V-1s1)/n,

—_
N
T T

-
o
—

- - -~ “Impurities (K) |

0o 2 4

6 8 10 12

Dosage [1 0" cm'z]

Michael S. Fuhrer

KITP Graphene Week

Universit

of Ma

“c al ™ Forn=2x102cm2 - R~8A
2 ol C 1 Reasonable value for 500 eV irradiation
2 vit - (multiple-atom vacancies)
[ - o B
2 % oharged - - - In?(k-R) dependence not observed, but k. only

varies by factor of ~3 outside puddle regime (n > n*)

land



Conclusions

» Mobility of graphene on SiO, limited by charged impurities
— Charged impurities give linear o(V,,)
— Minimum conductivity determined by density in e-h puddles
— Addition of dielectric layer increases mobility

 Room temperature intrinsic mobility ~200,000 cm?/Vs
— Remote interfacial phonon scattering from SiO, limits to ~40,000 cm?/Vs

« Corrugations
— Graphene corrugations follow SiO, substrate roughness

 Graphene with lattice defects
— Linear o(V,) with 4x lower mobiltly compared to charged impurities
— Consistent with midgap states, R = 2-3 A

— Depressed o,..~ U; can be less than 4e?/1th

min

— Intervalley scattering gives insulating p(T); Raman D band
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