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of the kinetic to Coulomb interactions in Galilean in-
variant systems is completely controlled by the electron
density. Notice that in all the cases discussed above the
Galilean invariance was kept intact and the driving force
for the many-body instabilities was the enhancement of
the Coulomb relative to the kinetic energy.

With the advent of graphene (Novoselov et al., 2004a),
a two dimensional crystal of pure carbon, this picture has
changed and a new example of Fermi liquid breakdown
has emerged in a big way. In graphene, due to its peculiar
lattice structure, the electrons at the Fermi energy are
described in terms of an effective Lorentz invariant theory
where the kinetic energy is given by the Dirac dispersion
(Castro Neto et al., 2009a)

KG = ±vF |p| , (1.3)

where vF is the Fermi-Dirac velocity, and the ± signs
refer to two linearly dispersing bands. If we take (1.3) at
face value and reconsider the argument given above on
the relevance of the Coulomb interactions we reach very
different conclusions. For one, the form of the Coulomb
interaction remains the same as in (1.2), since vF is a ma-
terial’s property and hence much smaller than the speed
of light, c. This means that the photons which mediate
the Coulomb interaction are still much faster than the
electrons and, thus, the electron-electron interaction can
be considered as instantaneous. Therefore, the Coulomb
interaction (1.2) actually breaks the Lorentz invariance
of (1.3). Secondly, because of the linear scaling of the ki-
netic energy with momentum, we see that the average ki-
netic energy per electron has to scale like EG ≈ !vF n1/2

and consequently the ratio of Coulomb to kinetic energy
is given by

α =
EC

EG
=

e2

ε0!vF
, (1.4)

and is independent of the electronic density, depending
only on material properties and environmental condi-
tions, such as ε0. As the electronic properties of graphene
are sensitive to environmental conditions, they will be
modified by the presence of other layers. In fact, as we are
going to show, bilayer graphene has properties which are
rather different than its monolayer counterpart. Further-
more, due to the same peculiar dispersion relation, the
electronic density of states, ρ(E), vanishes at the Dirac
point, ρ(E) ∝ |E|/v2

F , and hence graphene is a hybrid be-
tween an insulator and a metal: neutral graphene is not
a metal because it has vanishing density of states at the
Fermi energy, and it is not an insulator because it does
not have a gap in the spectrum. This means that pris-
tine (or lightly doped) graphene cannot screen the long
range Coulomb interaction in the usual (metallic) way,
although it is possible to produce electronic excitations
at vanishingly small energy. This state of affairs makes
of graphene a unique system from the point of view of
electron-electron interactions.

The unusual relation between kinetic and Coulomb en-
ergies not only affects the electron-electron interactions,

but also the interactions of the electrons with charged
impurities, the so-called Coulomb impurity problem. In
a metal described by a Galilean invariant theory of the
form (1.1), screening also makes the interaction with the
impurity short ranged, and hence the scattering problem
effectively reduces to the one of a short range impurity.
In graphene, because of the lack of screening the situ-
ation is rather different, and one has to face the prob-
lem of the effect of the long range part of the poten-
tial. Scattering by long range interactions has a long
history in physics and it leads to the issue of logarith-
mic phase shifts (Baym, 1969). In graphene, because
of its emergent Lorentz invariance, this issue is magni-
fied. Since Coulomb interactions between electrons and
electron scattering by Coulomb impurities are closely re-
lated issues, one expects that many of the anomalies of
one problem are also reflected in the other.

Another interesting consequence of the scaling of the
kinetic energy with momentum is related to the issue of
electron confinement. If electrons are confined to a re-
gion of size L the energy of the states is quantized, no
matter whether the electrons obey Galilean or Lorentz
invariance. However, the quantization of energy is rather
different in these two cases. In a Galilean invariant sys-
tem, like the one described by (1.1) the energy levels
are spaced as ∆E0 ∝ 1/L2 while in graphene Lorentz
invariance, (1.3), implies ∆EG ∝ 1/L. Hence, the size
dependence of the energy levels in sufficiently small sam-
ples of graphene is rather different than one would find
in normal metals. Moreover, since the Coulomb energy
scales like 1/L we expect Coulomb effects to be stronger
in nanoscopic and mesoscopic graphene samples.

Furthermore, the fact that graphene is a two dimen-
sional (2D) system has strong consequences for electronic
motion in the presence of perpendicular magnetic fields.
Since a perpendicular magnetic field B leads to a quan-
tization of the energy in terms of Landau levels, and
the electrons cannot propagate along the direction of the
field, its effect is singular, in the sense that the prob-
lem has a massive degeneracy. So, strong magnetic fields
can completely quench the kinetic energy of the elec-
trons that become dispersionless. The electronic orbits
are localized in a region of the size of the so-called cy-
clotron length: $C =

√

!c/(eB). For a Galilean in-
variant system, such as the one described by (1.1), for
p ≈ !/$C the kinetic energy per electron is of order
K ≈ !ωC ∝ B where ωC = !/(m∗$2

C) is the cyclotron
frequency. On the other hand, for graphene, using (1.3),
one has EG ≈ !ωG ∝

√
B where ωG =

√
2vF /$C , which

is a consequence of the Lorentz invariance. Notice that
in both cases the Coulomb energy per electron scales like
EC ∝ e2/(ε0$B) ∝

√
B. Hence, in a Galilean invariant

system the Coulomb energy is smaller than the kinetic
energy at high fields while for Lorentz invariant systems
they are always comparable. Thus, one expects Coulomb
interactions to be hugely enhanced in the presence of
these magnetic fields. In the 2D electron gas (2DEG)
this unusual state of affairs is what leads to the fractional
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where a ≈ 1.42Å is the carbon-carbon spacing. The di-
agonalization of Hamiltonian (2.2) yields the spectrum
of the two π-bands of graphene in tight-binding approx-
imation (Wallace, 1947),

E±(p) = ±t|φp|− µ . (2.5)

The +(−) sign in the spectrum corresponds to the con-
duction (valence) band.

The hexagonal Brillouin zone (BZ) of graphene shown
in Fig.1(c) has three high symmetry points: the Γ point,
located at the center of the BZ, the M point, which
indicates the position of the Van Hove singularities of
the π-π∗ bands, where the density of states (DOS) is
logarithmically divergent, and the K points, where the
π-bands touch, and the DOS vanishes linearly. An ex-
tensive description of the band structure of graphene
and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3

√
3a),

which cannot be connected by the generators of the
reciprocal lattice. The linearization of the spectrum
around the valleys centered at ±K gives rise to an
effective low energy description of the electrons that
mimics the spectrum of massless Dirac particles. In
this effective theory, the elementary excitations around
the Fermi surface are described by a Dirac Hamiltonian
(Semenoff, 1984),

H0 =
∑

σk

Ψ†
kσ [vk · γ − µ]Ψkσ, (2.6)

where

Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
grees of freedom. In this representation, γi = τ3 ⊗ σi

, where τ and σ are the usual Pauli matrices, which
operate in the valley and sublattice spaces respectively
(i = 1, 2, 3 correspond to x, y and z directions, and τ0

and σ0 are identity matrices). The form of the spec-
trum mimics the relativistic cone for massless fermions
(Wallace, 1947),

E±(k) = ±v|k|− µ (2.8)

where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
300 times smaller than the speed of light, i.e. v ≈ 1 ×
106m/s. From now on we set ! = 1 everywhere, except

FIG. 2 Diagram for the polarization bubble corresponding
to eq. (2.12).

where it is needed. For simplicity of notation, we call the
Fermi velocity v (i.e. vF ≡ v) throughout this review.

The Hamiltonian (2.6) is invariant under a pseudo-
time reversal symmetry operation, S = i(τ0 ⊗ σ2)C,
SHS−1 = H , (C is the complex conjugation operator),
which is equivalent to a time reversal operation for each
valley separately. It is also invariant under a true time
reversal symmetry (TRS) operation, which involves an
additional exchange between the valleys, T = (τ1⊗σ1)C.

In the absence of back scattering connecting the two
valleys, the Hamiltonian can be decomposed in two in-
dependent valley species of Dirac fermions with opposite
chiralities:

H0,+ =
∑

σ,k

Ψ†
+,kσ [vk · σ − µ]Ψ+,kσ, (2.9)

H0,− =
∑

σ,k

Ψ†
−,kσ [−vk · σ∗ − µ]Ψ−,kσ, (2.10)

where Ψ±,kσ = (a±K+k,σ, b±K+k,σ) are two component
spinors. In this review, unless otherwise specified, we
will arbitrarily choose one of the two cones and assume
an additional valley degeneracy in the Hamiltonian. So
valley indexes will be generically omitted unless explicitly
mentioned. A more detailed description of the symmetry
properties of the graphene Hamiltonian can be found in
(Gusynin et al., 2007).

C. Polarization function

The Green’s function of graphene is a 2 × 2 matrix
represented in the sublattice basis by

Ĝ(k, τ) =

(

Gaa Gab

Gba Gbb

)

,

where Gaa = −〈T [ak(τ)a†
k(0)]〉 and so on, with τ as the

imaginary time. In the low energy sector of the spectrum,
close to the Dirac points, the non-interacting Green’s
function is Ĝ(0)(k, iω) = [iω + µ − vk · σ]−1, or equiv-
alently, in a chiral representation,

Ĝ(0)(k, iω) =
1

2

∑

s=±

1 + sσ̂k

iω + µ − sv|k|
, (2.11)

where σ̂k = σ · k/|k| is twice the quantum mechanical
helicity operator for a Dirac fermion with momentum k,
and s = ± labels the two branches with positive and
negative energy in one cone. It is clear that the positive
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300 times smaller than the speed of light, i.e. v ≈ 1 ×
106m/s. From now on we set ! = 1 everywhere, except

FIG. 2 Diagram for the polarization bubble corresponding
to eq. (2.12).

where it is needed. For simplicity of notation, we call the
Fermi velocity v (i.e. vF ≡ v) throughout this review.

The Hamiltonian (2.6) is invariant under a pseudo-
time reversal symmetry operation, S = i(τ0 ⊗ σ2)C,
SHS−1 = H , (C is the complex conjugation operator),
which is equivalent to a time reversal operation for each
valley separately. It is also invariant under a true time
reversal symmetry (TRS) operation, which involves an
additional exchange between the valleys, T = (τ1⊗σ1)C.

In the absence of back scattering connecting the two
valleys, the Hamiltonian can be decomposed in two in-
dependent valley species of Dirac fermions with opposite
chiralities:

H0,+ =
∑

σ,k

Ψ†
+,kσ [vk · σ − µ]Ψ+,kσ, (2.9)

H0,− =
∑

σ,k

Ψ†
−,kσ [−vk · σ∗ − µ]Ψ−,kσ, (2.10)

where Ψ±,kσ = (a±K+k,σ, b±K+k,σ) are two component
spinors. In this review, unless otherwise specified, we
will arbitrarily choose one of the two cones and assume
an additional valley degeneracy in the Hamiltonian. So
valley indexes will be generically omitted unless explicitly
mentioned. A more detailed description of the symmetry
properties of the graphene Hamiltonian can be found in
(Gusynin et al., 2007).

C. Polarization function

The Green’s function of graphene is a 2 × 2 matrix
represented in the sublattice basis by
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Creation and anihilation of particle-hole pairs!

Vacuum polarization

When α=2.2 strong vacuum polarization effects can screen 
out interactions among quasiparticles!
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function is Ĝ(0)(k, iω) = [iω + µ − vk · σ]−1, or equiv-
alently, in a chiral representation,
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5
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The +(−) sign in the spectrum corresponds to the con-
duction (valence) band.

The hexagonal Brillouin zone (BZ) of graphene shown
in Fig.1(c) has three high symmetry points: the Γ point,
located at the center of the BZ, the M point, which
indicates the position of the Van Hove singularities of
the π-π∗ bands, where the density of states (DOS) is
logarithmically divergent, and the K points, where the
π-bands touch, and the DOS vanishes linearly. An ex-
tensive description of the band structure of graphene
and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3

√
3a),

which cannot be connected by the generators of the
reciprocal lattice. The linearization of the spectrum
around the valleys centered at ±K gives rise to an
effective low energy description of the electrons that
mimics the spectrum of massless Dirac particles. In
this effective theory, the elementary excitations around
the Fermi surface are described by a Dirac Hamiltonian
(Semenoff, 1984),

H0 =
∑

σk

Ψ†
kσ [vk · γ − µ]Ψkσ, (2.6)

where

Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
grees of freedom. In this representation, γi = τ3 ⊗ σi

, where τ and σ are the usual Pauli matrices, which
operate in the valley and sublattice spaces respectively
(i = 1, 2, 3 correspond to x, y and z directions, and τ0

and σ0 are identity matrices). The form of the spec-
trum mimics the relativistic cone for massless fermions
(Wallace, 1947),

E±(k) = ±v|k|− µ (2.8)

where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
300 times smaller than the speed of light, i.e. v ≈ 1 ×
106m/s. From now on we set ! = 1 everywhere, except

FIG. 2 Diagram for the polarization bubble corresponding
to eq. (2.12).

where it is needed. For simplicity of notation, we call the
Fermi velocity v (i.e. vF ≡ v) throughout this review.
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SHS−1 = H , (C is the complex conjugation operator),
which is equivalent to a time reversal operation for each
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additional exchange between the valleys, T = (τ1⊗σ1)C.

In the absence of back scattering connecting the two
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H0,− =
∑

σ,k

Ψ†
−,kσ [−vk · σ∗ − µ]Ψ−,kσ, (2.10)

where Ψ±,kσ = (a±K+k,σ, b±K+k,σ) are two component
spinors. In this review, unless otherwise specified, we
will arbitrarily choose one of the two cones and assume
an additional valley degeneracy in the Hamiltonian. So
valley indexes will be generically omitted unless explicitly
mentioned. A more detailed description of the symmetry
properties of the graphene Hamiltonian can be found in
(Gusynin et al., 2007).
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imaginary time. In the low energy sector of the spectrum,
close to the Dirac points, the non-interacting Green’s
function is Ĝ(0)(k, iω) = [iω + µ − vk · σ]−1, or equiv-
alently, in a chiral representation,

Ĝ(0)(k, iω) =
1

2

∑

s=±

1 + sσ̂k

iω + µ − sv|k|
, (2.11)

where σ̂k = σ · k/|k| is twice the quantum mechanical
helicity operator for a Dirac fermion with momentum k,
and s = ± labels the two branches with positive and
negative energy in one cone. It is clear that the positive

Polarization bubble

Creation and annihilation of particle-hole pairs

⌅ =
e2

�

⌅ =
e2

⇤�

� =
e2

�v ⇥ 2.2

⇤ � ln

�
⇥

q

⇥

=
q

4v
2⇤e2

|q| ⇤
(1)(q) = �⇤

2
�

⌅�(q) =
⇤

k

V (k)G(k + q)�(k, k + q, q)

��(k,⇧) =
e2

�v ⇥(k,⇧)

V (k) =
2⇤e2

q ⇥(k,⇧)

1

V (q, z = 0) = 1
�0

e2

q

�(k, ⇥) = 1 � V (k)⇧(k, ⇥)

1

Dielectric function

Dressed fine structure constant

V (q, z = 0) = e2

q

�(k, ⇥) = 1 � V (k)⇧(k, ⇥)

V (q, kz) = e2

q2 + k2
z

⇥ 1

1

??



S8 

!

 The usual perturbation framework in quantum electrodynamics (QED) would be to expand G, V*, 

and ! in powers of the fine structure constant, which in a Dirac system has the value 
2 /g Fe v" # ! .  

However, because 2.2g" #  in suspended graphene, such a perturbation series will not converge except 

perhaps after a summation of an infinite number of terms, to all orders in g" . 

 Our IXS experiments suggest that the Dirac fermions in graphene are more polarizable than 

originally expected.  Specifically, at small $ and k, with Fv k$ % ! , the dielectric function 15& ' , 

which is 3.5 times larger than estimates from RPA (28).  A better controlled procedure for computing 
*( , )$( k , as well as other physical observables, would then be to expand in powers of the screened 

interaction, V* (Eq. S14).  The expansion for the self-energy, for example, may be expressed  

diagrammatically as 

 . (S15) 

In Eq. S15, a double-wavy line represents the screened Coulomb interaction, V*, a solid line represents 

the bare Green’s function G0, a double solid line is the full Green’s function, G, and the filled triangle 

represents the full vertex function, !.  In a Dirac system, each screened Coulomb line introduces a factor 

of 
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which resides within the integrand of each diagram.  In other words, the perturbation expansion for  
*( , )$( k , as well as any other quantity that depends on internal Coulomb lines, may be organized into 

powers of 
*

g" , rather than the bare g" . 

 Because 
* ( , ) / 1g g" $ " )k  at infrared frequencies for all momenta, and 

* ( , ) / 1g g" $ "k "  for 

Fv k$ % !  as 0k' , the series expansion for 
*( , )$( k  in powers of 

* ( , )g" $k  should be more 

convergent than the expansion in terms of the bare g" .  This is not a contradiction; each of the terms in 

Eq. S15 corresponds to an infinite number of terms in the expansion of  
*( , )$( k  in terms of the bare 

coupling constant, g" , so the sum as a whole should be expected to be better controlled.  The most 

important consequence of this observation is that the interaction between dressed quasiparticles, which is 

captured by the dynamically screened 
* ( , )g" $k , should on the whole be weaker than interactions 

between the bare electrons. 
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 ( , ) 1 ( ) ( , )V! " "# $ %k k k . (S10) 

For a system with an energy gap, 
2( ,0) ~ k% k  at small k.  In two-dimensions, ( ) ~ 1/V kk , which 

indicates that ( ,0) 1! &k  as 0&k , implying that dielectric screening is not possible at large distances 

in two dimensions. 

 Graphene, however, is a special case.  Because ( ,0) ~ k% k  at small k, Eq. S10 converges to a 

finite dielectric constant at large distances, meaning that graphene – because of its gapless electronic 

structure – can support dielectric screening.  For this reason, when computing charge densities, the final 

graphene response was extrapolated linearly in momentum to k = 0.   

 

Relationship between 
* ( , )g' "k  and physical observables, such as the self-energy, 

*( , )"( k  

In any many-body system, the one electron Green’s function is defined as 
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where k = (k,") labels both momentum and energy,  
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denotes the Green’s function for the noninteracting system described by the free Hamiltonian, 0Ĥ , and  

 
* *( ) ( ) ( ) ( , , )k dpG p k V p k p k p( # * + *,  (S13) 

is the full, interacting, quasiparticle self-energy.  Eq. S13, which ignores divergent contributions from a 

uniform background of charge, is exact and is defined in terms of the screened Coulomb interaction, 
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where 
2( ) 2 /V k e k-#  is the bare Coulomb interaction and ( )k!  is the frequency- and momentum-

dependent dielectric function.  1 2 3( , , )k k k+  is the vertex function. 
Expansion in the dressed interaction:
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where a ≈ 1.42Å is the carbon-carbon spacing. The di-
agonalization of Hamiltonian (2.2) yields the spectrum
of the two π-bands of graphene in tight-binding approx-
imation (Wallace, 1947),

E±(p) = ±t|φp|− µ . (2.5)

The +(−) sign in the spectrum corresponds to the con-
duction (valence) band.

The hexagonal Brillouin zone (BZ) of graphene shown
in Fig.1(c) has three high symmetry points: the Γ point,
located at the center of the BZ, the M point, which
indicates the position of the Van Hove singularities of
the π-π∗ bands, where the density of states (DOS) is
logarithmically divergent, and the K points, where the
π-bands touch, and the DOS vanishes linearly. An ex-
tensive description of the band structure of graphene
and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3

√
3a),

which cannot be connected by the generators of the
reciprocal lattice. The linearization of the spectrum
around the valleys centered at ±K gives rise to an
effective low energy description of the electrons that
mimics the spectrum of massless Dirac particles. In
this effective theory, the elementary excitations around
the Fermi surface are described by a Dirac Hamiltonian
(Semenoff, 1984),

H0 =
∑

σk

Ψ†
kσ [vk · γ − µ]Ψkσ, (2.6)

where

Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
grees of freedom. In this representation, γi = τ3 ⊗ σi

, where τ and σ are the usual Pauli matrices, which
operate in the valley and sublattice spaces respectively
(i = 1, 2, 3 correspond to x, y and z directions, and τ0

and σ0 are identity matrices). The form of the spec-
trum mimics the relativistic cone for massless fermions
(Wallace, 1947),

E±(k) = ±v|k|− µ (2.8)

where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
300 times smaller than the speed of light, i.e. v ≈ 1 ×
106m/s. From now on we set ! = 1 everywhere, except

FIG. 2 Diagram for the polarization bubble corresponding
to eq. (2.12).

where it is needed. For simplicity of notation, we call the
Fermi velocity v (i.e. vF ≡ v) throughout this review.

