The dielectric constant of graphene

Bruno Uchoa Department of Physics and Astronomy University of Oklahoma

Electron-electron interactions

Coulomb energy Kinetic energy = strength of interactions

Dimensionless fine structure constant

Logarithmic singularity in the infrared! (no resumation)

Physical idea: Vacuum polarization

Polarization bubble

Creation and anihilation of particle-hole pairs!

When α =2.2 strong vacuum polarization effects can screen out interactions among quasiparticles!

Physical idea:

Creation and annihilation of particle-hole pairs

Self-energy $\begin{aligned} \alpha & \sum^{\star}(q) = \sum_{k} V(k)G(k+q)\Gamma(k,k+q,q) \\ \alpha & \uparrow & \alpha_{g} \\ \alpha & V^{*}(k) = \frac{V(k)}{1-V(k)\Pi(k)} = \frac{V(k)}{\varepsilon(k)} & \alpha_{g} \end{aligned}$ g $\omega < \varepsilon \qquad \varepsilon \\ \text{Expansion in the dressed interaction:} \quad \alpha^*(\mathbf{k}, \omega) = \frac{\varepsilon}{\hbar v \,\epsilon(\mathbf{k}, \omega)}$ $\omega <$

ω

Is the dressed fine structure constant a controlled expansion parameter?

V. N. Kotov, B. Uchoa, A. H. Castro Neto, PRB 78, 035119 (2008)

What about the experiments?

$$\chi(t, \mathbf{r}, \mathbf{r}') = \langle T[\hat{n}(t, \mathbf{r})\hat{n}(0, \mathbf{r}')] \rangle$$

Density-density correlation function

Inelastic X-ray diffraction $\chi(t, \mathbf{r}, \mathbf{r}') = \langle T[\hat{n}(t, \mathbf{r})\hat{n}(0, \mathbf{r}')] \rangle$

Polarization bubble

Building block of the response function!

Creation and anihilation of particle-hole pairs

Particle-hole pair

The response function

$$\chi = - () - + - () - () - + \dots = \frac{\Pi}{1 - V^* \Pi}$$

Problem: One cannot scatter X-rays in a single layer!

Argument:

For $t_{\perp} = 0$ the fermion propagator is kz independent

Coulomb 3D

Coulomb 2D

The polarizability of graphite and graphene are identical in higher order of perturbation theory!

Argument:

Leading term (order N)

 $\mathbf{\mathbf{\mathbf{A}}} = \int_{|\mathbf{q}_{P_1}| \ll |\mathbf{q}_{P_2}| \ll \dots \ll |\mathbf{q}_{P_N}|}^{\Lambda} d\mathbf{q}_1 \dots d\mathbf{q}_N \times f(\mathbf{q}_1, \dots, \mathbf{q}_N, \omega_1, \dots, \omega_N)$

$$t_{\perp} \ll \max(q, \omega) \ll |\mathbf{q}_{P_1}| \ll |\mathbf{q}_{P_2}| \ll ... \ll |\mathbf{q}_{P_N}|$$

Infrared cut-off!

 t_{\perp} gives subleading corrections to the polarization when $\max(\omega, \hbar v k) \gg t_{\perp}!$

Physical Argument:

Intra-layer interaction

Coulomb coupling between different layers

At energy scales much larger than $t_{\perp} \approx 0.4 \,\mathrm{eV}$

for $\max(\omega, \hbar v k) \gg t_{\perp} \approx 0.4 \,\mathrm{eV}$

The polarizability of graphite and graphene are approximately the same!

Charge susceptibility (of a single freestanding graphene sheet)

 $1 \qquad \mathcal{E}$

Graphite structure factor (infinite number of layers)

with 7 and 30 eV

The Effective Fine-Structure Constant of Freestanding Graphene Measured in Graphite

James P. Reed,¹ Bruno Uchoa,¹ Young Il Joe,¹ Yu Gan,¹ Diego Casa,² Eduardo Fradkin,¹ Peter Abbamonte¹*

Calibration of the data: f-sum rule

$$\int_{-\infty}^{\infty} \mathrm{d}\omega \,\omega \mathrm{Im}\Pi^{(1)}(k,\omega) = \pi \frac{N_e k^2}{m}$$

2 4 6 8

0

The effective fine structure constant

The effective fine structure constant

The effective fine structure constant

$$\frac{\alpha}{\epsilon(q \to 0, 0)} = 0.13 \approx 1/7$$

Polarization bubble (graphene)

Optical absorption edge

Polarization bubble (graphene)

Test charge + cloud (x-ray data) Q - 0.924 Q = 0.076 Q

$$Q(R) = \int_0^R \mathrm{d}^2 r \, \rho(\mathbf{r})$$

LETTERS

Charged-impurity scattering in graphene

J.-H. CHEN^{1,2,3}*, C. JANG^{1,2,3}*, S. ADAM^{2,3,4}, M. S. FUHRER^{1,2,3}, E. D. WILLIAMS^{1,2,3,5,6} AND M. ISHIGAMI^{2,3†‡}

inverse mobility

Adsorption of K atoms in graphene

Significant mobility change with concentration!

week ending 22 MAY 2009

Effect of a High-κ Environment on Charge Carrier Mobility in Graphene

L. A. Ponomarenko,¹ R. Yang,¹ T. M. Mohiuddin,¹ M. I. Katsnelson,² K. S. Novoselov,¹ S. V. Morozov,^{1,3} A. A. Zhukov,¹ F. Schedin,¹ E. W. Hill,¹ and A. K. Geim¹

Mobility is nearly insensitive to high-dielectric substrates!

liquid crystal MLC6204 ($\kappa \approx 44$)

Summary of part I:

Excitonic effects make Dirac fermions more polarizable for $\omega < \hbar v q$

Plasmarons

 $v \to v(1+\frac{\alpha}{4})\ln\left(\frac{\Lambda}{q}\right)$

Velocity renormalization in half filled graphene (no plasmon) is hard to see!

Summary

Shubnikov-deHaas oscillations

fitting: $\alpha = 0.5$

Summary of part I:

At wavelengths longer than the cyclotronic wavelength graphene becomes strongly interacting again!

fractional quantum Hall effect