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Carbon and Carbon and GrapheneGraphene
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Carbon Graphene

4 valence electrons

1 pz orbital

3 sp2 orbitals

Hexagonal lattice;
1 pz orbital at each site
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GrapheneGraphene Unit CellUnit Cell

Two identical atoms in unit cell: 
A      B

Two representations of unit cell:

1/3 each of 6 atoms = 2 atoms

Two atoms2av
1av
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Band Structure of Band Structure of GrapheneGraphene
Tight-binding model: P. R. Wallace, (1947)
(nearest neighbor overlap = γ0)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+±=

2
cos4

2
cos

2
3cos41)( 2

0

akakakEE yyx
F γk

kx

ky

E



Michael S. Fuhrer KITP Graphene Week University of Maryland

Bonding vs. AntiBonding vs. Anti--bondingbonding
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Bloch states:
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Band Structure of Band Structure of GrapheneGraphene –– ΓΓ point (point (kk = 0)= 0)
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Visualizing the Visualizing the PseudospinPseudospin
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30 degrees

390 degrees

Visualizing the Visualizing the PseudospinPseudospin
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PseudospinPseudospin
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• Hamiltonian corresponds to spin-1/2 “pseudospin”
Parallel to momentum (K) or anti-parallel to momentum (K’) 

• Orbits in k-space have Berry’s phase of π
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K’ K

K: k||-x K: k||xK’: k||-x

real-space
wavefunctions
(color denotes
phase)

k-space
representation

bonding
orbitals

bonding
orbitals

anti-bonding
orbitals

PseudospinPseudospin: Absence of Backscattering: Absence of Backscattering

bonding

anti-bonding
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““PseudospinPseudospin””: Berry: Berry’’s Phase in IQHEs Phase in IQHE

π Berry’s phase for electron orbits 
results in ½-integer quantized Hall 
effect
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GrapheneGraphene –– FabricationFabrication

• Starting material is single-crystal Kish graphite
• Mechanically exfoliate on 300 nm SiO2/Si chips

single layer

two layers
several layers

Optical micrograph (layer 
thickness verified by AFM)

Single layer device after e-
beam lithography

Method adapted from Novoselov, et al. PNAS 102 10341 (2005) 
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Raman spectroscopy of Raman spectroscopy of graphenegraphene
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GrapheneGraphene fingerprint in Microfingerprint in Micro--RamanRaman

• Raman G’ band is two-photon/two-phonon 
resonant excitation; sensitive to electronic 
structure of graphene
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Ferrari, et al., PRL 97, 187401 (2006)

Fuhrer group sample

single Lorentzian G’ peak indicates 
single-layer graphene
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500 nm

300 nm

300 nm

Novel photoresist residue removal process
Anneal in flowing H2 at 400°C

Residues from PMMA/MMA photoresist 

Complete removal of photoresist residues Atomically clean STM images

Removing Removing PhotoresistPhotoresist Residue from Residue from GrapheneGraphene
Ishigami, et al., Nano Letters 7, 1643 (2007)
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Electrical Characterization of Electrical Characterization of GrapheneGraphene

• Ambipolar, symmetric conduction
• Finite minimum conductivity ~ [4-10]e2/h
• Field-effect mobility up to 20,000 cm2/Vs 
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Electrical Characterization of Electrical Characterization of GrapheneGraphene

• Ambipolar, symmetric conduction
• Finite minimum conductivity ~ [4-10]e2/h
• Field-effect mobility up to 20,000 cm2/Vs 
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Boltzmann TransportBoltzmann Transport
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How to explain linear How to explain linear σσ((VVgg)?)?
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See:
Ando, J. Phys. Soc. Jpn. 75, 074716 (2006)
Nomura & MacDonald PRL 98, 076602 (2007)
Cheianov & Fal'ko PRL 97, 226801 (2006)
Hwang, Adam, & Das Sarma, PRL 98, 186806 (2007)