The Hamiltonian (2.6) is invariant under a pseudo-
time reversal symmetry operation, S = i(τ0 ⊗ σ2)C,
SHS−1 = H , (C is the complex conjugation operator),
which is equivalent to a time reversal operation for each
valley separately. It is also invariant under a true time
reversal symmetry (TRS) operation, which involves an
additional exchange between the valleys, T = (τ1⊗σ1)C.

In the absence of back scattering connecting the two
valleys, the Hamiltonian can be decomposed in two in-
dependent valley species of Dirac fermions with opposite
chiralities:

H0,+ =
∑

σ,k

Ψ†
+,kσ [vk · σ − µ]Ψ+,kσ, (2.9)

H0,− =
∑

σ,k

Ψ†
−,kσ [−vk · σ∗ − µ]Ψ−,kσ, (2.10)

where Ψ±,kσ = (a±K+k,σ, b±K+k,σ) are two component
spinors. In this review, unless otherwise specified, we
will arbitrarily choose one of the two cones and assume
an additional valley degeneracy in the Hamiltonian. So
valley indexes will be generically omitted unless explicitly
mentioned. A more detailed description of the symmetry
properties of the graphene Hamiltonian can be found in
(Gusynin et al., 2007).

C. Polarization function

The Green’s function of graphene is a 2 × 2 matrix
represented in the sublattice basis by

Ĝ(k, τ) =

(

Gaa Gab

Gba Gbb

)

,

where Gaa = −〈T [ak(τ)a†
k(0)]〉 and so on, with τ as the

imaginary time. In the low energy sector of the spectrum,
close to the Dirac points, the non-interacting Green’s
function is Ĝ(0)(k, iω) = [iω + µ − vk · σ]−1, or equiv-
alently, in a chiral representation,

Ĝ(0)(k, iω) =
1

2

∑

s=±

1 + sσ̂k

iω + µ − sv|k|
, (2.11)

where σ̂k = σ · k/|k| is twice the quantum mechanical
helicity operator for a Dirac fermion with momentum k,
and s = ± labels the two branches with positive and
negative energy in one cone. It is clear that the positive

4

gauge) invariance guarantees cancellation between ver-
tex and self-energy corrections,22 and charge is renormal-
ized only through simple polarization loops in the photon
propagator. On the other hand in graphene, where the
only non-trivially renormalized quantity is the velocity v,
both the polarization operator and the vertex operator
do not show any independent divergencies.

The diagram of Fig. 1(b) now reads

Π(2)(q) = −i
∑

k

∫

dω

2π
Tr{Ĝ(k, ω)Γ̂(k;q, 0)Ĝ(k + q, ω)},

(19)
where the full expression for Γ̂ from Eq. (14) should be
used. An explicit calculation, starting by evaluation of
the energy integrations, leads to the result

Π(2)(q) = −
1

4
Tr

∑

k,p

Vk−p
(1 − σ̂p+qσ̂p)(1 − σ̂kσ̂k+q)

E(k,q)E(p,q)
.

(20)
Taking into account:

σ̂kσ̂p =
1

|k||p|
(k.p + iσ̂3(k × p)z) , (21)

where (p×q) stands for a vector product, we then arrive
at the final formula

Π(2)(q) = −2
∑

k,p

Vk−p

E(k,q)E(p,q)
{∆(k,q)∆(p,q)

+
(p × q)z(k × q)z

|p||k||p + q||k + q|

}

. (22)

It is clear on dimensional grounds that Π(2)(q) is linear
in |q|. This is in fact the case for polarization diagrams in
all orders of perturbation theory. The four-dimensional
integrals, appearing in (22), cannot be evaluated analyti-
cally. We have found, as expected in light of our previous
discussion of the vertex function, that the expressions
converge in the ultraviolet limit. After computing the
integrals numerically, we obtain the following result for
the combination VqΠ(2)(q), which appears in the dielec-
tric function,

2πe2

|q|
Π(2)(q) = −0.53α2. (23)

Adding also the one-loop RPA result, we have finally
(where E is the static dielectric constant, defined by the
formula below)

V eff
q =

Vq

1 − VqΠ(q)
=

Vq

E
, (24)

E = 1 +
π

2
α + 0.53 α2 + O(α3). (25)

We conclude that, at α ∼ 1, the vertex correction
is more than 30% of the one-loop result. It also has a

screening sign, i.e. it reduces the effective charge. One
also expects that finite contributions will appear to all or-
ders in α. However, resummation of perturbation theory
by simple means seems impossible, as the contributions
in question are finite and accumulate over a wide range
of momenta in the corresponding diagrams (rather than
within a specific integration window, from where diver-
gent parts typically originate, and thus can be easily col-
lected). Even though the vertex contribution is a sizable
one, two remarks are in order: (1.) It does not change
drastically the structure of the theory, apart from con-
tributing towards further screening of the interactions.
(2.) The fact that perturbation theory is used with the
intention of being applied at a rather strong coupling is
in itself questionable. Nevertheless, perturbation theory
provides a clear indication that a significant contribu-
tion to screening exists beyond the conventional one-loop
RPA result. On the other hand in the weak-coupling
regime, α $ 1, RPA is parametrically well justified as
far as the static polarization properties are concerned
(although the RPA is not justified for the self-energy.6)

IV. DISCUSSION AND CONCLUSIONS

It is also useful to compare our results to the situation
in ordinary metals with a finite Fermi surface. Certain
approximations are typically used to account for vertex
corrections, such as the Hubbard form of the dielectric
function. When extrapolated to low momentum, the ver-
tex contribution tends to decrease the screening length,23

i.e. it reduces further the range of the interactions. Nat-
urally in graphene, where the screening length is infinite
(for the case of zero chemical potential considered here),
the vertex correction affects directly the effective charge,
without changing the shape of the Coulomb potential.

Finally we mention two recent related works, dis-
cussing interaction effects, that appeared while the
present manuscript was being prepared. In Ref. 24, the
effect of self-energy and vertex corrections to lowest or-
der (α) on the minimal conductivity in graphene was dis-
cussed, with the conclusion that the corrections is of or-
der 1%. Dynamical polarization properties were studied
in Ref. 25, where the vertex diagrams were found to have
logarithmically singular contributions near the threshold
ω ∼ vq, leading to the possibility of a plasmon mode.

In summary, we have shown that vertex corrections
can have sizable effect in the static vacuum polariza-
tion diagrams in the regime of strong coupling, while for
small coupling their importance diminishes parametri-
cally. The self-energy corrections are naturally absorbed
into the renormalization of the Fermi velocity. The non-
RPA vertex diagram at lowest order of perturbation the-
ory was found to decrease the effective charge, meaning
that in principle correlation effects at higher order must
also be taken into account. Thus the ultimate asymptotic
behavior of the static polarization function for α ∼ 1 re-
mains an open problem.
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where a ≈ 1.42Å is the carbon-carbon spacing. The di-
agonalization of Hamiltonian (2.2) yields the spectrum
of the two π-bands of graphene in tight-binding approx-
imation (Wallace, 1947),

E±(p) = ±t|φp|− µ . (2.5)

The +(−) sign in the spectrum corresponds to the con-
duction (valence) band.

The hexagonal Brillouin zone (BZ) of graphene shown
in Fig.1(c) has three high symmetry points: the Γ point,
located at the center of the BZ, the M point, which
indicates the position of the Van Hove singularities of
the π-π∗ bands, where the density of states (DOS) is
logarithmically divergent, and the K points, where the
π-bands touch, and the DOS vanishes linearly. An ex-
tensive description of the band structure of graphene
and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3

√
3a),

which cannot be connected by the generators of the
reciprocal lattice. The linearization of the spectrum
around the valleys centered at ±K gives rise to an
effective low energy description of the electrons that
mimics the spectrum of massless Dirac particles. In
this effective theory, the elementary excitations around
the Fermi surface are described by a Dirac Hamiltonian
(Semenoff, 1984),

H0 =
∑

σk

Ψ†
kσ [vk · γ − µ]Ψkσ, (2.6)

where

Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
grees of freedom. In this representation, γi = τ3 ⊗ σi

, where τ and σ are the usual Pauli matrices, which
operate in the valley and sublattice spaces respectively
(i = 1, 2, 3 correspond to x, y and z directions, and τ0

and σ0 are identity matrices). The form of the spec-
trum mimics the relativistic cone for massless fermions
(Wallace, 1947),

E±(k) = ±v|k|− µ (2.8)

where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
300 times smaller than the speed of light, i.e. v ≈ 1 ×
106m/s. From now on we set ! = 1 everywhere, except

FIG. 2 Diagram for the polarization bubble corresponding
to eq. (2.12).

where it is needed. For simplicity of notation, we call the
Fermi velocity v (i.e. vF ≡ v) throughout this review.

The Hamiltonian (2.6) is invariant under a pseudo-
time reversal symmetry operation, S = i(τ0 ⊗ σ2)C,
SHS−1 = H , (C is the complex conjugation operator),
which is equivalent to a time reversal operation for each
valley separately. It is also invariant under a true time
reversal symmetry (TRS) operation, which involves an
additional exchange between the valleys, T = (τ1⊗σ1)C.

In the absence of back scattering connecting the two
valleys, the Hamiltonian can be decomposed in two in-
dependent valley species of Dirac fermions with opposite
chiralities:

H0,+ =
∑

σ,k

Ψ†
+,kσ [vk · σ − µ]Ψ+,kσ, (2.9)

H0,− =
∑

σ,k

Ψ†
−,kσ [−vk · σ∗ − µ]Ψ−,kσ, (2.10)

where Ψ±,kσ = (a±K+k,σ, b±K+k,σ) are two component
spinors. In this review, unless otherwise specified, we
will arbitrarily choose one of the two cones and assume
an additional valley degeneracy in the Hamiltonian. So
valley indexes will be generically omitted unless explicitly
mentioned. A more detailed description of the symmetry
properties of the graphene Hamiltonian can be found in
(Gusynin et al., 2007).

C. Polarization function

The Green’s function of graphene is a 2 × 2 matrix
represented in the sublattice basis by

Ĝ(k, τ) =

(

Gaa Gab

Gba Gbb

)

,

where Gaa = −〈T [ak(τ)a†
k(0)]〉 and so on, with τ as the

imaginary time. In the low energy sector of the spectrum,
close to the Dirac points, the non-interacting Green’s
function is Ĝ(0)(k, iω) = [iω + µ − vk · σ]−1, or equiv-
alently, in a chiral representation,

Ĝ(0)(k, iω) =
1

2

∑

s=±

1 + sσ̂k

iω + µ − sv|k|
, (2.11)

where σ̂k = σ · k/|k| is twice the quantum mechanical
helicity operator for a Dirac fermion with momentum k,
and s = ± labels the two branches with positive and
negative energy in one cone. It is clear that the positive
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and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3

√
3a),

which cannot be connected by the generators of the
reciprocal lattice. The linearization of the spectrum
around the valleys centered at ±K gives rise to an
effective low energy description of the electrons that
mimics the spectrum of massless Dirac particles. In
this effective theory, the elementary excitations around
the Fermi surface are described by a Dirac Hamiltonian
(Semenoff, 1984),

H0 =
∑

σk

Ψ†
kσ [vk · γ − µ]Ψkσ, (2.6)

where

Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
grees of freedom. In this representation, γi = τ3 ⊗ σi

, where τ and σ are the usual Pauli matrices, which
operate in the valley and sublattice spaces respectively
(i = 1, 2, 3 correspond to x, y and z directions, and τ0

and σ0 are identity matrices). The form of the spec-
trum mimics the relativistic cone for massless fermions
(Wallace, 1947),

E±(k) = ±v|k|− µ (2.8)

where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
300 times smaller than the speed of light, i.e. v ≈ 1 ×
106m/s. From now on we set ! = 1 everywhere, except

FIG. 2 Diagram for the polarization bubble corresponding
to eq. (2.12).

where it is needed. For simplicity of notation, we call the
Fermi velocity v (i.e. vF ≡ v) throughout this review.

The Hamiltonian (2.6) is invariant under a pseudo-
time reversal symmetry operation, S = i(τ0 ⊗ σ2)C,
SHS−1 = H , (C is the complex conjugation operator),
which is equivalent to a time reversal operation for each
valley separately. It is also invariant under a true time
reversal symmetry (TRS) operation, which involves an
additional exchange between the valleys, T = (τ1⊗σ1)C.

In the absence of back scattering connecting the two
valleys, the Hamiltonian can be decomposed in two in-
dependent valley species of Dirac fermions with opposite
chiralities:

H0,+ =
∑

σ,k

Ψ†
+,kσ [vk · σ − µ]Ψ+,kσ, (2.9)

H0,− =
∑

σ,k

Ψ†
−,kσ [−vk · σ∗ − µ]Ψ−,kσ, (2.10)

where Ψ±,kσ = (a±K+k,σ, b±K+k,σ) are two component
spinors. In this review, unless otherwise specified, we
will arbitrarily choose one of the two cones and assume
an additional valley degeneracy in the Hamiltonian. So
valley indexes will be generically omitted unless explicitly
mentioned. A more detailed description of the symmetry
properties of the graphene Hamiltonian can be found in
(Gusynin et al., 2007).

C. Polarization function

The Green’s function of graphene is a 2 × 2 matrix
represented in the sublattice basis by

Ĝ(k, τ) =

(

Gaa Gab

Gba Gbb

)

,

where Gaa = −〈T [ak(τ)a†
k(0)]〉 and so on, with τ as the

imaginary time. In the low energy sector of the spectrum,
close to the Dirac points, the non-interacting Green’s
function is Ĝ(0)(k, iω) = [iω + µ − vk · σ]−1, or equiv-
alently, in a chiral representation,

Ĝ(0)(k, iω) =
1

2

∑

s=±

1 + sσ̂k

iω + µ − sv|k|
, (2.11)

where σ̂k = σ · k/|k| is twice the quantum mechanical
helicity operator for a Dirac fermion with momentum k,
and s = ± labels the two branches with positive and
negative energy in one cone. It is clear that the positive
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FIG. 41 a) Top view of a graphene bilayer; white and black
circles: top layer carbon atoms; gray and red: bottom layer.
b) four-band spectrum of the bilayer, ±Eγ(p), with γ = ± as
shown in Eq. (9.4), near the corner of the Brillouin zone. c)
Brillouin zone with high symmetry points. d) Illustration of
the four band spectrum around the K point.

configuration which is the most studied case.
We will start from the minimal tight-binding model

for Bernal bilayers, which includes a basis with two ad-
ditional layer flavors (denoted by an overbar),

Ψk,σ = (ak,σ, bk,σ, b̄k,σ, āk,σ) , (9.1)

with σ =↑, ↓ representing the spin. The resulting Bloch
Hamiltonian is then a 4 × 4 matrix with two sublattice,
and two layer degrees of freedom,

HB =
∑

kσ

Ψ†
k,σ







0 −tφk −t⊥ 0
−tφ∗

k 0 0 0
−t⊥ 0 0 −tφ∗

k

0 0 −tφk 0






Ψk,σ,

(9.2)
where t⊥ ≈ 0.39eV is the interlayer hopping, and t ≈
2.8eV is the in-plane, nearest neighbor, hopping ampli-
tude. The momentum dependence is contained in φk,
which is the same as for a monolayer (2.3). The band
structure associated with eq. (9.2) consists of four non-
degenerate bands given by

E(k) = ±
1

2

(

t⊥ ±
√

t2⊥ + 4t2|φk|2
)

. (9.3)

An expansion k = K + p around the K points of
the BZ when v|p| & t shows that the four-band tight-
binding spectrum (9.3) resolves into four hyperbolic
bands (Nilsson et al., 2006), as shown in Fig. 41(b), and
whose form reads:

± Eγ(p) = ±
t⊥
2

[

1 + γ
√

1 + 4(v|p|/t⊥)2
]

, (9.4)

with v ≈ 6 eVÅ being the Fermi velocity (the same Fermi
velocity of a monolayer), and γ = ±1. The Bernal stack-
ing explicitly breaks the sublattice symmetry in each
layer, causing an energy split of t⊥ between the two
γ = ±1 branches, E+ and E−, at p = 0 (see Fig. 41).
Due to a degeneracy at the K points, the two symmetric
branches +E− and −E+ touch there, resulting in a gap-
less spectrum. Just as in a monolayer, the Fermi surface
of an undoped bilayer reduces to only two points, at K
and K ′; but now the valence and conduction bands have
a finite curvature and, hence, notwithstanding the ab-
sence of a gap, the effective electronic degrees of freedom
are massive, but still chiral. The degeneracy at K is pro-
tected by the Z2 symmetry between the two layers only
(McCann, 2006), and can be lifted with arbitrarily small
perturbations, such as the ones induced by a bias volt-
age, by polarizing the two sheets (Zhang et al., 2009), or
else by independently changing the carrier concentration
in each layer (Ohta et al., 2006). This property opens
the exciting prospect of using graphene bilayers as mate-
rials with a gate-tunable band gap (Castro et al., 2007;
Castro Neto et al., 2007; Min et al., 2007).
We stress that the low energy effective theory of bilay-

ers remains Lorentz invariant, in the following sense. The
rotation of π/3 between layers breaks the sublattice sym-
metry leading to 2 pairs of massive Dirac particles at the
K (K ′) point. Nevertheless, the system remains metallic
because two bands, belonging to different pairs, touch in
a point. More explicitly, the non-interacting bands (9.4)
have the form:

E1(k) = −E−(k) = −mv2 + E(k), (9.5a)

E2(k) = +E−(k) = mv2 − E(k), (9.5b)

E3(k) = +E+(k) = mv2 + E(k), (9.5c)

E4(k) = −E+(k) = −mv2 − E(k), (9.5d)

where E(k) =
√

(mv2)2 + (vk)2, and m = t⊥/(2v2).
Hence, E1(k) and E4(k) [or E2(k) and E3(k)] describe
a massive relativistic dispersion with rest energy given
by mv2. Again, the gapless nature of the full spectrum
of this problem is due to an accidental degeneracy of
the simplest tight binding parametrization. Additional
hopping terms (Castro Neto et al., 2009a) in the Hamil-
tonian or many body interactions can easily lift this de-
generacy. This implies that the Bernal bilayer problem is
unstable from the electronic point of view. In contrast,
the twisted bilayer (Lopes dos Santos et al., 2007) is sta-
ble because it does not rely on this particular accidental
degeneracy. Just like in the case of monolayer graphene,
the introduction of the instantaneous Coulomb interac-
tion does not preserve this Lorentz invariance.
At very low energy, below ∆w ≈ 1.5meV, additional

trigonal warping effects take place due to the influence
of next-nearest neighbor hopping matrix elements [which
we are neglecting in (9.2)]. Trigonal warping introduces
an asymmetry in the conductivity under electron or hole
doping (Li et al., 2009b), and leads to a remarkable Lif-
shitz transition at low densities, whereby the lowest en-
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b) four-band spectrum of the bilayer, ±Eγ(p), with γ = ± as
shown in Eq. (9.4), near the corner of the Brillouin zone. c)
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the four band spectrum around the K point.
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FIG. 1 (Color online) a) Honeycomb lattice with the two
sublattices in graphene. The red arrows are nearest neighbor
vectors. b) Tight-binding spectrum for the π−π∗ bands. The
horizontal line intersecting the K point corresponds to the
Fermi level at half-filling. c) Brillouin zone centered around
the Γ point. d) Dirac cone resulting from the linearization of
the tight-binding spectrum around theK points (blue circles).

they are always comparable. Thus, one expects Coulomb
interactions to be hugely enhanced in the presence of
these magnetic fields. In the 2D electron gas (2DEG)
this unusual state of affairs is what leads to the fractional
quantum Hall effect (FQHE) (Laughlin, 1983).

