Higgs phases and zero-energy states in graphene

Igor Herbut (Simon Fraser University)

Collaborators:

Bitan Roy (SFU)
Vladimir Juricic (SFU)
Oskar Vafek (FSU)

Graphene: 2D carbon (1s2, 2s2, 2p2)

Two triangular sublattices: A and B; one electron per site (half filling)

Tight-binding model (t = 2.5 eV):

$$H_0 = -t \sum_{\vec{A}, i, \sigma = \pm 1} u_{\sigma}^{\dagger}(\vec{A}) v_{\sigma}(\vec{A} + \vec{b}_i) + H.c.$$

(Wallace, PR, 1947)

$$E(\vec{k}) = \pm t |\sum_{i} \exp[\vec{k} \cdot \vec{b}_{i}]|$$

The sum is complex => two equations for two variables for zero energy

=> Dirac points (no Fermi surface)

Brillouin zone:

Two inequivalent (Dirac) points at :

+K and -K

Dirac fermion:

$$\Psi_{\sigma}^{\dagger}(\vec{x},\tau) = T \sum_{\omega_n} \int_{-\infty}^{\Lambda} \frac{d\vec{q}}{(2\pi a)^2} e^{i\omega_n \tau + i\vec{q} \cdot \vec{x}} (u_{\sigma}^{\dagger}(\vec{K} + \vec{q}, \omega_n), v_{\sigma}^{\dagger}(\vec{K} + \vec{q}, \omega_n), u_{\sigma}^{\dagger}(-\vec{K} + \vec{q}, \omega_n), v_{\sigma}^{\dagger}(-\vec{K} + \vec{q}, \omega_n))$$

"Low - energy" Hamiltonian: $\,H_0=i\gamma_0\gamma_i(-i\partial_i\,-A_i)\,\,$ i=1,2

$$\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}$$
 ν , $\mu = 0, 1, 2$

(v = c/300 = 1, in our units)

Experiment: how do we detect Dirac fermions?

Quantum Hall effect (for example): $L=\sqrt{\hbar v_F^2 |eB|/c}$

Landau levels: each is

2 (spin) x 2 (Dirac) x eB (Area)/hc

degenerate => quantization in steps of

four!

(Gusynin and Sharapov, PRL, 2005)

(Y. Zhang, PRL, 2006)

Symmetries: exact and emergent

1) Lorentz

(microscopically, only Z2 (A <-> B) x Z2 (K <-> -K) = D2, dihedral group)

2) Chiral:
$$SU(2) = \{\gamma_{35}, \gamma_3, \gamma_5\}$$
 , $\gamma_{35} = i\gamma_3\gamma_5$

Generators commute with the Dirac Hamiltonian (in 2D). Only two are emergent!

3) Time-reversal (exact):
$$I_t=U_tK, \quad U_t=i\gamma_1\gamma_5$$
 (+ K <-> - K and complex conjugation)

(IH, Juricic, Roy, PRB, 2009)

4) Particle-hole (supersymmetry): anticommute with Dirac Hamiltonian

$$\vec{M}=(\gamma_0,i\gamma_0\gamma_3,i\gamma_0\gamma_5)$$
 , $\tilde{M}=i\gamma_1\gamma_2$

$$=$$
 $\psi_{-E} = M \psi_E$

and so map zero-energy states, when they exist, into each other!

The zero-energy subspace is invariant under both symmetry (commuting) and supersymmetry (anticommuting) operators.

"Masses" = supersymmetries

1) Broken chiral symmetry, preserved time reversal

$$H_0 \rightarrow H_0 + \vec{m} \cdot \vec{M}$$

2) Broken time reversal symmetry, preserved chiral

$$H_0 \rightarrow H_0 + \tilde{m}\tilde{M}$$

In either case the spectrum becomes gapped:

$$\varepsilon_{\pm}({m p})=\pm\sqrt{|{m p}|^2+|\Delta_0|^2}$$
, $\Delta_0=m$, \tilde{m}

On lattice?