Interaction must be q-dependent

Coulomb interaction: 
q
eVCoulomb κ

π 22
=

q = |k – k’| ~ kF

N.B. In graphene, screened
Coulomb interaction remains ~1/kF
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Minimum Conductivity of Minimum Conductivity of GrapheneGraphene

e h

• At minimum conductivity point, graphene breaks into electron and hole “puddles”
• Minimum conductivity decreases with increasing impurity concentration

μσ en*min =
Residual density in puddles
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Adam, et al., PNAS 104, 18392 (2007)
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Charged Impurity Scattering: Potassium Doping in UHVCharged Impurity Scattering: Potassium Doping in UHV
J. H.J. H. Chen, et al. Chen, et al. Nature Physics Nature Physics 44, 377 (2008), 377 (2008)
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Upon doping with K:
1) mobility decreases
2) σ(Vg) more linear
3) σmin shifts to negative Vg

4) plateau around σmin broadens
5) σmin decreases (slightly)

All these feature predicted for 
Coulomb scattering in graphene
Adam, et al., PNAS 104, 18392 (2007)

• Clean graphene in UHV at T = 20 K
• Potassium evaporated on graphene from getter

impn
Vs5x1011

=μ
Magnitude of scattering in 
quantitative agreement 
with theory:
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e h

MagnetoresistanceMagnetoresistance at Minimum Conductivity Pointat Minimum Conductivity Point
S. Cho and M. S. Fuhrer, S. Cho and M. S. Fuhrer, PRB PRB 7777, 084102(R) (2008), 084102(R) (2008)
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[Guttal and Stroud, PRB 71 201304 (2005)]
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Large spike in 
magnetoresistance at Dirac point

• At minimum conductivity point, graphene breaks into electron and hole “puddles”
Hwang, et al., PRL 98, 186806 (2007); Adam, et al., PNAS 104, 18392 (2007)
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Charged Impurity Scattering: Minimum ConductivityCharged Impurity Scattering: Minimum Conductivity
J. H.J. H. Chen, et al. Chen, et al. Nature Physics Nature Physics 44, 377 (2008), 377 (2008)

e h

• At minimum conductivity point, graphene breaks into electron and hole “puddles”
• Minimum conductivity decreases with increasing impurity concentration
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Run 4: σmin
Theory:  d=0.3nm  d=1nm
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Linear T-dependence
at low T

Longitudinal acoustic
phonons in graphene

ρ = ρ0 + AT
A = 0.1 Ω/K

A is independent of 
charge carrier density, as 
predicted
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ElectronElectron--Phonon ScatteringPhonon Scattering
J. H. Chen, et al. J. H. Chen, et al. Nature Nanotechnology Nature Nanotechnology 33, 206 (2008), 206 (2008)
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LA phonons in graphene

polar optical surface phonons in SiO2
(see Fratini and Guinea, PRB 77, 195415 (2008))

Potential due to polar optical phonons is long-ranged; leads to density-dependent resistivity

(3 global fit parameters for all curves)

ElectronElectron--Phonon ScatteringPhonon Scattering
J. H. Chen, et al. J. H. Chen, et al. Nature NanotechnologyNature Nanotechnology 33, 206 (2008), 206 (2008)
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Mobility Limits in Mobility Limits in GrapheneGraphene
J. H. Chen, et al. J. H. Chen, et al. Nature Nanotechnology Nature Nanotechnology 33, 206 (2008), 206 (2008)

Room Temperature Limits:

Currently:
μRT ~ 10,000 cm2/Vs
(charged impurities)

Substrate-limited:
SiO2 surface phonons:
μRT ~ 40,000 cm2/Vs

Intrinsic:
acoustic phonons:
μRT ~ 200,000 cm2/Vs
@ n = 1012 cm-2

Room temperature mobility of 200,000 cm2/Vs possible!
Ballistic transport over >2 microns
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Graphene:
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 LA phonons
 SiO2 phonons

Impurities: 
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  Sample 2

Total implied mobilities:
  Sample 1
  Sample 2

At room temp.:
Si:

InSb:

μ = 1,500 (e)
μ = 450 (h)

μ = 77,000 (e)
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rrss in in graphenegraphene??
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GrapheneGraphene’’ss Fine Structure Constant?Fine Structure Constant?