Given all these unusual circumstances, many questions
come to mind: How does screening of the long range
Coulomb interaction work in graphene? Can graphene
be described in terms a Lorentz invariant theory of quasi-
particles? Is the Coulomb impurity problem in graphene
the same as in a normal metal? In what circumstances
is graphene unstable towards many-body ground states?
Are there quantum phase transitions (Sachdev, 1999) in
the phase diagram of graphene? Do magnetic moments
form in graphene in the same way as they do in normal
metals? What is the ground state of graphene in high
magnetic fields?

The objective of this review is not to cover the basic
aspects of graphene physics, since this was already cov-
ered in a recent review (Castro Neto et al., 2009a), but
to try to address some of these questions while keeping
others open. The field of many-body physics will always
be an open field because a seemingly simple question al-
ways leads to another question even more profound and
harder to answer in a definitive way. In many ways, what
we have done here is to only scratch the surface of this
rich and important field, and leave open a large number
of interesting and unexplored problems.

II. CHARGE POLARIZATION AND LINEAR SCREENING

A. Tight-binding spectrum

In isolated form, carbon has six electrons in the orbital
configuration 1s22s22p2. When arranged in the honey-
comb crystal shown in Fig.1(a), two electrons remain in
the core 1s orbital, while the other orbitals hybridize,
forming three sp2 bonds and one pz orbital. The sp2

orbitals form the σ band, which contains three localized
electrons. The bonding configuration among the pz or-
bitals of different lattice sites generates a valence band, or
π-band, containing one electron, whereas the antibonding
configuration generates the conduction band (π∗), which
is empty.
From a kinetic energy point of view, the electronic sin-

gle particle dispersion in graphene is essentially defined
by the hopping of the electrons between nearest neighbor
carbon sites in the honeycomb lattice. Unlike square or
triangular lattices, the honeycomb lattice is spanned by
two different sets of Bravais lattice generators, forming
a two component basis with one set for each triangular
sublattice. Defining a label for electrons sitting in each
of the two sublattices, say A and B, the free hopping
Hamiltonian of graphene is

H0 = −t
∑

σ,〈ij〉

[

a†σ(Ri)bσ(Rj)
]

+ h.c.− µ
∑

σ,i

n̂σ(Ri),

(2.1)
where aσ(Ri), bσ(Ri) are fermionic operators for sublat-
tices A and B respectively, n̂σ(Ri) is the number op-
erator, σ =↑, ↓ labels the spin and 〈ij〉 means summa-
tion over nearest neighbors. The two energy scales in
the Hamiltonian are t ≈ 2.8 eV, which is the hopping
energy between nearest carbons, and µ, the chemical
potential away from half-filling [see Fig.1(b)]. In a ho-
mogeneous system, deviations from half-filling (µ = 0)
are routinely induced either by charge transfer from a
substrate (Giovannetti et al., 2008), by application of
a back gate voltage (Novoselov et al., 2005, 2004a,b),
or else by chemical doping (Calandra and Mauri,
2007; Grüneis et al., 2009; McChesney et al., 2007;
Uchoa et al., 2008b).
In momentum space the free Hamiltonian of graphene

is

H0 =
∑

p,σ

Ψ†
p,σ

(

−µ −tφp

−tφ∗
p −µ

)

Ψp,σ , (2.2)

where Ψp,σ = (ap,σ, bp,σ) is a two component spinor and

φp =
3

∑

i=1

eip·ai (2.3)

is a tight-binding function summed over the nearest
neighbor vectors

a1 = ax̂, a2 = −
a

2
x̂+ a

√
3

2
ŷ, a3 = −

a

2
x̂− a

√
3

2
ŷ ,

(2.4)

linear spectrum hyperbolic spectrum:
electronic hopping between layers

?
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where a ≈ 1.42Å is the carbon-carbon spacing. The di-
agonalization of Hamiltonian (2.2) yields the spectrum
of the two π-bands of graphene in tight-binding approx-
imation (Wallace, 1947),

E±(p) = ±t|φp|− µ . (2.5)

The +(−) sign in the spectrum corresponds to the con-
duction (valence) band.

The hexagonal Brillouin zone (BZ) of graphene shown
in Fig.1(c) has three high symmetry points: the Γ point,
located at the center of the BZ, the M point, which
indicates the position of the Van Hove singularities of
the π-π∗ bands, where the density of states (DOS) is
logarithmically divergent, and the K points, where the
π-bands touch, and the DOS vanishes linearly. An ex-
tensive description of the band structure of graphene
and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3
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this effective theory, the elementary excitations around
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Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
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where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
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where it is needed. For simplicity of notation, we call the
Fermi velocity v (i.e. vF ≡ v) throughout this review.

The Hamiltonian (2.6) is invariant under a pseudo-
time reversal symmetry operation, S = i(τ0 ⊗ σ2)C,
SHS−1 = H , (C is the complex conjugation operator),
which is equivalent to a time reversal operation for each
valley separately. It is also invariant under a true time
reversal symmetry (TRS) operation, which involves an
additional exchange between the valleys, T = (τ1⊗σ1)C.

In the absence of back scattering connecting the two
valleys, the Hamiltonian can be decomposed in two in-
dependent valley species of Dirac fermions with opposite
chiralities:

H0,+ =
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Ψ†
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where Ψ±,kσ = (a±K+k,σ, b±K+k,σ) are two component
spinors. In this review, unless otherwise specified, we
will arbitrarily choose one of the two cones and assume
an additional valley degeneracy in the Hamiltonian. So
valley indexes will be generically omitted unless explicitly
mentioned. A more detailed description of the symmetry
properties of the graphene Hamiltonian can be found in
(Gusynin et al., 2007).
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where a ≈ 1.42Å is the carbon-carbon spacing. The di-
agonalization of Hamiltonian (2.2) yields the spectrum
of the two π-bands of graphene in tight-binding approx-
imation (Wallace, 1947),

E±(p) = ±t|φp|− µ . (2.5)

The +(−) sign in the spectrum corresponds to the con-
duction (valence) band.

The hexagonal Brillouin zone (BZ) of graphene shown
in Fig.1(c) has three high symmetry points: the Γ point,
located at the center of the BZ, the M point, which
indicates the position of the Van Hove singularities of
the π-π∗ bands, where the density of states (DOS) is
logarithmically divergent, and the K points, where the
π-bands touch, and the DOS vanishes linearly. An ex-
tensive description of the band structure of graphene
and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3

√
3a),

which cannot be connected by the generators of the
reciprocal lattice. The linearization of the spectrum
around the valleys centered at ±K gives rise to an
effective low energy description of the electrons that
mimics the spectrum of massless Dirac particles. In
this effective theory, the elementary excitations around
the Fermi surface are described by a Dirac Hamiltonian
(Semenoff, 1984),

H0 =
∑

σk

Ψ†
kσ [vk · γ − µ]Ψkσ, (2.6)

where

Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
grees of freedom. In this representation, γi = τ3 ⊗ σi

, where τ and σ are the usual Pauli matrices, which
operate in the valley and sublattice spaces respectively
(i = 1, 2, 3 correspond to x, y and z directions, and τ0

and σ0 are identity matrices). The form of the spec-
trum mimics the relativistic cone for massless fermions
(Wallace, 1947),

E±(k) = ±v|k|− µ (2.8)

where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
300 times smaller than the speed of light, i.e. v ≈ 1 ×
106m/s. From now on we set ! = 1 everywhere, except

FIG. 2 Diagram for the polarization bubble corresponding
to eq. (2.12).

where it is needed. For simplicity of notation, we call the
Fermi velocity v (i.e. vF ≡ v) throughout this review.

The Hamiltonian (2.6) is invariant under a pseudo-
time reversal symmetry operation, S = i(τ0 ⊗ σ2)C,
SHS−1 = H , (C is the complex conjugation operator),
which is equivalent to a time reversal operation for each
valley separately. It is also invariant under a true time
reversal symmetry (TRS) operation, which involves an
additional exchange between the valleys, T = (τ1⊗σ1)C.

In the absence of back scattering connecting the two
valleys, the Hamiltonian can be decomposed in two in-
dependent valley species of Dirac fermions with opposite
chiralities:

H0,+ =
∑

σ,k

Ψ†
+,kσ [vk · σ − µ]Ψ+,kσ, (2.9)

H0,− =
∑

σ,k

Ψ†
−,kσ [−vk · σ∗ − µ]Ψ−,kσ, (2.10)

where Ψ±,kσ = (a±K+k,σ, b±K+k,σ) are two component
spinors. In this review, unless otherwise specified, we
will arbitrarily choose one of the two cones and assume
an additional valley degeneracy in the Hamiltonian. So
valley indexes will be generically omitted unless explicitly
mentioned. A more detailed description of the symmetry
properties of the graphene Hamiltonian can be found in
(Gusynin et al., 2007).

C. Polarization function

The Green’s function of graphene is a 2 × 2 matrix
represented in the sublattice basis by

Ĝ(k, τ) =

(

Gaa Gab

Gba Gbb

)

,

where Gaa = −〈T [ak(τ)a†
k(0)]〉 and so on, with τ as the

imaginary time. In the low energy sector of the spectrum,
close to the Dirac points, the non-interacting Green’s
function is Ĝ(0)(k, iω) = [iω + µ − vk · σ]−1, or equiv-
alently, in a chiral representation,

Ĝ(0)(k, iω) =
1

2

∑

s=±

1 + sσ̂k

iω + µ − sv|k|
, (2.11)

where σ̂k = σ · k/|k| is twice the quantum mechanical
helicity operator for a Dirac fermion with momentum k,
and s = ± labels the two branches with positive and
negative energy in one cone. It is clear that the positive
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where a ≈ 1.42Å is the carbon-carbon spacing. The di-
agonalization of Hamiltonian (2.2) yields the spectrum
of the two π-bands of graphene in tight-binding approx-
imation (Wallace, 1947),

E±(p) = ±t|φp|− µ . (2.5)

The +(−) sign in the spectrum corresponds to the con-
duction (valence) band.

The hexagonal Brillouin zone (BZ) of graphene shown
in Fig.1(c) has three high symmetry points: the Γ point,
located at the center of the BZ, the M point, which
indicates the position of the Van Hove singularities of
the π-π∗ bands, where the density of states (DOS) is
logarithmically divergent, and the K points, where the
π-bands touch, and the DOS vanishes linearly. An ex-
tensive description of the band structure of graphene
and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3

√
3a),

which cannot be connected by the generators of the
reciprocal lattice. The linearization of the spectrum
around the valleys centered at ±K gives rise to an
effective low energy description of the electrons that
mimics the spectrum of massless Dirac particles. In
this effective theory, the elementary excitations around
the Fermi surface are described by a Dirac Hamiltonian
(Semenoff, 1984),

H0 =
∑

σk

Ψ†
kσ [vk · γ − µ]Ψkσ, (2.6)

where

Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
grees of freedom. In this representation, γi = τ3 ⊗ σi

, where τ and σ are the usual Pauli matrices, which
operate in the valley and sublattice spaces respectively
(i = 1, 2, 3 correspond to x, y and z directions, and τ0

and σ0 are identity matrices). The form of the spec-
trum mimics the relativistic cone for massless fermions
(Wallace, 1947),

E±(k) = ±v|k|− µ (2.8)

where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
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Ĝ(k, τ) =

(

Gaa Gab

Gba Gbb

)

,

where Gaa = −〈T [ak(τ)a†
k(0)]〉 and so on, with τ as the

imaginary time. In the low energy sector of the spectrum,
close to the Dirac points, the non-interacting Green’s
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describes how charge interacts in three dimensions.  The product ( ) ( )V F d)k k  is essentially the 

Coulomb propagator for a layered system (S6).   
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If we assume the graphene layers in graphite are coupled only by direct Coulomb interactions, the 

polarization functions for graphite and graphene are the same, i.e., 
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where a ≈ 1.42Å is the carbon-carbon spacing. The di-
agonalization of Hamiltonian (2.2) yields the spectrum
of the two π-bands of graphene in tight-binding approx-
imation (Wallace, 1947),

E±(p) = ±t|φp|− µ . (2.5)

The +(−) sign in the spectrum corresponds to the con-
duction (valence) band.

The hexagonal Brillouin zone (BZ) of graphene shown
in Fig.1(c) has three high symmetry points: the Γ point,
located at the center of the BZ, the M point, which
indicates the position of the Van Hove singularities of
the π-π∗ bands, where the density of states (DOS) is
logarithmically divergent, and the K points, where the
π-bands touch, and the DOS vanishes linearly. An ex-
tensive description of the band structure of graphene
and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3

√
3a),

which cannot be connected by the generators of the
reciprocal lattice. The linearization of the spectrum
around the valleys centered at ±K gives rise to an
effective low energy description of the electrons that
mimics the spectrum of massless Dirac particles. In
this effective theory, the elementary excitations around
the Fermi surface are described by a Dirac Hamiltonian
(Semenoff, 1984),

H0 =
∑

σk

Ψ†
kσ [vk · γ − µ]Ψkσ, (2.6)

where

Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
grees of freedom. In this representation, γi = τ3 ⊗ σi

, where τ and σ are the usual Pauli matrices, which
operate in the valley and sublattice spaces respectively
(i = 1, 2, 3 correspond to x, y and z directions, and τ0

and σ0 are identity matrices). The form of the spec-
trum mimics the relativistic cone for massless fermions
(Wallace, 1947),

E±(k) = ±v|k|− µ (2.8)

where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
300 times smaller than the speed of light, i.e. v ≈ 1 ×
106m/s. From now on we set ! = 1 everywhere, except

FIG. 2 Diagram for the polarization bubble corresponding
to eq. (2.12).

where it is needed. For simplicity of notation, we call the
Fermi velocity v (i.e. vF ≡ v) throughout this review.

The Hamiltonian (2.6) is invariant under a pseudo-
time reversal symmetry operation, S = i(τ0 ⊗ σ2)C,
SHS−1 = H , (C is the complex conjugation operator),
which is equivalent to a time reversal operation for each
valley separately. It is also invariant under a true time
reversal symmetry (TRS) operation, which involves an
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spinors. In this review, unless otherwise specified, we
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an additional valley degeneracy in the Hamiltonian. So
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where a ≈ 1.42Å is the carbon-carbon spacing. The di-
agonalization of Hamiltonian (2.2) yields the spectrum
of the two π-bands of graphene in tight-binding approx-
imation (Wallace, 1947),

E±(p) = ±t|φp|− µ . (2.5)

The +(−) sign in the spectrum corresponds to the con-
duction (valence) band.

The hexagonal Brillouin zone (BZ) of graphene shown
in Fig.1(c) has three high symmetry points: the Γ point,
located at the center of the BZ, the M point, which
indicates the position of the Van Hove singularities of
the π-π∗ bands, where the density of states (DOS) is
logarithmically divergent, and the K points, where the
π-bands touch, and the DOS vanishes linearly. An ex-
tensive description of the band structure of graphene
and its electronic properties is reviewed in detail by
Castro Neto et al., 2009a.

B. Dirac fermion Hamiltonian

The topology of the Fermi surface in undoped
graphene is defined by the six K points where the con-
duction and valence bands touch, E±(K) = ±|φK| = 0.
These special points form two sets of nonequivalent
points, K and K ′, with K = −K′ and |K| = 4π/(3

√
3a),

which cannot be connected by the generators of the
reciprocal lattice. The linearization of the spectrum
around the valleys centered at ±K gives rise to an
effective low energy description of the electrons that
mimics the spectrum of massless Dirac particles. In
this effective theory, the elementary excitations around
the Fermi surface are described by a Dirac Hamiltonian
(Semenoff, 1984),

H0 =
∑

σk

Ψ†
kσ [vk · γ − µ]Ψkσ, (2.6)

where

Ψkσ = (aK+k,σ, bK+k,σ, b−K+k,σ, a−K+k,σ) (2.7)

is a four component spinor for sublattice and valley de-
grees of freedom. In this representation, γi = τ3 ⊗ σi

, where τ and σ are the usual Pauli matrices, which
operate in the valley and sublattice spaces respectively
(i = 1, 2, 3 correspond to x, y and z directions, and τ0

and σ0 are identity matrices). The form of the spec-
trum mimics the relativistic cone for massless fermions
(Wallace, 1947),

E±(k) = ±v|k|− µ (2.8)

where the Fermi velocity v = (3/2)ta ≈ 6eVÅ is nearly
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More quantitatively, graphite and graphene have approximately the same polarizability, ( , ).!" k   

Physically, " can be thought of as the response of the system, excluding direct Coulomb interactions, 

which couple the layers, and is related to the response function by  
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Making the assumption that " is the same for both graphite and graphene, and that the graphene sheets 
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where d=3.35 Å is the distance between the layers and 
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is a form factor that describes the layered structure of graphite, q and kz being the magnitude of the in- and 

out-of-plane components of k, respectively (20).  Eq. 4 can be thought of as a means of turning off the 

coulomb interaction between the layers, revealing the response for half-filled, freestanding graphene.   

 To test Eq. 4 we applied it to an electron energy loss (EELS) study by Eberlein (25) of the 

dielectric loss function & 'Im 1/ ( , )) !% k , which is proportional to & 'Im # , for both graphite and free-

standing graphene.  They found that the * and +%* plasmons are also present in graphene, but are shifted 

to lower energy compared to graphite because of the reduced dimensionality (24, 25).  We scaled their 

graphite spectra with the f sum rule, KK transformed, applied our Eq. 4, and compared the results to their 

spectra for graphene (Fig. 1D).  The curves match nearly exactly, reproducing the red shifts and changes 

in spectral weight of the two plasmons.  We conclude that Eq. 4 provides a valid response function for 

freestanding graphene at energy scales greater than t, (20). 

At the lowest momenta measured, the ( , )# !k  derived from Eq. 4 shows signatures of the Dirac 

fermions.  In Fig. 2A we plot & 'Im ( , )# !% k  as a function of ! for two momenta at which the quantity 

Fv k!  is less than the energy of the Van Hove singularity in the * band.  Also shown is the spectrum for 

idealized, noninteracting Dirac fermions.  A continuum is visible below 5 eV whose magnitude and 

dispersion with k are close to that expected for Dirac particles.  This suggests that the low frequency, long 

wavelength response of graphene is strongly influenced by the Dirac fermions.  The experimental and 

idealized spectra differ, however, in two respects.  First, the curves deviate near the energy of the * 

plasmon, since in the real material the width of the * band is finite.  Second, the experimental onset 

energy is lower and smoother than expected. 
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states as well as the !* conduction ones are degenerate along
the K-"-M direction of the Brillouin zone, i.e., the interlayer

interaction is weaker and does not lift the degeneracy as in

the case of the solid (Fig. 2). The most important difference
between graphite and the graphene geometries is seen in a

rather extended region surrounding the " point: several un-

occupied bands coming most probably from the continuum

are now found closer to the Fermi energy in contrast with

graphite where only one #* band exists at 4 eV (measured at
") (Fig. 2). This behavior of these conduction bands with
increasing !c /a"hex suggests that they originate from the fold-
ing of the Brillouin zone when increasing !c /a"hex and the
periodic boundary conditions applied in the c-axis direction.

They are folded plane-wavelike states which feel weakly the

crystalline potential. In the limit of an isolated graphene

layer #!c /a"hex→$$, they should simply yield a continuum.
Along the c axis, i.e., along the KH direction, the disper-

sion of the valence states is negligible. Nonetheless, certain

unoccupied states show a dispersion by 1 eV along KH; this

is expected owing to their delocalized nature and can have an

effect on the spectra beyond some energy range. For these

graphene-sheet geometries we calculated again the optical

spectrum for the parallel !E %c" polarization.
The first observation [see Fig. 5(b)] is that the oscillator

strength vanishes completely in the frequency region below

10 eV in complete accordance with the predictions based on
the dipole-selection rules for an isolated graphene layer.
Therefore, the double interlayer spacing leads to noninteract-
ing graphene layers as far as the RPA absorption spectrum
(in this frequency range) is concerned. When LFE are ne-
glected, the peak structure in the 10–15 eV range stays in-
tact, now with a smaller intensity due to the larger volume.
Nonetheless, the spectrum is not uniformly scaled; instead
one sees a redistribution of oscillator strength among the 11
and 14 eV peaks. The peak at 11 eV must originate again
from the !→#* transitions which take place between bands
that continue to be parallel in a large portion of the Brillouin
zone (dotted arrows in Fig. 3). Similarly, the 14 eV peak
from #→!* transitions at %-M (dashed arrows). With in-
creasing interlayer separation, LFE become progressively
more important. For the graphene geometry with 3!c /a"hex
the shift of oscillator strength induced by LFE is so big that
the absorption peaks in the region 10–15 eV are almost
completely suppressed [Fig. 5(c)]. These findings demon-
strate that both interlayer interaction and LFE have an im-
portant impact on the intensity of the absorption peak at

11 eV.

