Twisted graphene bilayers
 KITP - Graphene 2012

Pablo San José
IEM-CSIC (Madrid)

Collaborators

Jose González
IEM-CSIC (Madrid)

Paco Guinea
ICMM-CSIC (Madrid)

Modeling twisted bilayers

Simple stackings at low energy

AA bilayer

Monolayer

AB bilayer

Simple stackings at low energy

AA bilayer

Monolayer

AB bilayer

Simple stackings at low energy

AA bilayer

$$
\left(\Pi \equiv \pm k_{x}+i k_{y}\right)
$$

Monolayer

AB bilayer

Simple stackings at low energy

AA bilayer
Monolayer
AB bilayer

Simple stackings at low energy

AA bilayer
Monolayer
AB bilayer

Twisted bilayer

$$
L=\frac{a}{2 \sin \frac{\theta}{2}}
$$

θ

Gray: Top layer White: Bottom layer

Pink: AA stacking
Red: AB/BA stacking

Twisted bilayer

> Gray: Top layer White: Bottom layer

Pink: AA stacking
Red: AB/BA stacking

Twisted bilayer at low energy

J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007)

Twisted bilayer at low energy

J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007)

Twisted bilayer at low energy

J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007)

Twisted bilayer at low energy

J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007)

Twisted bilayer at low energy

J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007)

Twisted bilayer at low energy

\square

$H_{0}=v_{F}\left(\begin{array}{cccc}0 & \Pi_{+}^{\dagger} & 0 & 0 \\ \Pi_{+} & 0 & 0 & 0 \\ 0 & 0 & 0 & \Pi_{-}^{\dagger} \\ 0 & 0 & \Pi_{-} & 0\end{array}\right)$
J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007)

Twisted bilayer at low energy

+

$H=v_{F}\left(\begin{array}{cccc}0 & \Pi_{+}^{\dagger} & V_{A A}(\mathbf{r}) & V_{A B}(\mathbf{r}) \\ \Pi_{+} & 0 & V_{B A}(\mathbf{r}) & V_{A A}(\mathbf{r}) \\ V_{A A}^{\star}(\mathbf{r}) & V_{B A}^{\star}(\mathbf{r}) & 0 & \Pi_{-}^{\dagger} \\ V_{A B}^{\star}(\mathbf{r}) & V_{A A}^{\star}(\mathbf{r}) & \Pi_{-} & 0\end{array}\right)$

$$
V_{i j}(\mathbf{r})=\frac{\gamma_{1}}{3 v_{F}}\left(1+e^{i \mathrm{G}_{1} \cdot\left(\mathrm{r}-\mathrm{r}_{i j}^{(0)}\right)}+e^{i \mathrm{G}_{2} \cdot\left(\mathrm{r}-\mathrm{r}_{i j}^{(0)}\right)}\right)
$$

J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007)

Twisted bilayer at low energy

J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007)

Brillouin zone

- Two different classes, depending on the microscopic stacking

SE-even (gapped)
SE-odd (parabolic)
E. J. Mele. Phys. Rev. B 81, 161405 (2010)
E. J. Mele. arXiv:1112.2620 (2011)

Tunable gaps?? Let's see...

- Tight-binding model for SE-even and SE-odd lattices
- Overlap for two π orbitals separated by $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{\mathbf{2}}$

$$
\begin{aligned}
V(\mathbf{r}) & =\gamma_{0} \frac{x^{2}+y^{2}}{|\mathrm{r}|^{2}} e^{-\lambda\left(|\mathrm{r}|-a_{c c}\right)} \\
& +\gamma_{1} \frac{z^{2}}{|\mathrm{r}|^{2}} e^{-\lambda(|\mathrm{r}|-d)}
\end{aligned}
$$

- Range and number of neighbors are unconstrained

Tunable gaps?? Let's see...