F
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=≡For graphene, define:
Fine structure constant, with

c → vF
ε0 → ε

describes strength of Coulomb interaction

For:
vF = 108 m/s = c/300

ε = 2.5ε0

1≈α Graphene is:
weakly interacting for condensed matter,
strongly interacting for relativistic Fermions

Interesting opportunities:
Atomic collapse of hypercritical nuclei: Zc = 1/α = 137 (difficult to achieve in nuclear physics),
Possible in graphene where Zc ≈ 1

036.137
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≈=
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hπε

α
α is fine structure constant

“coupling constant” – describes 
relative strength of Coulomb 

interaction
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Tuning the Tuning the ““Fine Structure ConstantFine Structure Constant””
C. Jang, et al. C. Jang, et al. Physical Review Letters Physical Review Letters 101101, , 146805 (2008) 146805 (2008) 
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Conventional 2D electron system:

Tune rs thru density n
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Graphene:

Graphene’s “Fine Structure Constant”
α independent of n
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But, can tune κ!
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Two Effects of Dielectric ScreeningTwo Effects of Dielectric Screening
C. Jang, et al. C. Jang, et al. Physical Review Letters Physical Review Letters 101101, , 146805 (2008) 146805 (2008) 

Reducing α:
• Reduces interaction of carriers with charged impurities

– Dominant effect for charged-impurity scattering
• Reduces screening by carriers

– Dominant effect for short-range scattering

...
3

32
2

)(        ;
)(

0 +−==
απα

α
σσ S
S

S F
F

Short-range scattering increased:
Conductivity σS decreases

Coulomb scattering reduced:
Mobility μL increases

...)(        ;
)(

12 2
2

+== παα
α

σ L
Limp

L F
Fn

n
h
e

Within RPA:

 1~    ;~*     ;* 2
2

min α
μαμσ LL nen=

e-h puddle density decreased,
mobility increased:
Min. conductivity σmin constant
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 Ice

Fit Eqn. 2
 Vacuum
 Ice

σ
  (
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)

Vg (V)

Add ice to clean graphene in UHV:
α (SiO2/vacuum) = 0.81     α (SiO2/ice) = 0.56
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Expt.
 Vacuumσ

  (
e2 /h

)

Vg (V)

Fit:

σ-1 = (neμL)-1 + σS
-1

Coulomb (long-range) 
scattering 

Short-range scattering 

(slight asymmetry in 
Coulomb scattering; 
take symmetric 
component of each)

Effects of Dielectric ScreeningEffects of Dielectric Screening
C. Jang, et al. C. Jang, et al. Physical Review Letters Physical Review Letters 101101, , 146805 (2008) 146805 (2008) 
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Coulomb scattering reduced:
Mobility μL increases

Short-range scattering increased:
Conductivity σS decreases

e-h puddle density decreased,
mobility increased:
Min. conductivity σmin constant

Dielectric Screening: Theory and Expt.Dielectric Screening: Theory and Expt.
C. Jang, et al. C. Jang, et al. Physical Review Letters Physical Review Letters 101101, , 146805 (2008) 146805 (2008) 
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GrapheneGraphene in highin high--K liquids K liquids –– a mystery?a mystery?

T. M. Mohiuddin et al. Arxiv:0809.1162  (Manchester group)
• Mobility increases <50% in ethanol (κ = 25) and liquid water (κ = 80)
• Concluded that charged impurities NOT dominant scatterers in graphene
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GrapheneGraphene in highin high--K liquids K liquids –– our groupour group
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GrapheneGraphene in highin high--K liquids K liquids –– our groupour group
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κ = 19.9
α = 0.167

Mobility up 510%
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GrapheneGraphene in highin high--K liquids K liquids –– our groupour group
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μ = 5500 cm2/Vs

DI Water
κ = 80

α = 0.047
Mobility up 820%

Isopropanol
κ = 19.9
α = 0.167

Mobility up 510%

Possibly reaching limit set 
by substrate polar optical 

phonons
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What is the difference?What is the difference?
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Mohiuddin et al. :
- Used electrolyte as gate
- Gate charges are ions → scatterers!