In conclusion, for parallel polarization in graphite, the

theoretically predicted (even with the inclusion of LFE) peak
structure remains in qualitative disagreement with experi-

ment. Theory predicts peaks at 11 and 16 eV with a rather

FIG. 3. Kohn-Sham band structure of graphene-sheet geometries with 2!c /a"hex (a), and 3!c /a"hex (b) along high-symmetry directions in
the Brillouin zone.
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Figure S4  Schematic representation of (a) the response function and (b) the polarization function.  (c) Test of the 

conversion expression Eq. S9 on the theoretical calculations of Eberlein (24).  The green curve is their calculation of 

the response function of graphite, the red curve is their corresponding calculation for graphene.  The blue circles are 

the curve acquired by applying Eq. S9 to their graphite calculation, which agrees quite well with the calculation for 

graphene (see text). 
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The Effective Fine-Structure Constant
of Freestanding Graphene Measured
in Graphite
James P. Reed,1 Bruno Uchoa,1 Young Il Joe,1 Yu Gan,1 Diego Casa,2

Eduardo Fradkin,1 Peter Abbamonte1*

Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy
physics to be studied in a solid-state setting. A key question is whether or not these fermions
are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering
experiments on crystals of graphite and applied reconstruction algorithms to image the
dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability
of the Dirac fermions is amplified by excitonic effects, improving screening of interactions
between quasiparticles. The strength of interactions is characterized by a scale-dependent,
effective fine-structure constant, ag* (k, w), the value of which approaches 0.14 T 0.092 ~ 1/7 at
low energy and large distances. This value is substantially smaller than the nominal a g = 2.2,
suggesting that, on the whole, graphene is more weakly interacting than previously believed.

Graphene is a single layer of carbon atoms
with an unusual electronic structure that
mimics the massless Dirac equation, al-

lowing phenomena familiar from high-energy
physics to be investigated in a solid-state setting
(1). Because of its low density of states near the
Fermi level, it is possible to tune the effective
carrier density of graphene with a gate voltage.
This makes graphene the potential foundation for a
newgeneration of low-cost, flexible electronics (1).

It is widely believed that graphene, if isolated
from substrate effects, should be a strongly in-
teracting electron system. (1–8) The strength of
Coulomb interactions in graphene ismeasured by
the ratio of its potential energy to its kinetic ener-
gy,U=K ¼ e2=ℏvF ¼ 2:2, where e is the charge
of an electron,ℏ is Planck’s constant, and vF is the
Fermi velocity of the Dirac particles. This ratio is
independent of the carrier density and is usually
referred to as the fine-structure constant, ag. Un-
like the analogous quantity a ¼ 1=137 in quan-
tum electrodynamics (QED), ag is greater than
unity; thus, there is no small expansion parameter
for electromagnetic interactions, which have been
predicted to lead to novel ground states such as an
excitonic insulator (3) or a perfect fluid that might
exhibit electronic turbulence (4).

Surprisingly, so far there is little direct evi-
dence for strong interactions in graphene. The
hallmark of interactions is a logarithmically di-
vergent renormalization of the Fermi velocity, vF
(5, 8). However, this effect has not been observed
in either angle-resolved photoemission spectros-

copy (ARPES) experiments (9, 10) or in scan-
ning single-electron transistor (SET) measurements
of the electronic compressibility (11). A recent
optical infrared measurement observed a depar-
ture from the noninteracting spectrum (12); how-
ever, the effect is not logarithmic and does not
agree with ARPES or SET measurements. In-
teraction effects have been observed in high
magnetic fields, but in this case the kinetic energy
is quenched by the formation of Landau levels
(13–15). Some of these measurements were done
on supported graphene, which can suppress inter-
actions through substrate dielectric screening.
However, recent measurements show that free-

standing graphene in zero field also behaves like
a simple semimetal (16).

The absence of a vF renormalization seems
irreconcilable with a large value of the fine-
structure constant. However, the particles mea-
sured in experiments are not bare electrons, but
dressed quasiparticles,which interact via the screened
Coulomb interaction (17). Hence, a better mea-
sure of the strength of interactions is the dressed
fine-structure constant, a*g (k, w) ¼ ag/e(k, w) ¼
ag½1þ V (k)c(k, w)$, whereV (k) ¼ 2pe2/k is the
bare Coulomb interaction in two dimensions,
e(k, w) is the dielectric function, and cðk, wÞ is
the charge response function of graphene. Unlike
ag, a*g (k, w) describes the retarded interaction
among the dressed quasiparticles and accounts
for the influence of screening generated dynami-
cally within the Dirac system (18).a*g (k, w) is not
a “background” dielectric constant, but a param-
eter that accounts for the dynamically generated
screening by the valence electrons. Diagrammatic
calculations may be structured in powers of
a*g ðk, w), so this function can be considered a
valid expansion parameter (19).

To determine a*g (k, w), one must determine
the response function,c(k, w), which is a general
representation of the charge dynamics of the
system. In real space, c(r1 − r2, t) represents the
amplitude that a disturbance in the electron
density at r1 will propagate to r2 after an elapsed
time, t. c(k, w) also describes, in linear response
theory, how the system responds to charged per-
turbations via

nind(k, w) ¼ V (k) c(k, w) next(k, w) ð1Þ

where next(k, w) is an arbitrary source and
nind(k, w) is the charge induced in the medium
(20).
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Fig. 1. IXS experiments
from graphite and extrac-
tion of the response func-
tion for graphene. (A)
Scattered intensity as a
function of energy and
momentum for highly
oriented pyrolitic graph-
ite (HOPG), which gives
theY-integrated response.
(B) Angle-resolved spectra
from single-crystal graph-
ite for the domain over
which anisotropy was ob-
served. (C) Brillouin zone
of graphene with various
vectors defined. (D) Test
of Eq. 4 on the electron
energy loss experiments
of Eberlein (24) (fit value
k = 0.33 Å−1), showing
that an accurate response
for graphene can be ob-
tained from IXS experi-
ments on graphite.
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The Effective Fine-Structure Constant
of Freestanding Graphene Measured
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Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy
physics to be studied in a solid-state setting. A key question is whether or not these fermions
are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering
experiments on crystals of graphite and applied reconstruction algorithms to image the
dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability
of the Dirac fermions is amplified by excitonic effects, improving screening of interactions
between quasiparticles. The strength of interactions is characterized by a scale-dependent,
effective fine-structure constant, ag* (k, w), the value of which approaches 0.14 T 0.092 ~ 1/7 at
low energy and large distances. This value is substantially smaller than the nominal a g = 2.2,
suggesting that, on the whole, graphene is more weakly interacting than previously believed.

Graphene is a single layer of carbon atoms
with an unusual electronic structure that
mimics the massless Dirac equation, al-

lowing phenomena familiar from high-energy
physics to be investigated in a solid-state setting
(1). Because of its low density of states near the
Fermi level, it is possible to tune the effective
carrier density of graphene with a gate voltage.
This makes graphene the potential foundation for a
newgeneration of low-cost, flexible electronics (1).

It is widely believed that graphene, if isolated
from substrate effects, should be a strongly in-
teracting electron system. (1–8) The strength of
Coulomb interactions in graphene ismeasured by
the ratio of its potential energy to its kinetic ener-
gy,U=K ¼ e2=ℏvF ¼ 2:2, where e is the charge
of an electron,ℏ is Planck’s constant, and vF is the
Fermi velocity of the Dirac particles. This ratio is
independent of the carrier density and is usually
referred to as the fine-structure constant, ag. Un-
like the analogous quantity a ¼ 1=137 in quan-
tum electrodynamics (QED), ag is greater than
unity; thus, there is no small expansion parameter
for electromagnetic interactions, which have been
predicted to lead to novel ground states such as an
excitonic insulator (3) or a perfect fluid that might
exhibit electronic turbulence (4).

Surprisingly, so far there is little direct evi-
dence for strong interactions in graphene. The
hallmark of interactions is a logarithmically di-
vergent renormalization of the Fermi velocity, vF
(5, 8). However, this effect has not been observed
in either angle-resolved photoemission spectros-

copy (ARPES) experiments (9, 10) or in scan-
ning single-electron transistor (SET) measurements
of the electronic compressibility (11). A recent
optical infrared measurement observed a depar-
ture from the noninteracting spectrum (12); how-
ever, the effect is not logarithmic and does not
agree with ARPES or SET measurements. In-
teraction effects have been observed in high
magnetic fields, but in this case the kinetic energy
is quenched by the formation of Landau levels
(13–15). Some of these measurements were done
on supported graphene, which can suppress inter-
actions through substrate dielectric screening.
However, recent measurements show that free-

standing graphene in zero field also behaves like
a simple semimetal (16).

The absence of a vF renormalization seems
irreconcilable with a large value of the fine-
structure constant. However, the particles mea-
sured in experiments are not bare electrons, but
dressed quasiparticles,which interact via the screened
Coulomb interaction (17). Hence, a better mea-
sure of the strength of interactions is the dressed
fine-structure constant, a*g (k, w) ¼ ag/e(k, w) ¼
ag½1þ V (k)c(k, w)$, whereV (k) ¼ 2pe2/k is the
bare Coulomb interaction in two dimensions,
e(k, w) is the dielectric function, and cðk, wÞ is
the charge response function of graphene. Unlike
ag, a*g (k, w) describes the retarded interaction
among the dressed quasiparticles and accounts
for the influence of screening generated dynami-
cally within the Dirac system (18).a*g (k, w) is not
a “background” dielectric constant, but a param-
eter that accounts for the dynamically generated
screening by the valence electrons. Diagrammatic
calculations may be structured in powers of
a*g ðk, w), so this function can be considered a
valid expansion parameter (19).

To determine a*g (k, w), one must determine
the response function,c(k, w), which is a general
representation of the charge dynamics of the
system. In real space, c(r1 − r2, t) represents the
amplitude that a disturbance in the electron
density at r1 will propagate to r2 after an elapsed
time, t. c(k, w) also describes, in linear response
theory, how the system responds to charged per-
turbations via

nind(k, w) ¼ V (k) c(k, w) next(k, w) ð1Þ

where next(k, w) is an arbitrary source and
nind(k, w) is the charge induced in the medium
(20).
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Fig. 1. IXS experiments
from graphite and extrac-
tion of the response func-
tion for graphene. (A)
Scattered intensity as a
function of energy and
momentum for highly
oriented pyrolitic graph-
ite (HOPG), which gives
theY-integrated response.
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from single-crystal graph-
ite for the domain over
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of Eq. 4 on the electron
energy loss experiments
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k = 0.33 Å−1), showing
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Figure S1  Value of the sum rule integral in Eq. S1, showing agreement over 1.5 decades of momenta.  Note that the 
sum rule is still satisfied after application of Eq. S9, indicating that the transformation is unitary with respect to 
spectral weight.  At  k > 8 Å-1 deviation from the sum rule is observed because of the emergence of Compton 
scattering. 

 

 

Calibration of the data: f-sum rule

10

of non-interacting fermions, the sum rule in graphene is

∫ ∞

−∞
dω ωImΠ(1)(k,ω) = π

Nek2

m
, (2.32)

as in metals, where Π(1)(k,ω) is the bare polarization
bubble, calculated using the full non-interacting spec-
trum (dictated by the lattice symmetry). The validity
of the f sum-rule does not require Galilean invariance of
the quasiparticles, but of the free electrons, which are not
relativistic and hence obey the Schrodinger equation.
For low energy effective Hamiltonians, such as the

Dirac Hamiltonian in graphene (which do not include
the periodicity of the spectrum in the Brillouin zone),
the f -sum rule above is still formally satisfied when ap-
plied for the electrons (holes) in the conduction (valence)
band only, as can be explicitly checked by direct substi-
tution of the polarization due to intraband transitions,
Eq. (2.15), into Eq. (2.32). The number of electrons
(holes) in this band, Ne = k2FA/π, where A = 3

√
3a2/2

is the unit cell area, is set by the size of the Fermi surface,
and the verification of the sum rule follows as in a Fermi
liquid.
The Dirac Hamiltonian, however, violates the f -sum

rule (2.32) when interband transitions are taken into ac-
count. In that case, the left hand side of Eq. (2.32) be-
comes independent of the chemical potential, consistent
with the fact that (Sabio et al., 2008)

〈[[H, n̂(−k)] , n̂(k)]〉 = k2
D

4
(2.33)

for a Dirac Hamiltonian, where D is the ultraviolet cut-
off. A similar dependence with the cut-off also occurs
in the true 3D relativistic problem, where the sum rule
reflects the number of particles contained in the vacuum
of the theory, which is formally divergent (Ceni, 2001;
Goldman and Drake, 1982). In graphene, as in any two
band semi-metal or semiconductor, the validity of the f -
sum rule is physically recovered when the periodicity of
the electronic spectrum is restored back into the Hamil-
tonian.

III. QUASIPARTICLES IN GRAPHENE

The quasiparticle properties of graphene are modi-
fied by the presence of long-range Coulomb interactions.
Their effects are especially pronounced when the Fermi
energy is close to the Dirac point (µ ≈ 0), and can re-
sult in strong renormalization of the Dirac band struc-
ture (the Fermi velocity v), and the quasiparticle residue
(Z). Consequently, many physical characteristics, such
as the compressibility, spin susceptibility and the spe-
cific heat can be strongly affected by interactions. Even
when the Fermi surface is large and the system is a Fermi
liquid, there are strong modifications of the physics near
the Dirac point due to the presence of additional peaks in
the quasiparticle decay rate, related to plasmon-mediated

a) b)

c) d)

FIG. 7 Self-energy diagrams: (a) First order Hartree-Fock,
(b) Second order loop diagram (first diagram in the RPA se-
ries), (c) Second order exchange (vertex correction) diagram,
(d) Rainbow diagram.

decay channels. Even reconstruction of the Dirac cone
structure near the charge neutrality point appears possi-
ble, as indicated by recent Angle-Resolved Photoemission
Spectroscopy (ARPES) measurements. All these effects
are sensitive to the value of the Coulomb interaction con-
stant in graphene, α.

A. Low-energy behavior near the Dirac point

1. Weak-coupling analysis

The interaction parameter which characterizes the
strength of the Coulomb interaction in graphene is
(Eq. (1.4))

α =
e2

ε0v
. (3.1)

At kF = 0 screening is absent, and the interaction po-
tential in momentum space:

V (p) =
2πe2

ε0p
. (3.2)

The value of α = 2.2/ε0 depends on the dielectric envi-
ronment since, as previously discussed, ε0 = (1 + κ)/2
for graphene in contact with air and a substrate with
dielectric constant κ. In vacuum, α = 2.2.
In the case of small coupling, α & 1, we can employ

standard perturbation theory, involving the perturbative
computation of the self-energy Σ(k,ω), which enters in a
standard way the Dirac fermion Green’s function (GF),
for a given valley:

G(k,ω) =
1

ωσ0 − vσ · k − Σ(k,ω) + iσ00+sign(ω)
.

(3.3)

It is convenient to decompose the self-energy into two
pieces with different pseudo-spin structure

Σ(k,ω) = Σ0(k,ω) + Σv(k,ω), Σ0 ∝ σ0, Σv ∝ σ · k,
(3.4)



states as well as the !* conduction ones are degenerate along
the K-"-M direction of the Brillouin zone, i.e., the interlayer

interaction is weaker and does not lift the degeneracy as in

the case of the solid (Fig. 2). The most important difference
between graphite and the graphene geometries is seen in a

rather extended region surrounding the " point: several un-

occupied bands coming most probably from the continuum

are now found closer to the Fermi energy in contrast with

graphite where only one #* band exists at 4 eV (measured at
") (Fig. 2). This behavior of these conduction bands with
increasing !c /a"hex suggests that they originate from the fold-
ing of the Brillouin zone when increasing !c /a"hex and the
periodic boundary conditions applied in the c-axis direction.

They are folded plane-wavelike states which feel weakly the

crystalline potential. In the limit of an isolated graphene

layer #!c /a"hex→$$, they should simply yield a continuum.
Along the c axis, i.e., along the KH direction, the disper-

sion of the valence states is negligible. Nonetheless, certain

unoccupied states show a dispersion by 1 eV along KH; this

is expected owing to their delocalized nature and can have an

effect on the spectra beyond some energy range. For these

graphene-sheet geometries we calculated again the optical

spectrum for the parallel !E %c" polarization.
The first observation [see Fig. 5(b)] is that the oscillator

strength vanishes completely in the frequency region below

10 eV in complete accordance with the predictions based on
the dipole-selection rules for an isolated graphene layer.
Therefore, the double interlayer spacing leads to noninteract-
ing graphene layers as far as the RPA absorption spectrum
(in this frequency range) is concerned. When LFE are ne-
glected, the peak structure in the 10–15 eV range stays in-
tact, now with a smaller intensity due to the larger volume.
Nonetheless, the spectrum is not uniformly scaled; instead
one sees a redistribution of oscillator strength among the 11
and 14 eV peaks. The peak at 11 eV must originate again
from the !→#* transitions which take place between bands
that continue to be parallel in a large portion of the Brillouin
zone (dotted arrows in Fig. 3). Similarly, the 14 eV peak
from #→!* transitions at %-M (dashed arrows). With in-
creasing interlayer separation, LFE become progressively
more important. For the graphene geometry with 3!c /a"hex
the shift of oscillator strength induced by LFE is so big that
the absorption peaks in the region 10–15 eV are almost
completely suppressed [Fig. 5(c)]. These findings demon-
strate that both interlayer interaction and LFE have an im-
portant impact on the intensity of the absorption peak at

11 eV.

In conclusion, for parallel polarization in graphite, the

theoretically predicted (even with the inclusion of LFE) peak
structure remains in qualitative disagreement with experi-

ment. Theory predicts peaks at 11 and 16 eV with a rather

FIG. 3. Kohn-Sham band structure of graphene-sheet geometries with 2!c /a"hex (a), and 3!c /a"hex (b) along high-symmetry directions in
the Brillouin zone.
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FIG. 1 (Color online) a) Honeycomb lattice with the two
sublattices in graphene. The red arrows are nearest neighbor
vectors. b) Tight-binding spectrum for the π−π∗ bands. The
horizontal line intersecting the K point corresponds to the
Fermi level at half-filling. c) Brillouin zone centered around
the Γ point. d) Dirac cone resulting from the linearization of
the tight-binding spectrum around theK points (blue circles).

they are always comparable. Thus, one expects Coulomb
interactions to be hugely enhanced in the presence of
these magnetic fields. In the 2D electron gas (2DEG)
this unusual state of affairs is what leads to the fractional
quantum Hall effect (FQHE) (Laughlin, 1983).

Given all these unusual circumstances, many questions
come to mind: How does screening of the long range
Coulomb interaction work in graphene? Can graphene
be described in terms a Lorentz invariant theory of quasi-
particles? Is the Coulomb impurity problem in graphene
the same as in a normal metal? In what circumstances
is graphene unstable towards many-body ground states?
Are there quantum phase transitions (Sachdev, 1999) in
the phase diagram of graphene? Do magnetic moments
form in graphene in the same way as they do in normal
metals? What is the ground state of graphene in high
magnetic fields?

The objective of this review is not to cover the basic
aspects of graphene physics, since this was already cov-
ered in a recent review (Castro Neto et al., 2009a), but
to try to address some of these questions while keeping
others open. The field of many-body physics will always
be an open field because a seemingly simple question al-
ways leads to another question even more profound and
harder to answer in a definitive way. In many ways, what
we have done here is to only scratch the surface of this
rich and important field, and leave open a large number
of interesting and unexplored problems.