- 1) m γ_0 staggered density, or Neel (with spin); preserves translations (Semenoff, PRL, 1984)
 - 2) $ilde{m} M$ circulating currents (Haldane, PRL, 1988)

(Raghu et al, PRL, 2008, generic phase diagram IH, PRL, 2006)

3) $m_1 \ i \gamma_0 \gamma_3$ + $m_2 \ i \gamma_0 \gamma_5$ Kekule hopping pattern

(Hou, Chamon, Mudry, PRL, 2007)

"Catalysis" of order: magnetic and otherwise

Strong interactions are needed for the gap because there are very few states near the Fermi level:

$$U_c/t \approx 5.5$$

Density of states is linear near Dirac point:

$$N(\omega) \propto \omega^{(2-z)/z}$$

and
$$z=1$$

In the magnetic field: Landau quantization

=>

DOS infinite

=> critical interaction infinitesimal

(Gusynin, Miransky, Shovkovy, PRL, 1994)

Zero-energy level is split, others only shifted => quantum Hall effect at new filling factor at Zero!

IH, PRB 2006, PRB 2007, IH and Roy, PRB 2008

But which order is catalyzed?

The Hamiltonian is :
$$H[A^0] = i \gamma_0 \gamma_i (p_i - A_i^0)$$

$$H^{2}[A^{0}] = (p_{i} - A_{i}^{0})^{2} + \tilde{M}\epsilon_{ij}\partial_{i}A_{j}^{0}$$

$$ilde{M}=i\gamma_1\gamma_2$$
 is TRS breaking mass.

so all zero energy states have the same eigenvalue (+1 or -1) of for a uniform magnetic field.

For a non-uniform magnetic field:

$$H[A^{0},0] = e^{-\chi(\vec{x})\tilde{M}}H[0,0]e^{-\chi(\vec{x})\tilde{M}},$$

where
$$A_i^0 = \epsilon_{ij} \partial_j \chi$$
. (In Coulomb gauge, $\partial_i A_i^0 = 0$.)

Zero-energy states with and without magnetic field are simply related:

$$\Phi_{0,n}[A^0](\vec{x}) \propto e^{\chi(\vec{x})\tilde{M}} \Phi_{0,n}[0](\vec{x})$$

since at large distance, for a localized flux F

$$\chi(\vec{x}) = F \ln |\vec{x}|$$

normalizability requires them to be -1 eigenstates of $\,\,\widetilde{\!M}\,\,\,!!$

Since, however,

$$Tr_0\vec{M} = 0$$

half of zero-energy states have +1, and half -1 eigenvalue of \dot{M}

For any anticommuting traceless operator, such as \dot{M}

$$\langle \vec{M} \rangle = \frac{1}{2} \left[\sum_{n,\text{occup}} - \sum_{n,\text{empty}} \right] \Phi_{0,n}^{\dagger}(\vec{x}) \vec{M} \Phi_{0,n}(\vec{x}),$$

(IH, PRL, 2007)

So:

TRS broken explicitly => CS broken spontaneously

Is the opposite also true?

Consider the non-Abelian potential: $H=i\gamma_0\gamma_i(p_i-A_i)$

$$A_i = A_i^3 \gamma_3 + A_i^5 \gamma_5 + A_i^{35} \gamma_{35}$$

which manifestly breaks CS, but preserves TRS. Since,

$$\gamma_{35} = \sigma_z \otimes I_2$$

 A_i^{35} for example, represents a variation in the position of the Dirac point, induced by height variations or strain.

 $ilde{M}$ still anticommutes with H but also with I_t so $Tr_0 ilde{M}=0$

CS broken explicitly => TRS broken spontaneously

(IH, PRB, 2008)

Pseudo-magnetic catalysis:

Flux of non-abelian pseudo-magnetic field

II V

Subspace of zero-energy states (Atiyah-Singer, Aharonov-Casher)

Equally split by TRS breaking mass

II V

With next-nearest neighbor repulsion, TRS spontaneously broken

In a non-uniform pseudo-magnetic field (bulge):

$$\langle \Psi^{\dagger}(\vec{x}) \tilde{M} \Psi(\vec{x}) \rangle \propto B^{35}(r)$$

local TRS breaking!

In sum:

- 1) Dirac Hamiltonian in 2D has plenty of (emergent) symmetry
- 2) Chiral symmetry + Time reversal => variety of Mott ("Higgs") insulators
- 3) Interactions need to be strong for Higgs, but
- 4) Ubiquitous zero-energy states => catalyze Higgs (QHE at filling factors zero and one in uniform magnetic field)
- 5) Non-abelian flux catalyzes time-reversal symmetry breaking! (IH, PHYSICAL REVIEW B 78, 205433 (2008)