Our work :
- Used SiO2 back-gate
- No add’l scatterers
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GrapheneGraphene Corrugation Corrugation -- ScatteringScattering

)('21 2
EDkVk

h

π
τ

∝ q-dependent interaction
→ carrier-density dependent σ(n)

q = |k – k’| ~ kF

τσ FE
h
e22

=

1) Coulomb interaction: σ ~ n

[ ] Hrhrh 22)0()( ∝− σ ~ n2H-1

height-height correlation function

2) Corrugated graphene†: 

†Katsnelson & Geim, Phil. Trans. R. Soc. A
366, 195-204 (2008)

What is exponent 2H?
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Model 1:  
Intrinsic graphene bending constrained 
via interface confining potential

Model 2:  
Corrugations determined by strong 
direct interaction governed by height 
variations of the substrate

Substrate

graphene
V

h

ho

F =
1
2

κ ∇2h(x, y)[ ]2
+

1
2

Vh2 x,y( )

h(r) − h(0)( )2 ~ r2

σ(n) ~ n
(mimics Coulomb scatting)

Height-height correlations will 
match those of the substrate. 

Typical non-equilibrium surfaces 
show:                              
with 2H ≈ 1.  

( ) Hrhrh 22 ~)0()( −

graphene
ho

Substrate

σ(n) ~ constant
(mimics short range scattering)

GrapheneGraphene CorrugationCorrugation
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• σoxide = 3.1 Å and σgraphene = 1.9 Å

• Graphene 60% smoother than SiO2

Non-contact AFM image in UHV

Oxide-graphene boundary

M. Ishigami et al.,  Nano Letters 7, 1643 (2007)

SiO2

graphene

G ~ r1.1

GrapheneGraphene Corrugations on SiOCorrugations on SiO22
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200 nm

Non-contact AFM image in UHV

Oxide-graphene boundary

M. Ishigami et al.,  Nano Letters 7, 1643 (2007)

SiO2

graphene
10
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Graphene
Silicon Oxide

G
(x

) [
nm

2 ]
Distance [nm]

Height-height correlations function 

with 2H ≈ 1  

( ) Hrhrh 22 ~)0()( −
σ(n) ~ constant

(mimics short range scattering)

GrapheneGraphene Corrugations on SiOCorrugations on SiO22
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STM vs. NCSTM vs. NC--AFM topographyAFM topography

STM: 1V, ~50 pA NC-AFM: 4.6 Hz Δf

• Both images acquired from same area, on 1-layer graphene device.
• Why does STM measure topography so differently?   
• STM more strongly interacting – electro-mechanical effect

Similar to Morgenstern group (preprint) Reproduces our earlier work
Ishigami, et al. Nano Letters 7, 1643 (2007)

Same area of graphene!
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Lattice defect scattering in Lattice defect scattering in graphenegraphene
Charged-impurity scattering:

Linear σ(Vg)

Intravalley scattering
No backscattering
weak anti-localization

Metallic

Defect scattering:

Constant σ(Vg)? [Shon, & Ando, (1998)]
Linear σ(Vg)?   [Hentschel (2007);

Stauber (2007)]

Expect intravalley and intervalley scattering
Backscattering allowed
weak anti-localization or weak localization?

Metallic or insulating?