II. CHARGE POLARIZATION AND LINEAR SCREENING

A. Tight-binding spectrum

In isolated form, carbon has six electrons in the orbital
configuration 1s22s22p2. When arranged in the honey-
comb crystal shown in Fig.1(a), two electrons remain in
the core 1s orbital, while the other orbitals hybridize,
forming three sp2 bonds and one pz orbital. The sp2

orbitals form the σ band, which contains three localized
electrons. The bonding configuration among the pz or-
bitals of different lattice sites generates a valence band, or
π-band, containing one electron, whereas the antibonding
configuration generates the conduction band (π∗), which
is empty.
From a kinetic energy point of view, the electronic sin-

gle particle dispersion in graphene is essentially defined
by the hopping of the electrons between nearest neighbor
carbon sites in the honeycomb lattice. Unlike square or
triangular lattices, the honeycomb lattice is spanned by
two different sets of Bravais lattice generators, forming
a two component basis with one set for each triangular
sublattice. Defining a label for electrons sitting in each
of the two sublattices, say A and B, the free hopping
Hamiltonian of graphene is

H0 = −t
∑

σ,〈ij〉

[

a†σ(Ri)bσ(Rj)
]

+ h.c.− µ
∑

σ,i

n̂σ(Ri),

(2.1)
where aσ(Ri), bσ(Ri) are fermionic operators for sublat-
tices A and B respectively, n̂σ(Ri) is the number op-
erator, σ =↑, ↓ labels the spin and 〈ij〉 means summa-
tion over nearest neighbors. The two energy scales in
the Hamiltonian are t ≈ 2.8 eV, which is the hopping
energy between nearest carbons, and µ, the chemical
potential away from half-filling [see Fig.1(b)]. In a ho-
mogeneous system, deviations from half-filling (µ = 0)
are routinely induced either by charge transfer from a
substrate (Giovannetti et al., 2008), by application of
a back gate voltage (Novoselov et al., 2005, 2004a,b),
or else by chemical doping (Calandra and Mauri,
2007; Grüneis et al., 2009; McChesney et al., 2007;
Uchoa et al., 2008b).
In momentum space the free Hamiltonian of graphene

is

H0 =
∑

p,σ

Ψ†
p,σ

(

−µ −tφp

−tφ∗
p −µ

)

Ψp,σ , (2.2)

where Ψp,σ = (ap,σ, bp,σ) is a two component spinor and

φp =
3

∑

i=1

eip·ai (2.3)

is a tight-binding function summed over the nearest
neighbor vectors

a1 = ax̂, a2 = −
a

2
x̂+ a

√
3

2
ŷ, a3 = −

a

2
x̂− a

√
3

2
ŷ ,

(2.4)
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spectra for light polarized parallel to the graphene plane
with a Lorentzian broadening of 0.05 eV.

The LDA Kohn-Sham eigenvalues and GW quasipar-
ticle band structure of graphene close to the Dirac point are
shown in Fig. 1(a). While the LDA Fermi velocity of
graphene is 0:85! 106 m=s, the GW value is 1:15!
106 m=s that is in good agreement with experiment [7] as
well as with previous GW calculations [17,18]. The LDA
and quasiparticle band structures of bilayer graphene close
to the Dirac point are shown in Fig. 1(b).

Figure 2(a) shows the calculated optical spectrum of
graphene. The plotted quantity !2ð!Þ is the imaginary
part of the polarizability per unit area and is obtained by
multiplying the calculated dielectric susceptibility, " ¼
ð"% 1Þ=4#, by the distance between adjacent graphene
layers (or bilayers) in our supercell arrangement. This
quantity !2ð!Þ when multiplied by the area of graphene
or bilayer graphene gives the polarizability. The absorption
below 0.3 eV is not shown because intraband transitions
and temperature effects are important there and our calcu-
lation does not include these factors. In absence of
electron-hole interactions, the interband transitions form
a prominent absorption peak at 5.15 eV. However, with
excitonic effects included, a prominent absorption peak
now appears at 4.55 eV which is a 600 meVapparent shift.
In addition, the peak profile is substantially modified from
an almost symmetric peak to an asymmetric one in the
excitonic case.

It is surprising to find such large excitonic effects (an
apparent shift of 600 meV and a dramatic change in shape
of the optical peak) in this 2D semimetal, given that the
binding energy of excitons found in 1D metallic CNTs is
only tens of meV and that there is no significant excitonic
effect in bulk metals. In Fig. 2(b), we see that both the joint
density states (JDOS) of quasiparticles from the GW cal-
culation and the density of excitonic states from solving the

BSE are nearly identical, similar to findings in bulk semi-
conductors [13]. These changes arise mainly from the
attractive direct term of the electron-hole interaction ker-
nel, with the repulsive exchange term plays a negligible
role.
To analyze our results, we rewrite the relevant optical

transition matrix element for going from the ground state
j0i to a correlated electron-hole (exciton) state jii ¼P

k

Phole
v

Pelec
c Ai

vckjvcki into the form [13]

h0j ~vjii ¼
X

v

X

c

X

k

Ai
vckhvkj ~vjcki ¼

Z
Sið!Þd!; (1)

where

Sið!Þ ¼
X

v;c;k

Ai
vckhvkj ~vjcki$½!% ðEck % EvkÞ'; (2)

which gives a measure of the contribution of all interband
pairs (ck, vk) at a given transition energy ! to the optical
strength of the exciton state i. Because of inversion sym-
metry of graphene, Sið!Þ is given as a real function. In
Fig. 3, Sið!Þ and its integrated value up to a given fre-
quency are depicted for three optically bright excited state
to provide an understanding of why excitonic effects en-
hance the absorption around 4.5 eV but depress it around
5.1 eV.

FIG. 1 (color online). LDA eigenvalues and GW quasiparticle
energies of graphene (a) and bilayer graphene (b) close to the
Dirac point. Wave vector is in 2#

a , where a is the in-plane lattice
constant.

FIG. 2 (color online). (a) Optical absorption spectra,
(b) density of excited states, (c) absorbance of graphene with
and without excitonic effects included; and (d) comparison with
experiments. In (d), rough colored curves within the small
rectangular box are measurements from Ref. [11], and open
circles are from those from Ref. [10].
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We present first-principles calculations of many-electron effects on the optical response of graphene,

bilayer graphene, and graphite employing the GW-Bethe Salpeter equation approach. We find that

resonant excitons are formed in these two-dimensional semimetals. The resonant excitons give rise to

a prominent peak in the absorption spectrum near 4.5 eV with a different line shape and significantly

redshifted peak position from those of an absorption peak arising from interband transitions in an

independent quasiparticle picture. In the infrared regime, our calculated optical absorbance per graphene

layer is approximately a constant, 2.4%, in agreement with recent experiments; additional low frequency

features are found for bilayer graphene because of band structure effects.

DOI: 10.1103/PhysRevLett.103.186802 PACS numbers: 73.22.!f, 72.80.Rj, 75.70.Ak

Excitonic effects are observable in the optical response
of semiconductors. Earlier work based on a tight-binding
bond-orbital model illustrated these effects in bulk semi-
conductors [1] and ab initio methods employing the GW-
Bethe-Salpeter equation (GW-BSE) approach have be-
come available in the past decade [2]. Excitonic effects
are commonly believed to be unimportant in the optical
spectrum of metals because of strong screening. However,
recent first-principles calculations [3,4] have predicted,
and subsequent experimental studies [5] have confirmed,
the existence of bound excitons in one-dimensional (1D)
metallic carbon nanotubes (CNTs). Therefore, it is of con-
siderable interest to explore whether there are significant
excitonic effects in 2D metallic or semimetallic systems.

Graphene is a 2D semimetal with interesting physics
associated with its unusual electronic structure and its
promising device applications [6–8]. In particular, the
optical properties of graphene display many intriguing
features, such as a constant optical conductivity in the
infrared regime and gate-dependent optical absorbance
[9–12]. However, there have been no first-principles stud-
ies to date of optical properties of graphene including
excitonic effects that are known to be important in reduced
dimensional materials.

In this work, we have carried out first-principles calcu-
lations using a many-body Green’s function theory to study
the optical spectra of graphene and bilayer graphene.
Following the approach of Rohlfing and Louie [13], we
calculate the optical response of isolated single- and bi-
layer intrinsic graphene in three stages: (i) we obtain the
electronic ground state using density functional theory
(DFT) within the local density approximation (LDA);
(ii) the quasiparticle excitations are calculated within the
GW approximation [14]; and (iii) we solve the Bethe-
Salpeter equation (BSE) to obtain the photo-excited states
and optical absorption spectra [1,2,13].

Our first-principles results on graphene show that, for
single-particle excitations, there is a significant self-energy

correction to the band velocity of the Dirac quasiparticles.
Owing to electron-hole interaction, the absorption peak
arising from the interband transitions at around 5.1 eV is
totally suppressed and replaced by a new peak at 4.5 eV
with a very different line shape. This change in the optical
spectrum is the result of a redistribution of optical transi-
tion strengths by strong resonant excitons. These results
persist in bilayer graphene. Moreover, the calculated infra-
red spectral absorbance per graphene layer including
electron-hole interactions is approximately a constant,
2.4%, in agreement with recent experiments [10,11].
In our studies, the intralayer structure of graphene and

bilayer graphene is fully relaxed within DFT/LDA. For
Bernal-stacked bilayer graphene, the interlayer distance
is chosen to be the experimental value of graphite
(0.334 nm). The calculations are done in a supercell ar-
rangement [15] with a plane-wave basis using norm-
conserving pseudopotentials [16] with a 60 Ry energy
cutoff. The distance between graphene sheets in neighbor-
ing supercells is 1.2 nm to avoid spurious interaction. A
32" 32" 1 k-point grid is used to ensure converged LDA
results and a 64" 64" 1 k-point grid is necessary for
computing the converged self-energy. We take into account
dynamical screening effects in the self-energy through the
generalized plasmon pole model [14]. In solving the BSE,
we make two approximations: (i) the Tamm-Dancoff ap-
proximation, which has given accurate results for the opti-
cal absorption spectra of other metallic systems such as
metallic CNTs [3,4], and (ii) the static electron-hole inter-
action approximation since the excitation energy of exci-
tons is large (#5 eV) relative to the electron-hole
interaction energy. The electron-hole interaction kernel is
evaluated first on a coarse k grid (64" 64" 1) and then
interpolated onto a fine grid (200" 200" 1) [13]. Two
valence bands and two conduction bands are included for
calculating the optical absorption spectra and inclusion of
more bands does change the spectra in the 0–7 eV range. In
the discussion below, we shall focus on the absorption
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Since the initial demonstration of the ability to experimentally
isolate a single graphene sheet1, a great deal of theoretical
work has focused on explaining graphene’s unusual carrier-
density-dependent conductivity � (n), and its minimum value
(�min) of nearly twice the quantum unit of conductance
(4e2/h) (refs 1–6). Potential explanations for such behaviour
include short-range disorder7–10, ‘ripples’ in graphene’s atomic
structure11,12 and the presence of charged impurities7,8,13–18. Here,
we conduct a systematic study of the last of these mechanisms,
by monitoring changes in electronic characteristics of initially
clean graphene19 as the density of charged impurities (nimp) is
increased by depositing potassium atoms onto its surface in
ultrahigh vacuum. At non-zero carrier density, charged-impurity
scattering produces the widely observed linear dependence1–6 of
� (n). More significantly, we find that �min occurs not at the carrier
density that neutralizes nimp, but rather the carrier density at
which the average impurity potential is zero15. As nimp increases,
�min initially falls to a minimum value near 4e2/h. This indicates
that �min in the present experimental samples1–6 is governed
not by the physics of the Dirac point singularity20,21, but rather
by carrier-density inhomogeneities induced by the potential of
charged impurities6,8,14,15.

Several theoretical studies7,8,13–15,17,18 have predicted charged-
impurity scattering in graphene to produce �(n) of the form

�(n) = Ce

����
n

nimp

����+�res, (1)

where C is a constant, e is the electronic charge and �res is
the residual conductivity at n = 0 (this last term was predicted
only in refs 17,18; see the Supplementary Information for
a more detailed discussion of the theory). Hwang et al.14

first calculated the screened Coulomb potential within the
random phase approximation, and used the results to determine
C = 5 ⇥ 1015 V�1 s�1. Novikov16 noted that, beyond the Born
approximation used in ref. 14, an asymmetry in C for attractive
versus repulsive scattering (electron versus hole carriers) is expected
for Dirac fermions. Experimentally, the behaviour described by
equation (1) is ubiquitously observed1–6 in graphene, strongly
suggesting that charged-impurity scattering is the dominant
scattering mechanism in present samples. Here, we provide the first
direct verification of equation (1) for charged-impurity scattering
in graphene, and determine the constant C. We also observe the
expected asymmetry for attractive versus repulsive scattering for
Dirac fermions16.
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Figure 1 Graphene device. a, Optical micrograph of the device. b, 633 nm
micro-Raman shift spectrum acquired over the device area, with lorentzian fit to the
D⌅ peak, confirming that the device is made from single-layer graphene (vertical
scale is the same throughout b).

At low carrier density, the conductivity does not vanish linearly,
but rather saturates to a constant value near 4e2/h (ref. 2).
Early theoretical work20,21 on massless Dirac fermions predicted
�min = 4e2/�h for vanishing disorder. However, in the presence
of charged impurities, a finite conductivity ⇤4e2/h is predicted
over a plateau of width ⇤Vg (refs 8,14,15). Here, we measure
experimentally the dependence on nimp of �min, ⇤Vg and the gate
voltage Vg,min at which the minimum conductivity occurs, and
find agreement with theoretical predictions8,14,15, indicating that
disorder due to charged impurities is the relevant physics at the
minimum conductivity point in present samples.

Figure 1a shows the graphene device used in this study, and
Fig. 1b shows its micro-Raman spectrum; the single lorentzian D⌅

peak confirms that the device is single-layer graphene22 (see the
Methods section). To vary the density of charged impurities, the
device was dosed with a controlled potassium flux in sequential
2 s intervals at a sample temperature T = 20 K in ultrahigh
vacuum (UHV). The gate-voltage-dependent conductivity �(Vg)
was measured in situ for the pristine device, and again after each
doping interval. After several doping intervals, the device was
annealed in UHV to 490 K to remove weakly adsorbed potassium23,
then cooled to 20 K and the doping experiment repeated; four such
runs (runs 1–4) were carried out in total.

Figure 2 shows the conductivity versus gate voltage for the
pristine19 device and at three di�erent doping concentrations at
20 K in UHV for run 3 (see also the Supplementary Information
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Figure 2 Potassium doping of graphene. The conductivity (⇥) versus gate voltage
(Vg) curves for the pristine sample and three different doping concentrations taken
at 20 K in UHV. Data are from run 3. Lines are fits to equation (1), and the crossing of
the lines defines the points of the residual conductivity and the gate voltage at
minimum conductivity (⇥res, Vg,min) for each data set. The variation of ⇥min with
impurity concentration is shown in Fig. 5.

for measurements on a second device). On K-doping, (1) the
mobility decreases, (2) ⇥(Vg) becomes more linear, (3) the mobility
asymmetry for holes versus electrons increases, (4) the gate voltage
of minimum conductivity Vg,min shifts to more negative gate
voltage, (5) the width of the minimum conductivity region in Vg

broadens and (6) the minimum conductivity ⇥min decreases, at least
initially (see also Fig. 5 below and Supplementary Information). In
addition, (7) the linear ⇥(Vg) curves extrapolate to a finite ⇥res

at Vg,min. All of these features have been predicted7,8,13–15,17,18 for
charged-impurity scattering in graphene; we will discuss each in
detail below.

E�ects (4) and (5) were observed in a previous study in
which graphene was exposed to molecular species24. However, the
authors reported no changes in mobility, concluding that charged-
impurity scattering contributes negligibly to the mobility of
graphene. As discussed further in the Supplementary Information,
the previous experiments did not control the environment
and had low initial sample mobility. The failure to observe
e�ects (1)–(3) therefore is most likely due to the presence of
significant concentrations of both positively and negatively charged
impurities24,25, although the presence of water and resist residue19

may also be contributing factors24.
We first examine the behaviour of ⇥(Vg) at high carrier density.

For Vg not too near Vg,min, the conductivity can be fitted (Fig. 2) by

⇥(Vg) =
⇤

µecg

�
Vg �Vg,min

⇥
+⇥res

�µhcg

�
Vg �Vg,min

⇥
+⇥res

Vg > Vg,min

Vg < Vg,min

(2)

where µe and µh are the electron and hole field-e�ect mobilities,
cg is the gate capacitance per unit area, 1.15 ⇥ 10�4 F m�2, and
⇥res is the residual conductivity that is determined by the fit.
The mobilities are reduced by an order of magnitude during
each run, and recover on annealing. The electron mobilities
ranged from 0.081 to 1.32 m2 V�1 s�1 over the four runs, nearly
covering the range of mobilities reported so far in the literature
(⌅0.1–2 m2 V�1 s�1) (refs 2,3,6).
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Figure 3 Inverse of electron mobility 1/µe and hole mobility 1/µh versus
doping time. Experimental error determined from standard error propagation is less
than 4% (see the Methods section). Lines are linear fits to all data points. Inset: The
ratio of µe to µh versus doping time. Error bars represent experimental error in
determining the mobility ratio from the fitting procedure (see the Methods section).
Data are from run 3 (same as Fig. 2).

For uncorrelated scatterers, the mobility depends inversely on
the density of charged impurities, 1/µ ⇧ nimp, and equations (1)
and (2) are identical. We assume nimp varies linearly with
dosing time t as potassium is added to the device. Figure 3
shows 1/µe and 1/µh versus t , which are linear, in agreement
with 1/µ ⇧ nimp, hence verifying that equation (1) describes
charged-impurity scattering in graphene. We estimate the dosing
rate dnimp/dt = (2.6–3.2) ⇥ 1015 m�2 s�1 and the maximum
concentration of (1.4–1.8) ⇥ 10�3 potassium per carbon (see the
Supplementary Information). From this point, we parameterize the
data by 1/µe, proportional to the impurity concentration (the data
set for µe is more extensive than for µh because of the limited Vg

range accessible experimentally).
Figure 3, inset shows that, although the µe and µh are not

identical, their ratio is fairly constant at µe/µh = 0.83±0.01 (see
the Methods section). Novikov16 predicted µe/µh = 0.37 for an
impurity charge Z = 1; however, the asymmetry is expected to be
reduced when screening by conduction electrons is included.

As K-dosing increases and mobility decreases, the linear
behaviour of ⇥(Vg) (Fig. 2) associated with charged-impurity
scattering dominates, as predicted theoretically14. At the lowest
K-dosing level, sublinear behaviour is observed for large
|Vg � Vg,min| as anticipated. The dependence of the conductivity
on carrier density n ⇧ |Vg –Vg,min| is expected to be ⇥ ⇧ na with
a = 1 for charged impurities and a < 1 for short-range and
ripple scattering (see the Supplementary Information). Adding
conductivities in inverse according to Matthiessen’s rule indicates
that scattering other than by charged impurities will dominate
at large n, with the crossover occurring at larger n as nimp is
increased14. A previous study3 also found more linear ⇥(Vg) for
devices with lower mobility. Thus, our data indicate that the
variation in observed field-e�ect mobilities of graphene devices
is determined by the level of unintentional charged impurities.

We now examine the shift of the curves in Vg. Figure 4
shows Vg,min as a function of 1/µe. Run 1 di�ers from runs 2–4,
presumably owing to irreversible changes as potassium reacts with
charge traps on silicon oxide and/or edges and defects of the
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Since the initial demonstration of the ability to experimentally
isolate a single graphene sheet1, a great deal of theoretical
work has focused on explaining graphene’s unusual carrier-
density-dependent conductivity � (n), and its minimum value
(�min) of nearly twice the quantum unit of conductance
(4e2/h) (refs 1–6). Potential explanations for such behaviour
include short-range disorder7–10, ‘ripples’ in graphene’s atomic
structure11,12 and the presence of charged impurities7,8,13–18. Here,
we conduct a systematic study of the last of these mechanisms,
by monitoring changes in electronic characteristics of initially
clean graphene19 as the density of charged impurities (nimp) is
increased by depositing potassium atoms onto its surface in
ultrahigh vacuum. At non-zero carrier density, charged-impurity
scattering produces the widely observed linear dependence1–6 of
� (n). More significantly, we find that �min occurs not at the carrier
density that neutralizes nimp, but rather the carrier density at
which the average impurity potential is zero15. As nimp increases,
�min initially falls to a minimum value near 4e2/h. This indicates
that �min in the present experimental samples1–6 is governed
not by the physics of the Dirac point singularity20,21, but rather
by carrier-density inhomogeneities induced by the potential of
charged impurities6,8,14,15.