- Tight-binding model for SE-even and SE-odd lattices
- Overlap for two π orbitals separated by $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{\mathbf{2}}$

$$
\begin{aligned}
V(\mathbf{r}) & =\gamma_{0} \frac{x^{2}+y^{2}}{|\mathrm{r}|^{2}} e^{-\lambda\left(|\mathrm{r}|-a_{c c}\right)} \\
& +\gamma_{1} \frac{z^{2}}{|\mathrm{r}|^{2}} e^{-\lambda(|\mathrm{r}|-d)}
\end{aligned}
$$

- Range and number of neighbors are unconstrained

But...

No gaps to be seen, anywhere!

Tunable gaps?? Let's see...

- Tight-binding model for SE-even and SE-odd lattices
- Overlap for two π orbitals separated by $\mathbf{r}=\mathbf{r}_{\mathbf{1}}-\mathbf{r}_{\mathbf{2}}$

$$
\begin{aligned}
V(\mathbf{r}) & =\gamma_{0} \frac{x^{2}+y^{2}}{|\mathrm{r}|^{2}} e^{-\lambda\left(|\mathrm{r}|-a_{c c}\right)} \\
& +\gamma_{1} \frac{z^{2}}{|\mathrm{r}|^{2}} e^{-\lambda(|\mathrm{r}|-d)}
\end{aligned}
$$

- Range and number of neighbors are unconstrained

But...
No gaps to be seen, anywhere!

Tight-binding calculation

$$
V_{n m} \equiv\left\langle k+n G_{1}+m G_{2}\right| V|k\rangle
$$

SE-odd

Tight-binding calculation

$$
V_{n m} \equiv\left\langle k+n G_{1}+m G_{2}\right| V|k\rangle
$$

SE-even

Tight-binding calculation

$$
V_{n m} \equiv\left\langle k+n G_{1}+m G_{2}\right| V|k\rangle
$$

SE-even

Crystallography versus Moiré

SE-odd

Universality of the continuum limit

- Both SE-even and SE-odd have the same low angle physics

Valley-decoupled
J. M. B. Lopes dos Santos, N. M. R. Peres and A. H. Castro Neto. arXiv:1202.1088

Mele in tight-binding models

Electronic structure

Twisted bilayer at low energy

$H=v_{F}\left(\begin{array}{cccc}0 & \Pi_{+}^{\dagger} & V_{A A}(\mathbf{r}) & V_{A B}(\mathbf{r}) \\ \Pi_{+} & 0 & V_{B A}(\mathbf{r}) & V_{A A}(\mathbf{r}) \\ V_{A A}^{\star}(\mathbf{r}) & V_{B A}^{\star}(\mathbf{r}) & 0 & \Pi_{-}^{\dagger} \\ V_{A B}^{\star}(\mathbf{r}) & V_{A A}^{\star}(\mathbf{r}) & \Pi_{-} & 0\end{array}\right)$
$\Pi_{ \pm}=-i \partial_{x}+\partial_{y} \mp i \frac{\Delta K}{2} ; \Delta K=2 K \sin \frac{\theta}{2}$

Twisted bilayer at low energy

$H=v_{F}\left(\begin{array}{cccc}0 & \Pi_{+}^{\dagger} & V_{A A}(\mathbf{r}) & V_{A B}(\mathbf{r}) \\ \Pi_{+} & 0 & V_{B A}(\mathbf{r}) & V_{A A}(\mathbf{r}) \\ V_{A A}^{\star}(\mathbf{r}) & V_{B A}^{\star}(\mathbf{r}) & 0 & \Pi_{-}^{\dagger} \\ V_{A B}^{\star}(\mathbf{r}) & V_{A A}^{\star}(\mathbf{r}) & \Pi_{-} & 0\end{array}\right)$
$\Pi_{ \pm}=-i \partial_{x}+\partial_{y} \mp i \frac{\Delta K}{2} ; \Delta K=2 K \sin \frac{\theta}{2}$
Low energy saddle point

Twisted bilayer at low energy

$$
H=v_{F}\left(\begin{array}{cccc}
0 & \Pi_{+}^{\dagger} & V_{A A}(\mathbf{r}) & V_{A B}(\mathbf{r}) \\
\Pi_{+} & 0 & V_{B A}(\mathbf{r}) & V_{A A}(\mathbf{r}) \\
V_{A A}^{\star}(\mathbf{r}) & V_{B A}^{\star}(\mathbf{r}) & 0 & \Pi_{-}^{\dagger} \\
V_{A B}^{\star}(\mathbf{r}) & V_{A A}^{\star}(\mathbf{r}) & \Pi_{-} & 0
\end{array}\right)
$$

$$
\Pi_{ \pm}=-i \partial_{x}+\partial_{y} \mp i \frac{\Delta K}{2} ; \Delta K=2 K \sin \frac{\theta}{2}
$$

Low energy saddle point

G. Li, A. Luican, et al. Nat Phys, 6(2):109, 2010.

Twisted bilayer at low energy

$$
H=v_{F}\left(\begin{array}{cccc}
0 & \Pi_{+}^{\dagger} & V_{A A}(\mathbf{r}) & V_{A B}(\mathbf{r}) \\
\Pi_{+} & 0 & V_{B A}(\mathbf{r}) & V_{A A}(\mathbf{r}) \\
V_{A A}^{\star}(\mathbf{r}) & V_{B A}^{\star}(\mathbf{r}) & 0 & \Pi_{-}^{\dagger} \\
V_{A B}^{\star}(\mathbf{r}) & V_{A A}^{\star}(\mathbf{r}) & \Pi_{-} & 0
\end{array}\right)
$$

$\Pi_{ \pm}=-i \partial_{x}+\partial_{y} \mp i \frac{\Delta K}{2} ; \Delta K=2 K \sin \frac{\theta}{2}$

Fermi velocity suppression

J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007) A. Luican et al. Phys. Rev. Lett., 106, 126802, (2011)

Recurrent zero energy modes

- Magical angles θ_{c}^{n} with vanishing velocity at irregular intervals

Recurrent zero energy modes

- Magical angles θ_{c}^{n} with vanishing velocity at irregular intervals
- Almost flat band at $\theta=\theta_{c}^{n}$

Localized zero energy state

Locallized zero energy state

P. San-Jose, J. González and F. Guinea, arxiv:1110.2883

Locallized zero energy state

P. San-Jose, J. González and F. Guinea, arxiv:1110.2883
A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei. Phys. Rev. Lett., 106 (2011).

Non-Abelian fields

Why do zero-energy states arise?

Non-Abelian fields

Why do zero-energy states arise?

Non-Abelian fields

Why do zero-energy states arise?

Dirac Hamiltonian

$$
H=v_{F} \vec{\sigma} \cdot\left[\tau_{0} \overrightarrow{\mathbf{k}}-\hat{\overrightarrow{\mathbf{A}}}(\mathbf{r})\right]+v_{F} \hat{\Phi}(\mathbf{r})
$$

$$
H=v_{F}\left(\begin{array}{cccc}
0 & \Pi^{\dagger} & \tilde{V}_{A A}(\mathbf{r}) & \tilde{V}_{A B}(\mathbf{r}) \\
\Pi & 0 & \tilde{V}_{B A}(\mathbf{r}) & \tilde{V}_{A A}(\mathbf{r}) \\
\tilde{V}_{A A}^{\star}(\mathbf{r}) & \tilde{V}_{B A}^{\star}(\mathrm{r}) & 0 & \Pi^{\dagger} \\
\tilde{V}_{A B}^{\star}(\mathbf{r}) & \tilde{V}_{A A}^{\star}(\mathrm{r}) & \Pi & 0
\end{array}\right)
$$

Non-Abelian fields

- Why do zero-energy states arise?

Dirac Hamiltonian

$$
H=v_{F} \vec{\sigma} \cdot\left[\tau_{0} \overrightarrow{\mathbf{k}}-\hat{\overrightarrow{\mathbf{A}}}(\mathbf{r})\right]+v_{F} \hat{\Phi}(\mathbf{r})
$$

$$
\begin{aligned}
& \hat{A}_{x}=-\left(\begin{array}{cc}
0 & \tilde{V}_{A B}+\tilde{V}_{B A} \\
\tilde{V}_{A B}^{\star}+\tilde{V}_{B A}^{\star} & 0
\end{array}\right) \\
& \hat{A}_{y}=\left(\begin{array}{cc}
0 & i \tilde{V}_{A B}^{\star}-i \tilde{V}_{B A}^{\star} \\
-i \tilde{V}_{A B}+i \tilde{V}_{B A} & 0
\end{array}\right)
\end{aligned}
$$

$$
\hat{\Phi}=\left(\begin{array}{cc}
0 & \tilde{V}_{A A} \\
\tilde{V}_{A A}^{\star} & 0
\end{array}\right)
$$

Non-Abelian fields

- Why do zero-energy states arise?

Dirac Hamiltonian

$$
H=v_{F} \vec{\sigma} \cdot\left[\tau_{0} \overrightarrow{\mathbf{k}}-\hat{\overrightarrow{\mathbf{A}}}(\mathbf{r})\right]+v_{F} \hat{\Phi}(\mathbf{r})
$$

$$
\begin{aligned}
& \hat{A}_{x}=-\left(\begin{array}{cc}
0 & \tilde{V}_{A B}+\tilde{V}_{B A} \\
\tilde{V}_{A B}^{\star}+\tilde{V}_{B A}^{\star} & 0
\end{array}\right) \\
& \hat{A}_{y}=\left(\begin{array}{cc}
0 & i \tilde{V}_{A B}^{\star}-i \tilde{V}_{B A}^{\star} \\
-i \tilde{V}_{A B}+i \tilde{V}_{B A} & 0
\end{array}\right)
\end{aligned}
$$

$$
\hat{\Phi}=\left(\begin{array}{cc}
0 & \tilde{V}_{A A} \\
\tilde{V}_{A A}^{\star} & 0
\end{array}\right)
$$

Non-Abelian gauge field
Non-Abelian scalar field

[^0]
Non-Abelian fields

- Why do zero-energy states arise?

Dirac Hamiltonian

$$
H=v_{F} \vec{\sigma} \cdot\left[\tau_{0} \overrightarrow{\mathbf{k}}-\hat{\overrightarrow{\mathbf{A}}}(\mathbf{r})\right]+v_{F} \hat{\Phi}(\mathbf{r})
$$

$$
\begin{aligned}
& \hat{A}_{x}=-\left(\begin{array}{cc}
0 & \tilde{V}_{A B}+\tilde{V}_{B A} \\
\tilde{V}_{A B}^{\star}+\tilde{V}_{B A}^{\star} & 0
\end{array}\right) \\
& \hat{A}_{y}=\left(\begin{array}{cc}
0 & i \tilde{V}_{A B}^{\star}-i \tilde{V}_{B A}^{\star} \\
-i \tilde{V}_{A B}+i \tilde{V}_{B A} & 0
\end{array}\right)
\end{aligned}
$$

$$
\hat{\Phi}=\left(\begin{array}{cc}
0 & \tilde{V}_{A A} \\
\tilde{V}_{A A}^{\star} & 0
\end{array}\right)
$$

Non-Abelian gauge field
Non-Abelian scalar field
P. San-Jose, J. González and F. Guinea, arxiv:1110.2883

Origin of zero-energy bands

Origin of zero-energy bands

$1 \cdot \begin{array}{cc}0 & 200 \\ 1.0^{\circ} & 0.49^{\circ}\end{array}$

Origin of zero-energy bands

Confinement mechanism?

[^0]: P. San-Jose, J. González and F. Guinea, arxiv:1110.2883