X X
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Inducing lattice defects in Inducing lattice defects in graphenegraphene

• Sample is cleaned in H2/Ar at 300 °C  
[Ishigami, Nano Letters 7, 1643 (2007)]

• Sample baked in UHV at 220 °C overnight

• Ne+ or He+ ion irradiation at 500 eV via sputter gun
• Dose given by current collected by Faraday cup

• Sample annealed at 220 °C overnight between ion irradiation runs; mobility 
partially recovers on annealing

Expect:
• One ion → one defect consisting of multi-atom vacancy

See e.g. G. M. Shedd and P. E. Russell, JVSTA 9, 1261 (1991)
J. R. Hahn, et al., PRB 53, R1725 (1996)
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Raman D peak - intervalley scattering
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Cancado, et al., 
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Point defects: identify La with defect scattering length.
Our samples: La = 70 nm

μ = 1300 cm2/Vs; n ≈ 1013 cm-2 (in ambient) → lmfp ≈ 50 nm 

Defect scattering lengths from Raman and transport agree
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Defects in Defects in graphenegraphene

Fit each curve to:   σ-1 = (neμ)-1 + ρS

“Long-range scattering”
Constant mobility

“Short-range scattering”
Constant resistivity 
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Defects in Defects in graphenegraphene
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Defects in Defects in graphenegraphene
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Defects:
• Defects change the linear term in σ(Vg)

Like charged impurities!

• Linear σ(Vg) scattering 4x stronger than for 
same concentration of charged impurities

Defects:
• Carrier-density-independent ρs scattering does 
not change

• ρs corresponds to lmfp ~2 microns

→ ρs cannot be the scattering seen in 
Raman D band 
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Defects in Defects in graphenegraphene –– Minimum conductivityMinimum conductivity
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Minimum conductivity:

n* is carrier density in “puddles”
n* is function of charged impurity density

μσ en*min =

Charged impurities:
nimp increases: μ decreases, n* increases

→ σmin changes very weakly

Defects:
ndefect increases: μ decreases, n* constant

→ σmin proportional to μ
μσ en*min =

μσ en*min =
n* ↑
μ ↓

n* const.
μ ↓

increasing irra
diation
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Defects in Defects in graphenegraphene –– Metal or Insulator?Metal or Insulator?
Theory:
Graphene with only intravalley
scattering is metallic (weak anti-
localization)

Graphene with intervalley scattering 
is insulator (weak localization)
[Bardarson, et al. PRL 99, 106801 (2007)]

Experiment:
Graphene with charged impurities 
shows metallic ρ(T) at low T
[Novoselov, Nature 438, 197 (2005)]
[Chen, Nature Nano 3, 206 (2008)]

Graphene with defects shows 
diverging ρ(T) at low T even for 
modest mobilities (~2,000 cm2/Vs)!
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MidgapMidgap states states -- TheoryTheory

( )Rk
n
n

h
ene F

d
dd

2
2

ln2
== μσ

[Hentschel & Guinea, PRB 76, 115407 (2007); Stauber, Peres, & Guinea, PRB 76, 205423 (2007)]

• Defect potential modeled as circular well of radius R, depth ε0, intervalley scattering Δ.
• Spectrum inside the potential well is gapped by Δ; has bound midgap states.
• Conductivity is:
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Experimentally, μd ≈ [1.2 × 1015 V-1s-1]/nd

For n = 2×1012 cm-2 → R ~ 8 Å
Reasonable value for 500 eV irradiation
(multiple-atom vacancies)

ln2(kFR) dependence not observed, but kF only 
varies by factor of ~3 outside puddle regime (n > n*)
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ConclusionsConclusions
• Mobility of graphene on SiO2 limited by charged impurities

– Charged impurities give linear σ(Vg) 
– Minimum conductivity determined by density in e-h puddles

– Addition of dielectric layer increases mobility

• Room temperature intrinsic mobility ~200,000 cm2/Vs
– Remote interfacial phonon scattering from SiO2 limits to ~40,000 cm2/Vs 

• Corrugations
– Graphene corrugations follow SiO2 substrate roughness

• Graphene with lattice defects
– Linear σ(Vg) with 4x lower mobiltiy compared to charged impurities
– Consistent with midgap states, R = 2-3 Å
– Depressed σmin~ μ; can be less than 4e2/πh
– Intervalley scattering gives insulating ρ(T); Raman D band
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