Several theoretical studies7,8,13–15,17,18 have predicted charged-
impurity scattering in graphene to produce �(n) of the form

�(n) = Ce

����
n

nimp

����+�res, (1)

where C is a constant, e is the electronic charge and �res is
the residual conductivity at n = 0 (this last term was predicted
only in refs 17,18; see the Supplementary Information for
a more detailed discussion of the theory). Hwang et al.14

first calculated the screened Coulomb potential within the
random phase approximation, and used the results to determine
C = 5 ⇥ 1015 V�1 s�1. Novikov16 noted that, beyond the Born
approximation used in ref. 14, an asymmetry in C for attractive
versus repulsive scattering (electron versus hole carriers) is expected
for Dirac fermions. Experimentally, the behaviour described by
equation (1) is ubiquitously observed1–6 in graphene, strongly
suggesting that charged-impurity scattering is the dominant
scattering mechanism in present samples. Here, we provide the first
direct verification of equation (1) for charged-impurity scattering
in graphene, and determine the constant C. We also observe the
expected asymmetry for attractive versus repulsive scattering for
Dirac fermions16.
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Figure 1 Graphene device. a, Optical micrograph of the device. b, 633 nm
micro-Raman shift spectrum acquired over the device area, with lorentzian fit to the
D⌅ peak, confirming that the device is made from single-layer graphene (vertical
scale is the same throughout b).

At low carrier density, the conductivity does not vanish linearly,
but rather saturates to a constant value near 4e2/h (ref. 2).
Early theoretical work20,21 on massless Dirac fermions predicted
�min = 4e2/�h for vanishing disorder. However, in the presence
of charged impurities, a finite conductivity ⇤4e2/h is predicted
over a plateau of width ⇤Vg (refs 8,14,15). Here, we measure
experimentally the dependence on nimp of �min, ⇤Vg and the gate
voltage Vg,min at which the minimum conductivity occurs, and
find agreement with theoretical predictions8,14,15, indicating that
disorder due to charged impurities is the relevant physics at the
minimum conductivity point in present samples.

Figure 1a shows the graphene device used in this study, and
Fig. 1b shows its micro-Raman spectrum; the single lorentzian D⌅

peak confirms that the device is single-layer graphene22 (see the
Methods section). To vary the density of charged impurities, the
device was dosed with a controlled potassium flux in sequential
2 s intervals at a sample temperature T = 20 K in ultrahigh
vacuum (UHV). The gate-voltage-dependent conductivity �(Vg)
was measured in situ for the pristine device, and again after each
doping interval. After several doping intervals, the device was
annealed in UHV to 490 K to remove weakly adsorbed potassium23,
then cooled to 20 K and the doping experiment repeated; four such
runs (runs 1–4) were carried out in total.

Figure 2 shows the conductivity versus gate voltage for the
pristine19 device and at three di�erent doping concentrations at
20 K in UHV for run 3 (see also the Supplementary Information
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Since the initial demonstration of the ability to experimentally
isolate a single graphene sheet1, a great deal of theoretical
work has focused on explaining graphene’s unusual carrier-
density-dependent conductivity � (n), and its minimum value
(�min) of nearly twice the quantum unit of conductance
(4e2/h) (refs 1–6). Potential explanations for such behaviour
include short-range disorder7–10, ‘ripples’ in graphene’s atomic
structure11,12 and the presence of charged impurities7,8,13–18. Here,
we conduct a systematic study of the last of these mechanisms,
by monitoring changes in electronic characteristics of initially
clean graphene19 as the density of charged impurities (nimp) is
increased by depositing potassium atoms onto its surface in
ultrahigh vacuum. At non-zero carrier density, charged-impurity
scattering produces the widely observed linear dependence1–6 of
� (n). More significantly, we find that �min occurs not at the carrier
density that neutralizes nimp, but rather the carrier density at
which the average impurity potential is zero15. As nimp increases,
�min initially falls to a minimum value near 4e2/h. This indicates
that �min in the present experimental samples1–6 is governed
not by the physics of the Dirac point singularity20,21, but rather
by carrier-density inhomogeneities induced by the potential of
charged impurities6,8,14,15.

Several theoretical studies7,8,13–15,17,18 have predicted charged-
impurity scattering in graphene to produce �(n) of the form

�(n) = Ce

����
n

nimp

����+�res, (1)

where C is a constant, e is the electronic charge and �res is
the residual conductivity at n = 0 (this last term was predicted
only in refs 17,18; see the Supplementary Information for
a more detailed discussion of the theory). Hwang et al.14

first calculated the screened Coulomb potential within the
random phase approximation, and used the results to determine
C = 5 ⇥ 1015 V�1 s�1. Novikov16 noted that, beyond the Born
approximation used in ref. 14, an asymmetry in C for attractive
versus repulsive scattering (electron versus hole carriers) is expected
for Dirac fermions. Experimentally, the behaviour described by
equation (1) is ubiquitously observed1–6 in graphene, strongly
suggesting that charged-impurity scattering is the dominant
scattering mechanism in present samples. Here, we provide the first
direct verification of equation (1) for charged-impurity scattering
in graphene, and determine the constant C. We also observe the
expected asymmetry for attractive versus repulsive scattering for
Dirac fermions16.
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Figure 1 Graphene device. a, Optical micrograph of the device. b, 633 nm
micro-Raman shift spectrum acquired over the device area, with lorentzian fit to the
D⌅ peak, confirming that the device is made from single-layer graphene (vertical
scale is the same throughout b).

At low carrier density, the conductivity does not vanish linearly,
but rather saturates to a constant value near 4e2/h (ref. 2).
Early theoretical work20,21 on massless Dirac fermions predicted
�min = 4e2/�h for vanishing disorder. However, in the presence
of charged impurities, a finite conductivity ⇤4e2/h is predicted
over a plateau of width ⇤Vg (refs 8,14,15). Here, we measure
experimentally the dependence on nimp of �min, ⇤Vg and the gate
voltage Vg,min at which the minimum conductivity occurs, and
find agreement with theoretical predictions8,14,15, indicating that
disorder due to charged impurities is the relevant physics at the
minimum conductivity point in present samples.

Figure 1a shows the graphene device used in this study, and
Fig. 1b shows its micro-Raman spectrum; the single lorentzian D⌅

peak confirms that the device is single-layer graphene22 (see the
Methods section). To vary the density of charged impurities, the
device was dosed with a controlled potassium flux in sequential
2 s intervals at a sample temperature T = 20 K in ultrahigh
vacuum (UHV). The gate-voltage-dependent conductivity �(Vg)
was measured in situ for the pristine device, and again after each
doping interval. After several doping intervals, the device was
annealed in UHV to 490 K to remove weakly adsorbed potassium23,
then cooled to 20 K and the doping experiment repeated; four such
runs (runs 1–4) were carried out in total.

Figure 2 shows the conductivity versus gate voltage for the
pristine19 device and at three di�erent doping concentrations at
20 K in UHV for run 3 (see also the Supplementary Information
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Figure 2 Potassium doping of graphene. The conductivity (⇥) versus gate voltage
(Vg) curves for the pristine sample and three different doping concentrations taken
at 20 K in UHV. Data are from run 3. Lines are fits to equation (1), and the crossing of
the lines defines the points of the residual conductivity and the gate voltage at
minimum conductivity (⇥res, Vg,min) for each data set. The variation of ⇥min with
impurity concentration is shown in Fig. 5.

for measurements on a second device). On K-doping, (1) the
mobility decreases, (2) ⇥(Vg) becomes more linear, (3) the mobility
asymmetry for holes versus electrons increases, (4) the gate voltage
of minimum conductivity Vg,min shifts to more negative gate
voltage, (5) the width of the minimum conductivity region in Vg

broadens and (6) the minimum conductivity ⇥min decreases, at least
initially (see also Fig. 5 below and Supplementary Information). In
addition, (7) the linear ⇥(Vg) curves extrapolate to a finite ⇥res

at Vg,min. All of these features have been predicted7,8,13–15,17,18 for
charged-impurity scattering in graphene; we will discuss each in
detail below.

E�ects (4) and (5) were observed in a previous study in
which graphene was exposed to molecular species24. However, the
authors reported no changes in mobility, concluding that charged-
impurity scattering contributes negligibly to the mobility of
graphene. As discussed further in the Supplementary Information,
the previous experiments did not control the environment
and had low initial sample mobility. The failure to observe
e�ects (1)–(3) therefore is most likely due to the presence of
significant concentrations of both positively and negatively charged
impurities24,25, although the presence of water and resist residue19

may also be contributing factors24.
We first examine the behaviour of ⇥(Vg) at high carrier density.

For Vg not too near Vg,min, the conductivity can be fitted (Fig. 2) by

⇥(Vg) =
⇤

µecg

�
Vg �Vg,min

⇥
+⇥res

�µhcg

�
Vg �Vg,min

⇥
+⇥res

Vg > Vg,min

Vg < Vg,min

(2)

where µe and µh are the electron and hole field-e�ect mobilities,
cg is the gate capacitance per unit area, 1.15 ⇥ 10�4 F m�2, and
⇥res is the residual conductivity that is determined by the fit.
The mobilities are reduced by an order of magnitude during
each run, and recover on annealing. The electron mobilities
ranged from 0.081 to 1.32 m2 V�1 s�1 over the four runs, nearly
covering the range of mobilities reported so far in the literature
(⌅0.1–2 m2 V�1 s�1) (refs 2,3,6).
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Figure 3 Inverse of electron mobility 1/µe and hole mobility 1/µh versus
doping time. Experimental error determined from standard error propagation is less
than 4% (see the Methods section). Lines are linear fits to all data points. Inset: The
ratio of µe to µh versus doping time. Error bars represent experimental error in
determining the mobility ratio from the fitting procedure (see the Methods section).
Data are from run 3 (same as Fig. 2).

For uncorrelated scatterers, the mobility depends inversely on
the density of charged impurities, 1/µ ⇧ nimp, and equations (1)
and (2) are identical. We assume nimp varies linearly with
dosing time t as potassium is added to the device. Figure 3
shows 1/µe and 1/µh versus t , which are linear, in agreement
with 1/µ ⇧ nimp, hence verifying that equation (1) describes
charged-impurity scattering in graphene. We estimate the dosing
rate dnimp/dt = (2.6–3.2) ⇥ 1015 m�2 s�1 and the maximum
concentration of (1.4–1.8) ⇥ 10�3 potassium per carbon (see the
Supplementary Information). From this point, we parameterize the
data by 1/µe, proportional to the impurity concentration (the data
set for µe is more extensive than for µh because of the limited Vg

range accessible experimentally).
Figure 3, inset shows that, although the µe and µh are not

identical, their ratio is fairly constant at µe/µh = 0.83±0.01 (see
the Methods section). Novikov16 predicted µe/µh = 0.37 for an
impurity charge Z = 1; however, the asymmetry is expected to be
reduced when screening by conduction electrons is included.

As K-dosing increases and mobility decreases, the linear
behaviour of ⇥(Vg) (Fig. 2) associated with charged-impurity
scattering dominates, as predicted theoretically14. At the lowest
K-dosing level, sublinear behaviour is observed for large
|Vg � Vg,min| as anticipated. The dependence of the conductivity
on carrier density n ⇧ |Vg –Vg,min| is expected to be ⇥ ⇧ na with
a = 1 for charged impurities and a < 1 for short-range and
ripple scattering (see the Supplementary Information). Adding
conductivities in inverse according to Matthiessen’s rule indicates
that scattering other than by charged impurities will dominate
at large n, with the crossover occurring at larger n as nimp is
increased14. A previous study3 also found more linear ⇥(Vg) for
devices with lower mobility. Thus, our data indicate that the
variation in observed field-e�ect mobilities of graphene devices
is determined by the level of unintentional charged impurities.

We now examine the shift of the curves in Vg. Figure 4
shows Vg,min as a function of 1/µe. Run 1 di�ers from runs 2–4,
presumably owing to irreversible changes as potassium reacts with
charge traps on silicon oxide and/or edges and defects of the
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It is widely assumed that the dominant source of scattering in graphene is charged impurities in a

substrate. We have tested this conjecture by studying graphene placed on various substrates and in high-!
media. Unexpectedly, we have found no significant changes in carrier mobility either for different

substrates or by using glycerol, ethanol, and water as a top dielectric layer. This suggests that

Coulomb impurities are not the scattering mechanism that limits the mean free path attainable for

graphene on a substrate.

DOI: 10.1103/PhysRevLett.102.206603 PACS numbers: 72.10.!d, 72.15.Lh

Graphene continues to attract massive interest, espe-
cially as a conceptually new electronic system [1]. One
of the first but still unanswered questions about the elec-
tronic properties of graphene has been the question about
the dominant source of scattering. What kind of impurities
limits its mobility " to typical values of"10 000 cm2=Vs
which are currently achievable for graphene deposited on a
substrate? The limited mobility severely hinders the search
for new phenomena and device applications and, without
knowing the source of scattering, it is difficult to develop
strategies for improving graphene’s quality.

Immediately after the observation of the field effect in
graphene [2], it was pointed out that the linear changes in
its conductivity# as a function of gate voltage Vg or carrier
concentration n could not be understood within the stan-
dard $ approximation because of the linear density of states
in single-layer graphene [3]. On the other hand, the linear n
dependence could naturally be explained by charged im-
purities [3,4], which seemed an obvious candidate for
being dominant scatterers in the one-atom-thick system
unprotected from immediate environment and prone to
chemical doping [5]. This conjecture agrees with the ex-
periment on doping of graphene with potassium, in which
" decreased in the manner prescribed by theory [6], and
the recent measurements that show a drastic increase in "
for suspended samples [7]. Moreover, there is broad con-
sensus that electron and hole puddles at the neutrality point
(NP) [8] are caused by a background electrostatic potential
and, therefore, it is tempting to attribute the puddles and
the dominant scatterers to the same origin [4]. Still, there
have been some unsettling observations that do not allow
this straightforward explanation to become universally
accepted. Among them is the fact that thermal annealing
allows large shifts of the NP which are often not accom-
panied by any significant changes in " (unless the initial
mobility is very low) [5]. Such behavior has been observed

by many groups. Furthermore, single-layer and bilayer
graphene exhibit similar values of " [1], whereas
Coulomb impurities scatter differently in these materials
(because of their different density of states), and the same
impurity concentration should result in different ", the
unsettling fact that remains unexplained.
In this Letter, we address the problem of dominant

scatterers in graphene by employing two approaches.
First, we point out that a common denominator in transport
experiments on cleaved graphene has been the use of
oxidized Si wafers, and the removal of the substrate has
led to much higher " [7]. This seems to suggest that
impurities are in silicon oxide. To this end, we have studied
devices placed on a number of different substrates but
found the same typical " as for graphene on SiO2.
Second, the strength of scattering by charged impurities
should strongly depend on dielectric environment [3,4]. If
ionized impurities were the limiting scatterers in today’s
standard devices with "> 5000 cm2=Vs, by covering
them with glycerol (dielectric constant ! # 45), ethanol
(#25), or water (#80)," should have increased by at least
an order of magnitude, reaching above 100 000 cm2=Vs.
However, we observed only small changes in " (typically,
less than 30%), which shows that charged impurities are
not the primary source of scattering.
The devices reported below were prepared from single-

layer graphene deposited on various surfaces including
SiO2, polymethylmethacrylate (PMMA), spin-on glass
(SOG), bismuth strontium calcium copper oxide
(BSCCO), mica, and boron nitride. In the case of SiO2,
SOG, and PMMA, we used the standard procedure [2,5] to
fabricate micron-sized Hall bar devices. PMMA and SOG
were 100 nm thick, spun on top of an oxidized Si wafer
(200 nm SiO2) and cross-linked [9]. In the case of the other
materials, we first prepared their crystallites (10–50 nm
thick) on top of an oxidized Si wafer (300 nm SiO2) by
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mechanical cleavage and then deposited graphene further
on top (insets of Fig. 1). Figure 1(a) plots examples of the
electric field effect observed in graphene on different sub-
strates (for each new material, at least three devices were
measured). At high n, the shown resistivities ! vary by a
factor of 4, yielding the same difference in ". To be
specific, for typical n ! 2" 1012 cm#2, the field-effect
mobility "FE ¼ #=ne is !0:25, 0.45, and 0:8 m2=Vs for
the mica, SiO2, and PMMA devices in Fig. 1(a), respec-
tively. Alternatively, we could use the expression ! ¼
1=ne"L þ !S to discriminate between long- and short-
range scattering that are described by constant "L and
excess resistivity !S (both independent of n) [10]. The
latter analysis yields "L ! 0:25, 0.6, and 1:1 m2=Vs and
!S ! 40, 110, and 60 ! for mica, SiO2, and PMMA,
respectively. The variations in transport characteristics
shown in Fig. 1(a) are well within the sample-to-sample
variations typically observed for graphene-on-SiO2 de-
vices [1,11]. The only reproducible difference between
the different substrates was that, for graphene on PMMA
and SOG, the NP was always close to zero Vg (without
annealing) and the peaks were sharper than for the other
substrates. It was generally possible to shift the NP to zero
Vg by in situ annealing in He at 450 K, which as a rule did
not result in notable changes unless the initial " was low
(<0:3 m2=Vs).

An alternative way to assess the electronic quality was to
apply magnetic field B and measure the Hall mobility
"H ¼ !xy=!xxB where !xx and !xy are the longitudinal
and Hall resistivities, respectively. Away from the NP,
"H ¼ "FE according to both theory and experiment (see
below). This approach was particularly suitable for gra-
phene on BSCCO and mica, which exhibited large hys-
teresis as a function of Vg. Figures 1(b) and 1(c) show !xx

and !xy which were measured for a device with graphene
on both SiO2 and BSCCO [inset of Fig. 1(c)]. "H is given
by the field at which !xy ¼ !xx, yielding "H !
0:4 m2=Vs for both substrates.
Our efforts briefly described above show that the limited

" reported for graphene on SiO2 are not due to charged
impurities in the substrate as often speculated. However,
the observed indifference with respect to substrates does
not rule out charged impurities as the dominant source of
scattering, because the experiments used similar micro-
fabrication procedures and, in principle, one can imagine
the same concentration of charged impurities always
trapped underneath graphene [12]. To address the latter
possibility, we have studied the influence of dielectric
screening [13] on graphene’s ".
Figure 2(a) plots the field effect in graphene on top of

SiO2, which was measured first in He atmosphere ($ ! 1),
then covered with a small droplet of glycerol ($ ! 42 in
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FIG. 1 (color online). Effect of the substrate on electron trans-
port in graphene. (a) Electric field effect for graphene on top of
SiO2, mica, and PMMA. In each case, the induced carrier
concentrations n were related to Vg through the gate capacitance
[2] found by using Hall measurements. Positive and negative n
correspond to electrons and holes, respectively. (b),(c) !xx and
!xy for graphene on BSCCO and SiO2, respectively. These
measurements were done at zero Vg for the device made as
shown schematically in (c): graphene extends over the edge of a
thin BSCCO crystal to cover SiO2. Upper inset: Optical micro-
graph of a graphene-on-BSCCO device. The central area is a
BSCCO crystal on top of an oxidized Si wafer. Graphene is
etched in the Hall bar geometry as indicated by the black lines on
the left (in order to see the weak contrast due to graphene, we do
not show such lines on the right). The width of the Hall bar is
1 "m.
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FIG. 2 (color online). Dielectric screening by high-$ media.
(a) Graphene in a helium atmosphere (red curve) and after
covering it with a thin layer of glycerol at room T (blue curve).
The significant changes in the peak position and its width are not
accompanied by the tenfold increase in ", which would be
expected for Coulomb scatterers [4,15]. The observed changes
were even smaller for higher-" devices. (b) Another graphene
device in ethanol and helium (inset) at room temperature T.
Simultaneous measurements of !xx and !xy (blue curve and red
curve, respectively) allow us to find n ¼ B=!xye and "H ¼
!xy=B!xx (see Fig. 3). Note that the experiments in ethanol
were done by using the liquid gate so that one can imagine
additional scatterers induced in the double layer by gate voltage.
First, it is rather unlikely that the number of these scatterers
exactly compensates the effect of dielectric screening and does
this for all n. Second, the experiments using glycerol and the
standard gating make this explanation even less likely.
Nevertheless, let us mention that this doping effect can exist
and was observed when we used a polymer electrolyte contain-
ing LiClO4. In this case," did not stay constant but reduced very
rapidly as / 1=n.
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mechanical cleavage and then deposited graphene further
on top (insets of Fig. 1). Figure 1(a) plots examples of the
electric field effect observed in graphene on different sub-
strates (for each new material, at least three devices were
measured). At high n, the shown resistivities ! vary by a
factor of 4, yielding the same difference in ". To be
specific, for typical n ! 2" 1012 cm#2, the field-effect
mobility "FE ¼ #=ne is !0:25, 0.45, and 0:8 m2=Vs for
the mica, SiO2, and PMMA devices in Fig. 1(a), respec-
tively. Alternatively, we could use the expression ! ¼
1=ne"L þ !S to discriminate between long- and short-
range scattering that are described by constant "L and
excess resistivity !S (both independent of n) [10]. The
latter analysis yields "L ! 0:25, 0.6, and 1:1 m2=Vs and
!S ! 40, 110, and 60 ! for mica, SiO2, and PMMA,
respectively. The variations in transport characteristics
shown in Fig. 1(a) are well within the sample-to-sample
variations typically observed for graphene-on-SiO2 de-
vices [1,11]. The only reproducible difference between
the different substrates was that, for graphene on PMMA
and SOG, the NP was always close to zero Vg (without
annealing) and the peaks were sharper than for the other
substrates. It was generally possible to shift the NP to zero
Vg by in situ annealing in He at 450 K, which as a rule did
not result in notable changes unless the initial " was low
(<0:3 m2=Vs).

An alternative way to assess the electronic quality was to
apply magnetic field B and measure the Hall mobility
"H ¼ !xy=!xxB where !xx and !xy are the longitudinal
and Hall resistivities, respectively. Away from the NP,
"H ¼ "FE according to both theory and experiment (see
below). This approach was particularly suitable for gra-
phene on BSCCO and mica, which exhibited large hys-
teresis as a function of Vg. Figures 1(b) and 1(c) show !xx

and !xy which were measured for a device with graphene
on both SiO2 and BSCCO [inset of Fig. 1(c)]. "H is given
by the field at which !xy ¼ !xx, yielding "H !
0:4 m2=Vs for both substrates.
Our efforts briefly described above show that the limited

" reported for graphene on SiO2 are not due to charged
impurities in the substrate as often speculated. However,
the observed indifference with respect to substrates does
not rule out charged impurities as the dominant source of
scattering, because the experiments used similar micro-
fabrication procedures and, in principle, one can imagine
the same concentration of charged impurities always
trapped underneath graphene [12]. To address the latter
possibility, we have studied the influence of dielectric
screening [13] on graphene’s ".
Figure 2(a) plots the field effect in graphene on top of

SiO2, which was measured first in He atmosphere ($ ! 1),
then covered with a small droplet of glycerol ($ ! 42 in
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port in graphene. (a) Electric field effect for graphene on top of
SiO2, mica, and PMMA. In each case, the induced carrier
concentrations n were related to Vg through the gate capacitance
[2] found by using Hall measurements. Positive and negative n
correspond to electrons and holes, respectively. (b),(c) !xx and
!xy for graphene on BSCCO and SiO2, respectively. These
measurements were done at zero Vg for the device made as
shown schematically in (c): graphene extends over the edge of a
thin BSCCO crystal to cover SiO2. Upper inset: Optical micro-
graph of a graphene-on-BSCCO device. The central area is a
BSCCO crystal on top of an oxidized Si wafer. Graphene is
etched in the Hall bar geometry as indicated by the black lines on
the left (in order to see the weak contrast due to graphene, we do
not show such lines on the right). The width of the Hall bar is
1 "m.
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FIG. 2 (color online). Dielectric screening by high-$ media.
(a) Graphene in a helium atmosphere (red curve) and after
covering it with a thin layer of glycerol at room T (blue curve).
The significant changes in the peak position and its width are not
accompanied by the tenfold increase in ", which would be
expected for Coulomb scatterers [4,15]. The observed changes
were even smaller for higher-" devices. (b) Another graphene
device in ethanol and helium (inset) at room temperature T.
Simultaneous measurements of !xx and !xy (blue curve and red
curve, respectively) allow us to find n ¼ B=!xye and "H ¼
!xy=B!xx (see Fig. 3). Note that the experiments in ethanol
were done by using the liquid gate so that one can imagine
additional scatterers induced in the double layer by gate voltage.
First, it is rather unlikely that the number of these scatterers
exactly compensates the effect of dielectric screening and does
this for all n. Second, the experiments using glycerol and the
standard gating make this explanation even less likely.
Nevertheless, let us mention that this doping effect can exist
and was observed when we used a polymer electrolyte contain-
ing LiClO4. In this case," did not stay constant but reduced very
rapidly as / 1=n.
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Mobility limited by 
Coulomb scatterers

the liquid state at room temperature T and! 65 in the solid
state at 220 K) and measured again. The measurements
were done in the standard geometry using the backgate
[14]. In Fig. 2(a) we have intentionally chosen to show one
of our lowest quality devices (!L ! 0:5 and 0:35 m2=Vs
for electrons and holes, respectively; "S ! 80" 20 !), in
which the influence of # is clearly visible. One can see that
glycerol significantly improved the device’s characteris-
tics, making the peak in " narrower, more symmetric, and
shifting it towards zero Vg. The features are consistent with
the dielectric screening of charged impurities and electron-
hole puddles. On the other hand, we have not observed the
expected increase in! by a factor of 10, which should have
confirmed that charged impurities are the limiting scatter-
ers. Note that the above factor takes into account the
additional screening by graphene’s charge carriers [4,15]
and, without this screening, even greater enhancements
in ! would be expected. For the device covered with
glycerol, the curve in Fig. 2(a) yields "S ! 100 ! and
!L increases to !0:8 ð0:7Þ m2=V s for electrons (holes).
This increase in ! by a factor of 1.6 (2) was the largest we
have ever observed. For higher quality devices, typical
increases in ! due to glycerol did not exceed 30%.

To corroborate these observations, we also used ethanol
(# ! 25 at 300 K). In this case, it was difficult to use the
backgate because of leakage currents, and we have found it
more convenient to apply voltage directly to the liquid so
that liquid-gate voltage Vlg falls across a high-capacitance
double layer at the graphene-ethanol interface, similar to
the technique used for carbon nanotubes [16]. The capaci-
tance of the double layer is a function of T, Vlg, and the

amount of water and other impurities dissolved in ethanol
and, therefore, in order to translate Vlg into n, we simulta-

neously measured "xy. Away from the NP (n%1012 cm&2),
"xy ¼ B=ne, and data such as shown in Fig. 2(b) allow us
to find both n and Hall mobility !H. We have first verified
the equivalence of !H and !FE in a He atmosphere and
found good agreement between the two types of measure-
ments [Fig. 3(a)]. For graphene in ethanol, one can see that
!H goes higher and in parallel with respect to the mea-
surements in He, yielding an increase in !L from !0:8 to
0:9 m2=Vs and little change in "S ! 190" 20 !. We
carried out such experiments for several devices and al-
ways observed higher! in ethanol, with increases between
few and 50% depending on graphene’s initial quality. The
higher the quality, the smaller were the typical increases, in
agreement with our observations for glycerol.

Finally, ethanol has also offered the opportunity to sig-
nificantly change # in situ by varying T. Figure 3(b) shows
!H for two devices immersed in ethanol as a function of T.
As T decreases, # increases, reaching! 55 near the freez-
ing point at 160 K. This increase in #was not accompanied
by any significant changes in ! for all n % 1( 1012 cm&2

assessable through the Hall-mobility measurements, which
again disagrees with the Coulomb scattering mechanism

[see the theory curve in Fig. 3(b)]. Furthermore, we studied
several devices immersed in deionized water and covered
with a liquid crystal MLC6204 (# ! 44). In the latter case,
we used the backgate as for glycerol. The experiments in
water required thorough electrical isolation and proved to
be more difficult due to evaporation, when the backgate
was used, and due to electrical erosion for the liquid gating.
Only marginal changes in ! were observed for these
dielectrics, too. This shows that Coulomb scatterers can
certainly influence ! but do not limit it. Indeed, if charged
impurities were limiting scatterers, ! should have in-
creased by a factor of 5 in ethanol, 10 in MLC6204, and
20 in water [4,15].
To summarize, no one doubts that charged impurities are

present in graphene devices. They are certainly responsible
for the observed chemical shift of the NP and, at least
partially, for electron-hole puddles. Also, one can imagine
that Coulomb scatterers are dominant in some devices
(especially those exhibiting anomalously low !)
100–1000 cm2=V s as reported by several groups). In this
case, high-# media are expected to increase their ! by an
order of magnitude and make the resistance peak much
sharper, similar to the behavior shown in Fig. 2(a) but with
more pronounced changes. On the other hand, our results
clearly show that Coulomb scatterers are not the impurities
that limit ! in typical devices with !) 10 000 cm2=V s
[1,2,5–7,10,11].
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FIG. 3 (color online). Changes in ! induced by ethanol.
(a) Behavior of !H and !FE for the device shown in Fig. 2(b).
Measurements of ! are generally reliable only if !H ! !FE.
Inside the region around the NP, which is indicated by the gray
area, apparent !FE diverges because Vg passes through zero
whereas apparent !H goes to zero because "xy passes through
zero. The small difference between !H and !FE observed out-
side the gray area is attributed to a macroscopic inhomogeneity
that leads to slightly different "xy for different pairs of Hall
contacts. (b) Varying dielectric screening in situ. ! as a function
of T for two devices immersed in ethanol (symbols). Dielectric
constant # of ethanol increases from !25 to 55 with decreasing
T. The solid curve is the T dependence expected in the case of
dominant Coulomb scatterers [4,15]. The measurements are
presented for n ¼ 3( 1012 cm&2, but there is little difference
for other assessable n > 1( 1012 cm&2. For the sample that
shows a slight increase in !H at lower T, we have found [by
fitting the curves such as shown in Fig. 3(a)] that this increase is
related to changes in !L rather than "S.
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the liquid state at room temperature T and! 65 in the solid
state at 220 K) and measured again. The measurements
were done in the standard geometry using the backgate
[14]. In Fig. 2(a) we have intentionally chosen to show one
of our lowest quality devices (!L ! 0:5 and 0:35 m2=Vs
for electrons and holes, respectively; "S ! 80" 20 !), in
which the influence of # is clearly visible. One can see that
glycerol significantly improved the device’s characteris-
tics, making the peak in " narrower, more symmetric, and
shifting it towards zero Vg. The features are consistent with
the dielectric screening of charged impurities and electron-
hole puddles. On the other hand, we have not observed the
expected increase in! by a factor of 10, which should have
confirmed that charged impurities are the limiting scatter-
ers. Note that the above factor takes into account the
additional screening by graphene’s charge carriers [4,15]
and, without this screening, even greater enhancements
in ! would be expected. For the device covered with
glycerol, the curve in Fig. 2(a) yields "S ! 100 ! and
!L increases to !0:8 ð0:7Þ m2=V s for electrons (holes).
This increase in ! by a factor of 1.6 (2) was the largest we
have ever observed. For higher quality devices, typical
increases in ! due to glycerol did not exceed 30%.

To corroborate these observations, we also used ethanol
(# ! 25 at 300 K). In this case, it was difficult to use the
backgate because of leakage currents, and we have found it
more convenient to apply voltage directly to the liquid so
that liquid-gate voltage Vlg falls across a high-capacitance
double layer at the graphene-ethanol interface, similar to
the technique used for carbon nanotubes [16]. The capaci-
tance of the double layer is a function of T, Vlg, and the

amount of water and other impurities dissolved in ethanol
and, therefore, in order to translate Vlg into n, we simulta-

neously measured "xy. Away from the NP (n%1012 cm&2),
"xy ¼ B=ne, and data such as shown in Fig. 2(b) allow us
to find both n and Hall mobility !H. We have first verified
the equivalence of !H and !FE in a He atmosphere and
found good agreement between the two types of measure-
ments [Fig. 3(a)]. For graphene in ethanol, one can see that
!H goes higher and in parallel with respect to the mea-
surements in He, yielding an increase in !L from !0:8 to
0:9 m2=Vs and little change in "S ! 190" 20 !. We
carried out such experiments for several devices and al-
ways observed higher! in ethanol, with increases between
few and 50% depending on graphene’s initial quality. The
higher the quality, the smaller were the typical increases, in
agreement with our observations for glycerol.

Finally, ethanol has also offered the opportunity to sig-
nificantly change # in situ by varying T. Figure 3(b) shows
!H for two devices immersed in ethanol as a function of T.
As T decreases, # increases, reaching! 55 near the freez-
ing point at 160 K. This increase in #was not accompanied
by any significant changes in ! for all n % 1( 1012 cm&2

assessable through the Hall-mobility measurements, which
again disagrees with the Coulomb scattering mechanism

[see the theory curve in Fig. 3(b)]. Furthermore, we studied
several devices immersed in deionized water and covered
with a liquid crystal MLC6204 (# ! 44). In the latter case,
we used the backgate as for glycerol. The experiments in
water required thorough electrical isolation and proved to
be more difficult due to evaporation, when the backgate
was used, and due to electrical erosion for the liquid gating.
Only marginal changes in ! were observed for these
dielectrics, too. This shows that Coulomb scatterers can
certainly influence ! but do not limit it. Indeed, if charged
impurities were limiting scatterers, ! should have in-
creased by a factor of 5 in ethanol, 10 in MLC6204, and
20 in water [4,15].
To summarize, no one doubts that charged impurities are

present in graphene devices. They are certainly responsible
for the observed chemical shift of the NP and, at least
partially, for electron-hole puddles. Also, one can imagine
that Coulomb scatterers are dominant in some devices
(especially those exhibiting anomalously low !)
100–1000 cm2=V s as reported by several groups). In this
case, high-# media are expected to increase their ! by an
order of magnitude and make the resistance peak much
sharper, similar to the behavior shown in Fig. 2(a) but with
more pronounced changes. On the other hand, our results
clearly show that Coulomb scatterers are not the impurities
that limit ! in typical devices with !) 10 000 cm2=V s
[1,2,5–7,10,11].
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FIG. 3 (color online). Changes in ! induced by ethanol.
(a) Behavior of !H and !FE for the device shown in Fig. 2(b).
Measurements of ! are generally reliable only if !H ! !FE.
Inside the region around the NP, which is indicated by the gray
area, apparent !FE diverges because Vg passes through zero
whereas apparent !H goes to zero because "xy passes through
zero. The small difference between !H and !FE observed out-
side the gray area is attributed to a macroscopic inhomogeneity
that leads to slightly different "xy for different pairs of Hall
contacts. (b) Varying dielectric screening in situ. ! as a function
of T for two devices immersed in ethanol (symbols). Dielectric
constant # of ethanol increases from !25 to 55 with decreasing
T. The solid curve is the T dependence expected in the case of
dominant Coulomb scatterers [4,15]. The measurements are
presented for n ¼ 3( 1012 cm&2, but there is little difference
for other assessable n > 1( 1012 cm&2. For the sample that
shows a slight increase in !H at lower T, we have found [by
fitting the curves such as shown in Fig. 3(a)] that this increase is
related to changes in !L rather than "S.
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Observation of Plasmarons in
Quasi-Freestanding Doped Graphene
Aaron Bostwick,1 Florian Speck,2 Thomas Seyller,2 Karsten Horn,3 Marco Polini,4*
Reza Asgari,5* Allan H. MacDonald,6 Eli Rotenberg1†
A hallmark of graphene is its unusual conical band structure that leads to a zero-energy band
gap at a single Dirac crossing point. By measuring the spectral function of charge carriers in
quasi-freestanding graphene with angle-resolved photoemission spectroscopy, we showed that at
finite doping, this well-known linear Dirac spectrum does not provide a full description of the
charge-carrying excitations. We observed composite “plasmaron” particles, which are bound
states of charge carriers with plasmons, the density oscillations of the graphene electron gas.
The Dirac crossing point is resolved into three crossings: the first between pure charge bands, the
second between pure plasmaron bands, and the third a ring-shaped crossing between charge
and plasmaron bands.

Electrons in metals and semiconductors
undergo many complex interactions, and
most theoretical treatments make use of the

quasiparticle approximation, in which independent
electrons are replaced by electron- and hole-like
quasiparticles interacting through a dynamically
screened Coulomb force. The details of the screen-
ing are determined by the valence band structure,
but the band energies are modified by the screened

interactions. A complex self-energy function de-
scribes the energy and lifetime renormalization of
the band structure resulting from this interplay.

Bohm and Pines (1) accounted for the short-
range interactions between quasiparticles through
the creation of a polarization cloud formed of vir-
tual electron-hole pairs around each charge carrier,
screening each from its neighbors. The long-range
interactionsmanifest themselves through plasmons,

which are collective charge density oscillations of
the electron gas that can propagate through the me-
diumwith their own band-dispersion relation. These
plasmons can in turn interact with the charges,
leading to strong self-energy effects. Lundqvist
predicted the presence of new composite particles
called plasmarons, formed by the coupling of the
elementary charges with plasmons (2). Their dis-
tinct energy bands should be observable with the
use of angle-resolved photoemission spectroscopy
(ARPES), but so far have been observed only by
optical (3, 4) and tunneling spectroscopies (5),
which probe the altered density of states.

1Advanced Light Source (ALS), E. O. Lawrence Berkeley
Laboratory, MS6-2100, Berkeley, CA 94720, USA. 2Lehrstuhl
für Technische Physik, Universität Erlangen-Nürnberg, Erwin-
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iore, I-56126 Pisa, Italy. 5School of Physics, Institute for Research
in Fundamental Sciences, Tehran 19395-5531, Iran. 6Depart-
ment of Physics, University of Texas at Austin, 1 University Sta-
tion C1600, Austin, TX 78712,USA.
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Fig. 1. (A) The Dirac energy spectrum of graphene in a non-interacting,
single-particle picture. (B and C) Experimental spectral functions of doped
graphene perpendicular and parallel to the GK direction of the graphene
Brillouin zone. The dashed lines are guides to the dispersion of the observed
hole and plasmaron bands. The red lines are at k = 0 (the K point of the

graphene Brillouin zone). (D to G) Constant-energy cuts of the spectral
function at different binding energies. (H) Schematic Dirac spectrum in the
presence of interactions, showing a reconstructed Dirac crossing. The samples
used for (B) to (G) were doped to n = 1.7 × 1013 cm−2. The scale bar in (C)
defines the momentum length scale in (B) to (G).
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Figure 2 Potassium doping of graphene. The conductivity (⇥) versus gate voltage
(Vg) curves for the pristine sample and three different doping concentrations taken
at 20 K in UHV. Data are from run 3. Lines are fits to equation (1), and the crossing of
the lines defines the points of the residual conductivity and the gate voltage at
minimum conductivity (⇥res, Vg,min) for each data set. The variation of ⇥min with
impurity concentration is shown in Fig. 5.

for measurements on a second device). On K-doping, (1) the
mobility decreases, (2) ⇥(Vg) becomes more linear, (3) the mobility
asymmetry for holes versus electrons increases, (4) the gate voltage
of minimum conductivity Vg,min shifts to more negative gate
voltage, (5) the width of the minimum conductivity region in Vg

broadens and (6) the minimum conductivity ⇥min decreases, at least
initially (see also Fig. 5 below and Supplementary Information). In
addition, (7) the linear ⇥(Vg) curves extrapolate to a finite ⇥res

at Vg,min. All of these features have been predicted7,8,13–15,17,18 for
charged-impurity scattering in graphene; we will discuss each in
detail below.

E�ects (4) and (5) were observed in a previous study in
which graphene was exposed to molecular species24. However, the
authors reported no changes in mobility, concluding that charged-
impurity scattering contributes negligibly to the mobility of
graphene. As discussed further in the Supplementary Information,
the previous experiments did not control the environment
and had low initial sample mobility. The failure to observe
e�ects (1)–(3) therefore is most likely due to the presence of
significant concentrations of both positively and negatively charged
impurities24,25, although the presence of water and resist residue19

may also be contributing factors24.
We first examine the behaviour of ⇥(Vg) at high carrier density.

For Vg not too near Vg,min, the conductivity can be fitted (Fig. 2) by

⇥(Vg) =
⇤

µecg

�
Vg �Vg,min

⇥
+⇥res

�µhcg

�
Vg �Vg,min

⇥
+⇥res

Vg > Vg,min

Vg < Vg,min

(2)

where µe and µh are the electron and hole field-e�ect mobilities,
cg is the gate capacitance per unit area, 1.15 ⇥ 10�4 F m�2, and
⇥res is the residual conductivity that is determined by the fit.
The mobilities are reduced by an order of magnitude during
each run, and recover on annealing. The electron mobilities
ranged from 0.081 to 1.32 m2 V�1 s�1 over the four runs, nearly
covering the range of mobilities reported so far in the literature
(⌅0.1–2 m2 V�1 s�1) (refs 2,3,6).
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Figure 3 Inverse of electron mobility 1/µe and hole mobility 1/µh versus
doping time. Experimental error determined from standard error propagation is less
than 4% (see the Methods section). Lines are linear fits to all data points. Inset: The
ratio of µe to µh versus doping time. Error bars represent experimental error in
determining the mobility ratio from the fitting procedure (see the Methods section).
Data are from run 3 (same as Fig. 2).

For uncorrelated scatterers, the mobility depends inversely on
the density of charged impurities, 1/µ ⇧ nimp, and equations (1)
and (2) are identical. We assume nimp varies linearly with
dosing time t as potassium is added to the device. Figure 3
shows 1/µe and 1/µh versus t , which are linear, in agreement
with 1/µ ⇧ nimp, hence verifying that equation (1) describes
charged-impurity scattering in graphene. We estimate the dosing
rate dnimp/dt = (2.6–3.2) ⇥ 1015 m�2 s�1 and the maximum
concentration of (1.4–1.8) ⇥ 10�3 potassium per carbon (see the
Supplementary Information). From this point, we parameterize the
data by 1/µe, proportional to the impurity concentration (the data
set for µe is more extensive than for µh because of the limited Vg

range accessible experimentally).
Figure 3, inset shows that, although the µe and µh are not

identical, their ratio is fairly constant at µe/µh = 0.83±0.01 (see
the Methods section). Novikov16 predicted µe/µh = 0.37 for an
impurity charge Z = 1; however, the asymmetry is expected to be
reduced when screening by conduction electrons is included.

As K-dosing increases and mobility decreases, the linear
behaviour of ⇥(Vg) (Fig. 2) associated with charged-impurity
scattering dominates, as predicted theoretically14. At the lowest
K-dosing level, sublinear behaviour is observed for large
|Vg � Vg,min| as anticipated. The dependence of the conductivity
on carrier density n ⇧ |Vg –Vg,min| is expected to be ⇥ ⇧ na with
a = 1 for charged impurities and a < 1 for short-range and
ripple scattering (see the Supplementary Information). Adding
conductivities in inverse according to Matthiessen’s rule indicates
that scattering other than by charged impurities will dominate
at large n, with the crossover occurring at larger n as nimp is
increased14. A previous study3 also found more linear ⇥(Vg) for
devices with lower mobility. Thus, our data indicate that the
variation in observed field-e�ect mobilities of graphene devices
is determined by the level of unintentional charged impurities.

We now examine the shift of the curves in Vg. Figure 4
shows Vg,min as a function of 1/µe. Run 1 di�ers from runs 2–4,
presumably owing to irreversible changes as potassium reacts with
charge traps on silicon oxide and/or edges and defects of the
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To  address  the  discussed  problem  of  “missing”  

e-e interactions, we have studied SdHO in suspended 

graphene devices (inset in Fig. 2a). They were fabricated 

by using the procedures described previously [15-17]. 

After current annealing, our devices exhibited record 

mobilities  ~1,000,000 cm
2
/Vs, and charge homogeneity 

n was better than 10
9
 cm

-2
 so that we observed the onset 

of SdHO in magnetic fields B 0.01T and the first 

quantum Hall plateau became clearly visible in B below 

0.1T (see Supplementary Information [18]). To extract the 

information  about  graphene’s  electronic  spectrum,  we 

employed the following routine. SdHO were measured at 

various B and n as a function of temperature (T). Their 

amplitude was then analyzed by using the standard 

Lifshitz-Kosevich (LK) formula T/sinh(2
2Tmc/eB), 

which holds for the Dirac spectrum [19] and allows one to 

find the effective cyclotron mass mc at a given n. This 

approach was previously employed for graphene on SiO2, 

and it was shown that, within experimental accuracy and 

for a range of n ~10
12

 cm
-2

, mc was well described by 

dependence mc =(n)
1/2

/ v*
F, which corresponds to the 

linear spectrum [11,12]. With respect to the earlier 

experiments, our suspended devices offer critical 

advantages. First, in the absence of a substrate, 

interaction-induced spectral changes are expected to be 

maximal because no dielectric screening is present. 

Second, the high quality of suspended graphene has 

allowed us to probe its spectrum over a wide range of n 

well below 10
12

 cm
-2

, which is essential as the spectral 

changes are expected to be logarithmic in n. Third, due to 

low n, we can approach the Dirac point within  

a few meV. This low-E regime, in which a major 

renormalization of the Dirac spectrum is expected, has  

previously been inaccessible.  

 

Figure 2a plots examples of T dependence of the 

SdHO amplitude at low n (for further examples of SdHO 

and their T dependence, see [18]). The curves are well 

described by the LK formula but the inferred mc are twice 

lower than expected if we assume that vF retains its 

conventional value v*
F. To emphasize this profound 

discrepancy with the earlier experiments, the dashed 

curves in Fig. 2a plot the T dependence expected under 

the assumption vF = v*
F. The SdHO would then have to 

decay twice faster with increasing T, which would result 

in a qualitatively different behavior of SdHO. From the 

measured mc we find vF 1.9 and 2.2x10
6
 m/s for the 

higher and lower |n| in Fig. 2a, respectively. We have 

carried out measurements of mc such as in Fig. 2a for 

many different n, and the extracted values are presented in 

Fig. 2b for one of the devices. For the linear spectrum, mc 

is expected to increase linearly with kF = (n)
1/2

. In 

contrast, the experiment clearly shows a super-linear 

behavior. Trying to fit the experimental curves in Fig. 2b 

with the linear dependence mc(kF), we find vF 2.5x10
6
 

m/s at n <10
10

 cm
-2

 and 1.5x10
6
 m/s for n >2x10

11
cm

-2
 as 

indicated by the dashed lines. The observed super-linear 

dependence of mc can be translated into vF varying with n. 

Fig. 2c replots the data in Fig. 2b in terms of 

vF =(n)
1/2

/mc which shows a diverging-like behavior of 

vF near the NP. This sharp increase in vF (by nearly a 

factor of 3 with respect to v*
F) contradicts to the linear 

model  of  graphene’s  spectrum  but  is  consistent  with  the 

spectrum reshaped by e-e interactions (Fig. 1). 

 
FIG. 2.  Probing  graphene’s  electronic  spectrum  through  SdHO.  (a) Symbols show examples of the T dependence of 

SdHO for n +1.4 and –7.0x10
10

 cm
-2

 where the sign  corresponds to electrons and holes, respectively. The dependence 

is well described by the LK formula (solid curves).  The dashed curves are the behavior expected for vF = v*
F (in the 

matching colors). The inset shows a scanning electron micrograph of one of our devices. The vertical graphene wire is 

2 m wide and suspended above an oxidized Si wafer being attached to Au/Cr contacts. Approximately a half of 300 

nm thick SiO2 was etched away underneath the graphene structure. (b) mc as a function of kF for the same device. The 

exponential dependence of SdHO’s amplitude on mc allows high accuracy in determining the cyclotron mass, as shown 

by the error bars. The dashed curves are the best linear fits mc n1/2
 at high and low n. The dotted line is the behaviour of 

mc expected for the standard value of vF = v*
F. Graphene’s spectrum renormalized due to e-e interactions is expected to 

result in the dependence shown by the solid curve. (c) mc re-plotted in terms of varying vF. The color scheme is to match 

the corresponding data in (b). 

First observation of a Log!
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SUPPLEMENTARY INFORMATION: 

Dirac cones reshaped by interaction effects in suspended graphene 

D. C. Elias et al 

#1. Experimental devices 

Graphene monolayers were obtained by micromechanical cleavage of graphite on top of an oxidized Si wafer [S1]. In 

this work, we specially selected long and narrow crystals (typically, 2 to 4 µm wide) which allowed us to avoid dry 

etching of graphene mesas. Two-terminal devices such as shown in Fig. 2 of the main text were then designed and 

fabricated by using standard lithography and deposition techniques. The 300 nm SiO2 layer was partially etched in a 

buffered HF solution to leave graphene hanging above the substrate. The metal leads (5 nm Cr followed by 100 nm of 

Au) remained not fully etched underneath and served as a mechanical support. These fabrication procedures are similar 

to those described in refs. S2-S5.  

 

The current annealing was performed in situ, in a liquid-helium bath by applying voltage between adjacent contacts. 

Current densities of ~1 mA/µm were necessary to heat suspended graphene locally to T >600
o
C [S5]. Our devices either 

fail or anneal after a minor (<1%) increase in applied voltage, which we believe is an indication that the real T of 

annealing could be even higher than suggested in ref. [S5].  

 

FIG S1. Our graphene devices. Left – Scanning electron micrograph of another suspended device, different from the 

one shown in Fig. 2a. Right – Typical behaviour of R(Vg) measured at 2K. The curves are shifted for clarity. The QHE 

in the two probe geometry is known to lead to plateaux in R at h/νe
2
. Such QHE plateaux are clearly seen in our devices 

below 0.1T. The dominant QHE plateau (filling factor ν = ±2) at R ≈12.8kΩ is first formed at negative gate voltages 

where µ is somewhat higher. Additional peaks at lower |Vg| correspond to ν = ±1 and indicate either spin or valley 

splitting. 

 

Figure S1 shows two-terminal resistance R as a function of gate voltage Vg in different magnetic fields B. We refer to 

our measurements as two-terminal because the supporting metal contacts overlap with the current path (Fig. S1), that is, 

they are invasive [S6,S7]. In this measurement geometry, we found little difference whether we used two- or four-probe 

measurement geometry because of the relatively small resistance of the metal leads.  

5 µm 

Shubnikov-deHaas oscillations
fitting: α = 0.5

Elias et al., arXiv:1104.1396 (2011)

B=0.01 T



fractional quantum Hall effect

B

lmfp< L/2 and the conductivity s!n1=2s , as expected for ballistic
transport (Fig. 1b, c). Furthermore the lowest carrier density, typi-
cally ns0< (2–10)3 109 cm22, is more than an order of magnitude
below that achieved in non-suspended samples, attesting to a much
smaller density inhomogeneity10. For non-ballistic samples (gra-
phene as well as 2DES in semiconductors), the sample quality is
usually characterized by the carrier mobility. In ballistic graphene
samples however, the value of mobility is meaningful only when it
is associated with the carrier density at which it is measured. For the
sample studiedhere, theDrudemobility,mD~s=nse, atns< 1010 cm22

is 260,000 cm2V21 s21, and exhibits the !ns
{1=2 dependence on

carrier density expected for ballistic devices (the field effect mobility
at the same density is mfe~

1
e
ds
dns

<200,000 cm2V{1s{1).

We studied the two-terminal magneto-transport in suspended
graphene samples at temperatures ranging from 1.2 K to 80K and
fields up to 12 T. The relation between magneto-resistance oscilla-
tions and the quantum Hall effect measured in two-terminal devices
is now well understood. It has been shown theoretically21 that, for
clean samples and low temperatures, the two-terminal conductance
displays plateaus at values G~n e2

h that are precisely the same as the
quantum Hall effect plateaus in the Hall conductance. In between
the plateaus the conductance is non-monotonic, depending on the
sample aspect ratio, W/L. In our devices where W. L, the conduc-
tance is expected to overshoot between plateaus, as is indeed
observed (Fig. 1d). Our two-terminal measurements reveal well-
defined plateaus associated with the anomalous quantum Hall effect
that appear already in fields below 1T. Above 2 T additional plateaus
develop at n521 and at n5 3, reflecting interaction-induced lifting
of the spin and valley degeneracy (Figs 2a and 3c). At low tempera-
tures and above 2 T, we observe a FQHE plateau at n521/3 which
becomes better defined with increasing field (Fig. 2a). When plotting
G versus n, the curves for all values of B collapse together (Fig. 2b),
and the plateaus at n521/3,21 and22 show accurate values of the
quantum Hall conductance.

The FQHE in semiconductor based 2DES reflects the formation of
an incompressible condensate, which can be described by a Laughlin
wavefunction22. In the composite-fermion generalization of the
FQHE4,23, a strongly correlated electron liquid in a magnetic field
can minimize its energy when the filling factor belongs to the series
n~ p

2sp+1 (with s and p integers) by forming weakly interacting com-
posite particles consisting of an electron and an even number of
captured magnetic flux lines. In this picture, the FQHE with
n5 1/3 corresponds to the integer quantum Hall effect with n5 1
for the composite particles consisting of one electron and two flux
lines. Excitations out of this state would produce fractionally charged
quasiparticles q*5 e/3, at an energy cost of the excitation gap, D1/3,
which provides a measure of the state’s robustness. It is not obvious a
priori that the correlated state leading to the FQHE for the relativistic
charge carriers in graphene is the same as that for the 2DES in semi-
conductors. In fact, several competing mechanisms have been dis-
cussed in the theoretical literature4–9, involving states that break
SU(4) symmetry as well as possible compressible, composite fermion
Fermi sea states7. Interestingly, despite the qualitative difference in
Landau level spectra between Dirac fermions in graphene and the
non-relativistic electrons in semiconductors, the n5 1/3 state is
formally expected to be the same in both cases4,5 but with the pseu-
dospin in graphene playing the role of the traditional electron spin in
the non-relativistic case. In order to distinguish experimentally
between the various mechanisms, it is useful to study the quasipar-
ticle excitation energy. In multi-lead transport measurements, such
as the Hall bar configuration, this can be obtained from the temper-
ature dependence of the longitudinal conductance. However, in a two-
terminal measurement it is not possible to separate the longitudinal
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Figure 1 | Characteristics of the suspended graphene devices. a, False-
colour scanning electronmicroscopy image of a typical suspended graphene
device. The two centre pads are used for both current and voltage leads, while
the outer pads are for structural support. The lead separation is L5 0.7mm,
and the typical graphene width is 1.5–3 mm. b, Carrier density dependence of
the resistivity of a suspended graphene device in zero field. The sharp gate
control of resistivity near the Dirac point indicates a low level of
perturbation from random potentials. c, Carrier density dependence of the
mean free path, lmfp~

s h
2e2(pns)

1=2, of the sample in b. Note that on the hole
branch, lmfp< L/2, as expected for ballistic junctions. d, Conductance of the
suspended graphene sample as a function of filling factor n for B5 1 T and
T5 1.2K. The plateaus seen at integer filling factors correspond to the
quantum Hall effect, as discussed in the text. The maxima in between the
plateaus agree with the theoretical expectations21 for a two-terminal
graphene junction with the geometry of our sample,W/L. 1. The quantum
Hall plateaus are better defined and narrower for the hole branch (negative
filling factors), indicating less scattering of hole carriers, consistent with the
lower resistance and longer mean free path on the hole branch, as shown in
b and c.
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Figure 2 | FQHE in suspended graphene. a, Gate voltage dependence of
resistance for the sample in Fig. 1, at indicatedmagnetic fields andT5 1.2K.
Already at 2 T we note the appearance of quantumHall plateaus outside the
non-interacting sequence, with R~ 1

v
h
e2 ,v~1,1=3. b, Hole conductance as a

function of filling factors for B5 6T, 8T, 10T and 12T at T5 1.2 K, showing

that the data collapse together. Quantum Hall plateaus with conductance
values G~v e2

h ,v~1,1=3, appear at the correct filling factors of n521,21/
3. c, Temperature dependence of the quantum Hall plateau features. The
plateaus at n521/3, 21 become smeared out with increasing T and
disappear for T. 20K.
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FIG. 1 (Color online) a) Honeycomb lattice with the two
sublattices in graphene. The red arrows are nearest neighbor
vectors. b) Tight-binding spectrum for the π−π∗ bands. The
horizontal line intersecting the K point corresponds to the
Fermi level at half-filling. c) Brillouin zone centered around
the Γ point. d) Dirac cone resulting from the linearization of
the tight-binding spectrum around theK points (blue circles).

they are always comparable. Thus, one expects Coulomb
interactions to be hugely enhanced in the presence of
these magnetic fields. In the 2D electron gas (2DEG)
this unusual state of affairs is what leads to the fractional
quantum Hall effect (FQHE) (Laughlin, 1983).

Given all these unusual circumstances, many questions
come to mind: How does screening of the long range
Coulomb interaction work in graphene? Can graphene
be described in terms a Lorentz invariant theory of quasi-
particles? Is the Coulomb impurity problem in graphene
the same as in a normal metal? In what circumstances
is graphene unstable towards many-body ground states?
Are there quantum phase transitions (Sachdev, 1999) in
the phase diagram of graphene? Do magnetic moments
form in graphene in the same way as they do in normal
metals? What is the ground state of graphene in high
magnetic fields?

The objective of this review is not to cover the basic
aspects of graphene physics, since this was already cov-
ered in a recent review (Castro Neto et al., 2009a), but
to try to address some of these questions while keeping
others open. The field of many-body physics will always
be an open field because a seemingly simple question al-
ways leads to another question even more profound and
harder to answer in a definitive way. In many ways, what
we have done here is to only scratch the surface of this
rich and important field, and leave open a large number
of interesting and unexplored problems.

II. CHARGE POLARIZATION AND LINEAR SCREENING

A. Tight-binding spectrum

In isolated form, carbon has six electrons in the orbital
configuration 1s22s22p2. When arranged in the honey-
comb crystal shown in Fig.1(a), two electrons remain in
the core 1s orbital, while the other orbitals hybridize,
forming three sp2 bonds and one pz orbital. The sp2

orbitals form the σ band, which contains three localized
electrons. The bonding configuration among the pz or-
bitals of different lattice sites generates a valence band, or
π-band, containing one electron, whereas the antibonding
configuration generates the conduction band (π∗), which
is empty.
From a kinetic energy point of view, the electronic sin-

gle particle dispersion in graphene is essentially defined
by the hopping of the electrons between nearest neighbor
carbon sites in the honeycomb lattice. Unlike square or
triangular lattices, the honeycomb lattice is spanned by
two different sets of Bravais lattice generators, forming
a two component basis with one set for each triangular
sublattice. Defining a label for electrons sitting in each
of the two sublattices, say A and B, the free hopping
Hamiltonian of graphene is

H0 = −t
∑

σ,〈ij〉

[

a†σ(Ri)bσ(Rj)
]

+ h.c.− µ
∑

σ,i

n̂σ(Ri),

(2.1)
where aσ(Ri), bσ(Ri) are fermionic operators for sublat-
tices A and B respectively, n̂σ(Ri) is the number op-
erator, σ =↑, ↓ labels the spin and 〈ij〉 means summa-
tion over nearest neighbors. The two energy scales in
the Hamiltonian are t ≈ 2.8 eV, which is the hopping
energy between nearest carbons, and µ, the chemical
potential away from half-filling [see Fig.1(b)]. In a ho-
mogeneous system, deviations from half-filling (µ = 0)
are routinely induced either by charge transfer from a
substrate (Giovannetti et al., 2008), by application of
a back gate voltage (Novoselov et al., 2005, 2004a,b),
or else by chemical doping (Calandra and Mauri,
2007; Grüneis et al., 2009; McChesney et al., 2007;
Uchoa et al., 2008b).
In momentum space the free Hamiltonian of graphene

is

H0 =
∑

p,σ

Ψ†
p,σ

(

−µ −tφp

−tφ∗
p −µ

)

Ψp,σ , (2.2)

where Ψp,σ = (ap,σ, bp,σ) is a two component spinor and

φp =
3

∑

i=1

eip·ai (2.3)

is a tight-binding function summed over the nearest
neighbor vectors

a1 = ax̂, a2 = −
a

2
x̂+ a

√
3

2
ŷ, a3 = −

a

2
x̂− a

√
3

2
ŷ ,

(2.4)

At wavelengths longer than the 
cyclotronic wavelength graphene becomes 

strongly interacting again!

Summary of part I:


