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Twisted bilayer

Pink: AA stacking
Red: AB/BA stacking

Gray: Top layer
White: Bottom layer
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Twisted bilayer at low energy
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Brillouin zone
Two different classes, depending on the microscopic stacking

SE-odd (parabolic)

K’1, K2

K’2, K1

E. J. Mele. Phys. Rev. B 81, 161405 (2010)
E. J. Mele. arXiv:1112.2620 (2011)

SE-even (gapped)

Folded Brillouin zone

K’1, K’2

K1, K2
with the translational symmetry of the commensuration cell.
The structure function for the !th layer, n!!r!"
=#m"$1%#"eiG! !,m·!r!−#!!,"" superposes the six plane waves of the
lowest star of reciprocal-lattice vectors G! !,m producing a
standing wave with maxima on atom sites and minima in
hexagon centers. A useful model for the interlayer coupling
potential is T!!r!"=C0 exp$C1n!r!"%, where n!r!"=n1+n2 and
C0 and C1 are constants; T! is a superlattice-periodic func-
tion with maxima for coincident sites and with exponential
suppression in regions that are out of interlayer registry. The
grayscale plot in Fig. 2 show the spatial distribution of T!!r!",
where C1 is determined by matching the decay of the hop-
ping amplitude between neighboring layer atoms as a func-
tion of small lateral offsets. This density plot shows that the
interlayer amplitudes between rotated layers have coherent
structures in the forms of fivefold rings !from overlapping
misaligned hexagons" arranged to form two-dimensional
space-filling patterns. SE-odd structures are symmetric under
threefold rotations while the SE-even structures retain a six-
fold symmetry. The separable form T!!r!"= f1!r!"f2!r!" allows
one to deduce a scaling rule for the Fourier coefficients:
t!G! "&!ae−b/Nc /Nc"#!"$1%f2!r!!"e−iG! ·r!!, where the sum is over
atomic sites in layer 1, a and b are constants, and Nc is the
number of graphene cells !per layer" in the commensuration
cell. For large Nc the prefactor decays as a power law of the
cell size reflecting the fraction of atomic sites in good inter-
layer registry while the sum decays quickly as a function of
Nc because of canceling phases in its argument.

The interlayer Hamiltonian can be expressed by a 3$3
array of scattering amplitudes derived from the t!G! "’s giving
the allowed transitions Km→Km!!%". Threefold symmetry re-
quires this matrix to have the form

V̂ps = 'V0 V1 V2

V2 V0 V1

V1 V2 V0
( ,

where the pseudopotential coefficients Vi are matrix elements
of T!. Completing the sum in Eq. !2" transforms this to the
sublattice !pseudospin" basis and gives the 2$2 interlayer
transition matrices Ĥint seen by the Dirac fermions. The low-
energy Hamiltonian for an SE-even bilayer is expressed as a
4$4 matrix !acting on the two sublattice and two layer de-
grees of freedom",

Ĥeven = )− i&ṽF'1 · ! Ĥint
+

!Ĥint
+ "† − i&ṽF'2 · !

* !3"

and for the SE-odd bilayer

Ĥodd = )− i&ṽF'1 · ! Ĥint
−

!Ĥint
− "† i&ṽF'2

! · !
* , !4"

where 'n are Pauli matrices acting in the sublattice pseu-
dospin basis of the nth layer and ṽF is the renormalized
Fermi velocity. The interlayer matrices Ĥint

( are

Ĥint
+ = Vei))ei*/2 0

0 e−i*/2 *, Ĥint
− = Vei))1 0

0 0
* . !5"

Ĥint
+ shows that interlayer motion of an electron for SE-even

faults involves an intravalley transition with a unitary trans-
formation of its !A ,B" sublattice amplitudes represented as
an xy rotation of its pseudospin through angle *. This angle
is not defined geometrically by the fault angle % but rather is
determined by the relative magnitudes of the three pseudo-
potential matrix elements Vi. By contrast interlayer motion
across a sublattice asymmetric fault requires an intervalley
transition through only the amplitudes on its dominant
!eclipsed" sublattice. The continuum model of Ref. 14 is re-
covered by setting Ĥint=0.

In either case, below an energy scale V the electronic
spectra deviate from the massless Dirac form and inherit cur-
vature from the interlayer coupling as shown in Fig. 3. V
+10 meV for commensurations at %=30° (8.213° with
Nc=7 graphene cells per layer in their commensuration cells.
Nevertheless the forms of these spectra apply generally to
any pair of commensuration partners. SE-odd faults mix the
degenerate Dirac bands gapping one pair on the scale V,
leaving a second pair of massive !curved" bands in contact at
E=0. By contrast, SE even structures are fully gapped where
the gap arises entirely from the pseudospin rotation in Eq.
!5". Indeed for *=0 these spectra consist of a pair of Dirac
cones offset in energy by a bonding-antibonding splitting and

FIG. 3. Low-energy electronic spectra for SE-odd and SE-even
faulted bilayers are illustrated using partner commensurations at
rotation angles %=21.787° !odd, left" and %=38.213° !even, right".
These spectra are symmetric under rotations in momentum space.
SE-odd faults have massive bands that contact at Fermi points !left"
and SE-even faults are gapped !right". The lower row gives the
spectrum for a Bernal bilayer !left" and for an AA bilayer, which
show related spectral properties.
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Tight-binding model for SE-even and 
SE-odd lattices

Overlap for two π orbitals separated by 
r=r1-r2

Range and number of neighbors are 
unconstrained

Tunable gaps?? Let’s see...

V (r) = γ0
x2 + y2

|r|2 e−λ(|r|−acc)

+ γ1
z2

|r|2 e
−λ(|r|−d)
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Valley-decoupled!

K2

K1

Fourier amplitudes of interlayer coupling.—To deter-
mine the hopping t?!!" as a function of the horizontal
shift !"#!r" we express it in the Slater-Koster parameters,
Vpp$!d" and Vpp%!d", where d is the distance between the

two atomic centers, d #
!!!!!!!!!!!!!!!!!
c20 $ !2

q
. For the d dependence

of Vpp$!d" and Vpp%!d" we used the parametrization of
Ref. [30]. The contribution of Vpp% turns out to be negli-
gible and t?!!" is proportional to t? # Vpp$!c0"; for ! #
a0=

!!!
3

p
, t?!!"=t? % 0:4. We have calculated !"#!r" nu-

merically for any angle of rotation. Using various symme-
tries and relations valid in the limit a0 & L (small angles)
we were able to derive the results of Table I. The values of
~tBA? !G" are equal and real, by symmetry, for G # 0, G #
'G1, and G # 'G1 'G2 and much smaller for all other
G vectors. The remaining Fourier amplitudes can be ex-
pressed in terms of ~tBA? !G".

Results and discussion.—In the absence of the interlayer
coupling, H?, states with energy close to zero occur at
k # '!K=2 in layer 1 and k # $!K=2 in layer 2. The
results of Table I imply that the states of momentum k in
layer 1 are coupled directly only to states of layer 2 of
momentum k, k$G1, and k$G1 $G2; conversely the

states of momentum k in layer 2 only couple to states k,
k'G1, and k'G1 'G2. To investigate the spectrum at
a momentum k close to zero energy, we truncated the
Hamiltonian to include only these six momentum values
(three for each layer) giving a 12( 12 matrix to diagonal-
ize. The geometry of the first Brillouin zone (FBZ) of the
superlattice (Fig. 1) implies that the states near the degen-
eracy point in either layer couple only to states of energies
)vF!K # )vFK ( 2 sin!&=2", where !K # j!Kj and
K # 4%=!3a0". This turns out to be the essential difference
between this problem and that of the unrotated bilayer. In
the latter, the degeneracy points of both layers occur at the
same momentum and the interlayer hopping couples two
doublets of zero energy states. In the present case we have
one doublet of zero energy states coupling to three pairs of
states at finite energies, )vF!K. As a result, the linear
dispersion near zero energy is retained. In Fig. 2 we plot
the energies of the states with smallest j'kj along two lines
in the FBZ; the parameters are t? # 0:27 eV [13] and & #
3:9* (i # 8, L # 36 "A), which give vF!K % 0:76 eV and
~t? # 0:11 eV.

The persistence of the Dirac cones can be understood by
considering the limit where ~t?=!vF!K" & 1 [in Fig. 2,
~t?=!vF!K" % 0:14]. In the vicinity of the degeneracy
point, say, of layer 1, k # '!K=2$ q, the Hamiltonian
H!k" has the form H!k" # H!'K=2" $ V!q" with V!q"
linear in q. In H!'K=2", which contains the interlayer
coupling, the doublet at zero energy couples with an ampli-
tude +~t? to six states (of layer 2) with energies )vF!K.
Using perturbation theory one can derive an effective
Hamiltonian in the space of the zero energy doublet by
considering the mixing of these six states in layer 2 to first
order in ~t?=!vF!K". The degeneracy is not lifted, although
there is a small shift in energy, '0 # 6~t2? sin!&=
2"=!vF!K". For small q we can treat V!q" as a perturbation
in the subspace of this doublet: the effective Hamiltonian
matrix has the form characteristic of a Dirac cone

 Heff #
'0 ~vFq,

~vFq '0

" #
;

with q # qx $ iqy. To second order in ~t?=vF!K, the
renormalized Fermi velocity is given by ~vF=vF #
1–9-~t?=!vF!K".2. This depression of the value of the
Fermi velocity ~vF relative to the value of SLG is a telltale

/2

/2

−∆ K

∆ K

+G1 G2
G1

G2

K∆

FIG. 1. First Brillouin zone of the superlattice centered at
midpoint between Dirac points K and K&. The zero energy
states of the two layers, k # '!K=2 and k # !K=2, marked
with /, are halfway to the zone boundary.

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1

( 3 ∆ K/2)k /∆ Kk /

E
(e

V
)

−0.4

−0.2

0

0.2

0.4

−0.3
−0.2
−0.1

0
0.1
0.2
0.3(a) (b)

FIG. 2 (color online). The energy 'k of
the two states with smaller j'kj for & #
3:9* (i # 8). (a) k varying from '!K to
!K (two vertices of the FBZ) along the
line passing the degeneracy points,
'!K=2 to !K=2; (b) along a line par-
allel to G2 passing !K=2.
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Crystallography versus Moiré

6

Figure 2: The t̃BA
⊥ (G)/t⊥ as a function of G′L: the dots

are numerically calculated values for a (m, r) = (10, 1)
structure, with θ = 3.15º, and the red line is the

integral of Eq. (19).

the in-plane motion is !vF∆K ∼ 0.190 θ, with the energy
in eV and the angle in degrees, and for small angles one
requires more plane waves than those used in Ref.1. The
physics of these small angle structures has been widely
discussed recently in the literature and we will use these
results to discuss it in the framework of the continuum
model. But, before that, we consider the calculation of
the Fourier amplitudes in other families of commensurate
structures.

B. Importance of r = 1 structures

In this section we show that, in the small angle limit,
the r = 1 structures are special, and determine the
physics of all types of commensurate structures.
In STM images20, Moiré patterns appear to satisfy the

following relation between period and angle of rotation:
L = a/ [2 sin(θ/2)]. For a general (m, r) structure,

sin

(
θ(m, r)

2

)
=

1

2

r√
3m2 + 3mr + r2

(20a)

L(m, r) = a
√
3m2 + 3mq + q2, (20b)

where q = r/ gcd(r, 3), so the above relation is only satis-
fied for r = 1. The plot 2L sin(θ/2)/a as a function θ, in
Fig. 3a, makes this clear. Remark that all these families
of super-lattices, with different values of r, are dense as
θ → 0. This means that a very small change in θ, with
little effect in the structure in real space, can nevertheless
change L by an arbitrary large factor. The implication
is that, for very small angles, all commensurate struc-
tures are almost periodic repetitions of structures with
r = 1. That is seen very clearly by inspecting visually a
few Moiré patterns [see Fig. (3b)].
Let us show this explicitly for a SE-even structure,

(m, r) with r = 3r′. At one of the corners of the Wigner-

(a)

(b)

Figure 3: (a) 2(L/a) sin(θ/2) vs θ. The various lines
correspond to different values of r; the lower line

corresponds to the structures with r = 1. (b) A SE-even
structure is almost periodic with the period of a

structure with r = 1; here is a (m, r) = (7, 3) is shown
overlaid with the Wigner-Seitz Cells of (m, r) = (2, 1);
the black hexagon is the true unit cell of the structure.

Seitz cell,

r :=
t1 + t2

3
= mδ1 +

r

3
a2 = mδ

′

1 +
r

3
a′1; (21)

If m mod 3 = 1, like in the (7, 3) structure in Fig. 3b,
this site has B1 atom of layer 1 and a hexagon center of
layer 2. Therefore, at r − δ1 there is an A1 site and at
r− δ

′
1, a B2 one. This implies that δBA(r) = δ

′
1 − δ1 =

O(θ). If this were zero, r would be a lattice translation of
the Moiré. The corresponding structure would be of SE-
odd with m′ = (m− 1)/3 and r′ = r/3. In real space, a
SE-even structure (m, r), withm−1 divisible by 3, is then

AA

AB

AA

AB

ABAB BA

BA

BA

BA

BA

BA

AB

AB

AA

AA

AA

AA

AA

SE-even SE-odd
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Universality of the continuum limit
Both SE-even and SE-odd have the same low angle physics

Valley-decoupled

K2

K1

J. M. B. Lopes dos Santos, N. M. R. Peres and A. H. Castro Neto. arXiv:1202.1088
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Vpp$!d" and Vpp%!d", where d is the distance between the

two atomic centers, d #
!!!!!!!!!!!!!!!!!
c20 $ !2

q
. For the d dependence

of Vpp$!d" and Vpp%!d" we used the parametrization of
Ref. [30]. The contribution of Vpp% turns out to be negli-
gible and t?!!" is proportional to t? # Vpp$!c0"; for ! #
a0=

!!!
3

p
, t?!!"=t? % 0:4. We have calculated !"#!r" nu-

merically for any angle of rotation. Using various symme-
tries and relations valid in the limit a0 & L (small angles)
we were able to derive the results of Table I. The values of
~tBA? !G" are equal and real, by symmetry, for G # 0, G #
'G1, and G # 'G1 'G2 and much smaller for all other
G vectors. The remaining Fourier amplitudes can be ex-
pressed in terms of ~tBA? !G".

Results and discussion.—In the absence of the interlayer
coupling, H?, states with energy close to zero occur at
k # '!K=2 in layer 1 and k # $!K=2 in layer 2. The
results of Table I imply that the states of momentum k in
layer 1 are coupled directly only to states of layer 2 of
momentum k, k$G1, and k$G1 $G2; conversely the

states of momentum k in layer 2 only couple to states k,
k'G1, and k'G1 'G2. To investigate the spectrum at
a momentum k close to zero energy, we truncated the
Hamiltonian to include only these six momentum values
(three for each layer) giving a 12( 12 matrix to diagonal-
ize. The geometry of the first Brillouin zone (FBZ) of the
superlattice (Fig. 1) implies that the states near the degen-
eracy point in either layer couple only to states of energies
)vF!K # )vFK ( 2 sin!&=2", where !K # j!Kj and
K # 4%=!3a0". This turns out to be the essential difference
between this problem and that of the unrotated bilayer. In
the latter, the degeneracy points of both layers occur at the
same momentum and the interlayer hopping couples two
doublets of zero energy states. In the present case we have
one doublet of zero energy states coupling to three pairs of
states at finite energies, )vF!K. As a result, the linear
dispersion near zero energy is retained. In Fig. 2 we plot
the energies of the states with smallest j'kj along two lines
in the FBZ; the parameters are t? # 0:27 eV [13] and & #
3:9* (i # 8, L # 36 "A), which give vF!K % 0:76 eV and
~t? # 0:11 eV.

The persistence of the Dirac cones can be understood by
considering the limit where ~t?=!vF!K" & 1 [in Fig. 2,
~t?=!vF!K" % 0:14]. In the vicinity of the degeneracy
point, say, of layer 1, k # '!K=2$ q, the Hamiltonian
H!k" has the form H!k" # H!'K=2" $ V!q" with V!q"
linear in q. In H!'K=2", which contains the interlayer
coupling, the doublet at zero energy couples with an ampli-
tude +~t? to six states (of layer 2) with energies )vF!K.
Using perturbation theory one can derive an effective
Hamiltonian in the space of the zero energy doublet by
considering the mixing of these six states in layer 2 to first
order in ~t?=!vF!K". The degeneracy is not lifted, although
there is a small shift in energy, '0 # 6~t2? sin!&=
2"=!vF!K". For small q we can treat V!q" as a perturbation
in the subspace of this doublet: the effective Hamiltonian
matrix has the form characteristic of a Dirac cone

 Heff #
'0 ~vFq,

~vFq '0

" #
;

with q # qx $ iqy. To second order in ~t?=vF!K, the
renormalized Fermi velocity is given by ~vF=vF #
1–9-~t?=!vF!K".2. This depression of the value of the
Fermi velocity ~vF relative to the value of SLG is a telltale

/2

/2

−∆ K

∆ K

+G1 G2
G1

G2

K∆

FIG. 1. First Brillouin zone of the superlattice centered at
midpoint between Dirac points K and K&. The zero energy
states of the two layers, k # '!K=2 and k # !K=2, marked
with /, are halfway to the zone boundary.

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1

( 3 ∆ K/2)k /∆ Kk /

E
(e

V
)

−0.4

−0.2

0

0.2

0.4

−0.3
−0.2
−0.1

0
0.1
0.2
0.3(a) (b)

FIG. 2 (color online). The energy 'k of
the two states with smaller j'kj for & #
3:9* (i # 8). (a) k varying from '!K to
!K (two vertices of the FBZ) along the
line passing the degeneracy points,
'!K=2 to !K=2; (b) along a line par-
allel to G2 passing !K=2.

PRL 99, 256802 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
21 DECEMBER 2007

256802-3

12



Mele in tight-binding models
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pattern (M1 in Fig. 1c) and at its edge (M2), showing two sharp peaks flanking the Dirac point with �Evhs ∼82meV. The peaks are absent outside the
pattern area (G), where the spectrum is typical of graphite24. c, Spatial dependence of tunnelling spectra along a line connecting point M2 inside the
pattern to point G outside it at positions marked by the white dots in a, showing monotonic evolution between the rotated and unrotated regions.
Tunnelling current 22 pA, sample bias voltage 300mV, a.c. bias modulation 5mVrms at 340Hz. e, Comparison of tunnelling spectra on bright and dark
regions within the pattern at positions indicated in d. Although all spectra show two peaks, the peak heights and degree of asymmetry depend on their
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� Fermi velocity suppression

field dependence of the LL spectra in this region [region B
in Fig. 2(a)] and its adjacent region C and repeating the
procedure described above we find that in both regions the
LL spectra are well described by the massless Dirac
Fermion sequence of Eq. (1) with vF ¼ 0:87" 106 m=s
for region B and vF ¼ 1:10" 106 m=s for region C.

Why is it that the low energy physics of the quasipar-
ticles in twisted graphene layers can resemble that in a
single layer? To answer this question we consider the
(K and K’) corners of the hexagonal Brillouin zone of
single-layer graphene where the Dirac cones reside [1].
When two layers are superposed with a relative twist, the
corresponding Brillouin zones also rotate with respect to
each other so that the Dirac cones for the two layers
separate [Fig. 3(a) inset] at low energy by an amount which
increases with angle: !K ¼ 2K sinð!=2Þ, where K ¼
4"=3a. The two displaced cones cross at a higher energy
and, in the presence of interlayer coupling, merge into a
saddle point [10,27]. For large twist angles, when the
crossing energy is sufficiently far from the Dirac point,
the low energy part of the Dirac cones and the correspond-
ing physics should be indistinguishable from that of a
single layer. As the twist angle decreases, the Dirac cones
are modified by the proximity to the saddle point and, for
!> 3

%
, the excitation spectrum can still be described by

massless Dirac fermions but with a renormalized Fermi
velocity given by [10]:

vFð!Þ
v0
F

¼ 1–9
!

t!?@v0
F!K

"
2
; (2)

where t!? & 0:4t?and t? are the interlayer coupling for
Bernal stacking. As shown in Fig. 3(a), the velocity renor-
malization measured in our experiment is in good agree-
ment with the predictions of Eq. (2).

We now compare the results to previous STM/STS
studies on graphene layers on SiC [14] which reported

that the LL sequences were independent of the measured
Moiré pattern periods for a wide range of twist angles
down to'1:4%. This appeared to be in direct contradiction
to the theoretical predictions [10,17,20]. A clue to under-
standing these results can be found in the unusual presence
of the same continuous atomic honeycomb structure across
the entire superstructure. This is in sharp contrast to Moiré
patterns generated by two rotated layers where one sees a
close correlation between the superpattern and the atomic
structure which changes continuously from triangular to
honeycomb across each period of the pattern [23,27]. In
fact, the large period superstructure reported in [14] was
actually produced by deeper layers below the surface,
serving as a background, whereas the twist angle between
the top layer and the layer below was large [28]. With this
interpretation, the data reported in [14] are consistent both
with the theoretical models and with the results reported
here.
We next consider the effect of the twist close to the

saddle points. Such saddle points cause divergence in the
density of states, also known as van Hove singularities
(VHS). In Fig. 2(d), we compare the zero field tunneling
spectra over a large sample bias range for regions B and C
of Fig. 2(a). The spectrum in region B shows two peaks
separated [27] by '200 meV in good agreement with the
position of the expected van Hove singularities for the
observed twist angle of '3:5%. In contrast for region C
the plain V-shape spectrum is consistent with a large twist
angle whose corresponding Moiré pattern is not within
experimental resolution.
It is important to emphasize that the twist-induced ve-

locity renormalization in coupled graphene layers is differ-
ent from that due to electron-phonon (e-ph) interactions
observed in single-layer graphene on graphite [24,25]. The
twist-induced slowdown described here, produces two pro-
nounced peaks in the zero field density of states separated
by an energy that increases monotonically with twist angle.
By contrast, slowdown due e-ph interactions produces two
kinks on both sides of the Dirac point at an energy corre-
sponding to the A0

1 phonon. These kinks reflect strong e-ph
coupling due to the Kohn anomaly, which modifies the
slope of the Dirac cone and reduces the Fermi velocity.
Interestingly, according to ab initio calculations [29] the
e-ph interaction is strongly suppressed in the presence of
coupling between layers. This is consistent with the ob-
servation of a reduced vF ' 0:79" 106 m=s [24] in
single-layer graphene compared to 1:07" 106 m=s in
coupled multilayers [11,14]. We note that for the twisted
layers discussed in Fig. 2(c), vF is almost identical to that
in multilayers with Bernal stacking, suggesting that e-ph
coupling via A0

1 is also suppressed in twisted layers.
Next we take a closer look at the Fermi velocity in

twisted layers. Equation (1) can be rewritten as

vF ¼ ðEn (EDÞ=sgnðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e@jnjBp

; n¼ 0;)1;)2 . . . ;

(3)
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FIG. 3 (color online). Fermi velocity renormalization.
(a) Angle dependence of the renormalization. Line is theoretical
prediction according to Eq. (2). Triangles are experimental data.
Question mark at '1:16% corresponds to localized states dis-
cussed in Fig. 4. Inset, Dirac cones of twisted layers. The twist-
induced separation between the Dirac cones in the two layers,
!K, is controlled by the angle. (b) Electron-hole asymmetry of
Fermi velocity in different sample regions is independent of field
or level index. Symbols are Fermi velocities obtained by Eq. (3)
and solid lines are overall fitting according to Eq. (1).
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Recurrent zero energy modes
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Recurrent zero energy modes
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Localized zero energy state
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Localized zero energy state
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Localized zero energy state

P. San-Jose, J. González and F. Guinea, arxiv:1110.2883
A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei.  Phys. Rev. Lett., 106 (2011).

so that, instead of an overall fitting to Eq. (1), we plot vF

for electrons and holes separately as in Fig. 3(b).
Surprisingly the electron carriers are systematically faster
than the holes. Thus in regions A (!! 21:8") and C where
the average velocity is 1:10# 106 m, we find an electron-
hole asymmetry with 1:20# 106 m=s for electrons and
1:02# 106 m=s for holes. In region B (!! 3:5") where
the average velocity is 0:87# 106 m=s we measure
1:00# 106 m=s for electrons and 0:76# 106 m=s for
holes. The electron-hole asymmetry is larger at the smaller
angles, $14% for 3.5", compared to $8% for 21.8". For
comparison we note that the asymmetry is less than $1%
in single-layer graphene suspended over a graphite surface
[24] and within 2.5% for single-layer graphene on SiO2

[30]. The latter was attributed to a large nearest-neighbor
overlap integral. The larger asymmetry in the twisted
layers could be due to the enhanced next-nearest-neighbor
hopping enabled by the twist.

At very small twist angles, the velocity renormalization
picture no longer applies because the VHS start dominat-
ing the spectrum and the Dirac cone approximation breaks
down even at the lowest energies [27] as seen in Fig. 4(a).
In this regime the spectra are strongly spatially modulated
in registry with the Moiré pattern, suggesting that the
carriers become localized in a charge density wave
(CDW) [27]. The contrast between spectra in the dark
and bright regions diminishes with increasing magnetic
field suggesting a competition between twist-induced lo-
calization and cyclotron motion. This is consistent with the
fact that the Moiré pattern period, 12 nm, becomes com-
parable to the magnetic length at 5 T.

In summary, by using STM together with LL spectros-
copy we demonstrated that the low energy electronic prop-
erties of twisted graphene layers are controlled by
masssless Dirac fermions whose Fermi velocity is renor-
malized by the twist. This picture breaks down at the
smallest twist angles where the spectrum is taken over by
twist-induced VHS, which favor the formation of a CDW.
E.Y.A. acknowledges DOE support under DE-FG02-

99ER45742, partial support under NSF-DMR-0906711
and Lucent. A. R. and J. K. acknowledge partial support
of NSF DMR 0845358 and support under ONR MURI
N00014-09-1-1063. The Manchester contributors ac-
knowledge financial support from EPSRC, Office of
Naval Research and the Royal Society.

[1] A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009).
[2] D. S. L. Abergel et al., Adv. Phys. 59, 261 (2010).
[3] G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[4] A. Reina et al., Nano Lett. 9, 30 (2009).
[5] X. Li et al., Science 324, 1312 (2009).
[6] K. S. Kim et al., Nature (London) 457, 706 (2009).
[7] W.A. de Heer et al., Solid State Commun. 143, 92 (2007).
[8] F. Guinea, A.H. Castro Neto, and N.M. R. Peres, Phys.

Rev. B 73, 245426 (2006).
[9] E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805

(2006).
[10] J.M. B. Lopes dos Santos, N.M.R. Peres, and A.H.

Castro Neto, Phys. Rev. Lett. 99, 256802 (2007).
[11] G. Li and E.Y. Andrei, Nature Phys. 3, 623 (2007).
[12] M. L. Sadowski, Phys. Rev. Lett. 97, 266405 (2006).
[13] M. Sprinkle et al., Phys. Rev. Lett. 103, 226803 (2009).
[14] D. L. Miller et al., Science 324, 924 (2009).
[15] J. Hass et al., Phys. Rev. Lett. 100, 125504 (2008).
[16] G. Trambly de Laissardiere, D. Mayou, and L. Magaud,

Nano Lett. 10, 804 (2010).
[17] E. J. Mele, Phys. Rev. B 81, 161405 (2010).
[18] Z. Ni et al., Phys. Rev. B 77, 235403 (2008).
[19] P. Poncharal et al., Phys. Rev. B 79, 195417 (2009).
[20] S. Shallcross, S. Sharma, and O.A. Pankratov, Phys. Rev.

Lett. 101, 056803 (2008).
[21] S. Shallcross et al., Phys. Rev. B 81, 165105 (2010).
[22] R. Bistritzer and A.H. MacDonald, arXiv:1009.4203v1.
[23] W.-T. Pong and C. Durkan, J. Phys. D 38, R329 (2005).
[24] G. Li, A. Luican, and E.Y. Andrei, Phys. Rev. Lett. 102,

176804 (2009).
[25] A. Luican, G. Li, and E.Y. Andrei, Solid State Commun.

149, 1151 (2009).
[26] J.M. Pereira, F.M. Peeters, and P. Vasilopoulos, Phys.

Rev. B 76, 115419 (2007).
[27] G. Li et al., Nature Phys. 6, 109 (2009).
[28] D. L. Miller et al., Phys. Rev. B 81, 125427 (2010).
[29] J.-A. Yan, W.Y. Ruan, and M.Y. Chou, Phys. Rev. B 79,

115443 (2009).
[30] R. S. Deacon et al., Phys. Rev. B 76, 081406 (2007).

(a) (b)

-200 -100 0 100 200
0

1

2

3

Sample bias (mV)

0

1

2

5 T

0

1
dark

dI
/d

V
 (a

.u
.)

0 T

3 T

bright

FIG. 4 (color online). (a) The large difference between the
spectra in the dark and bright regions diminishes with increasing
field. No Landau levels of massless Dirac fermions were ob-
served here. (b) STM image of the Moiré pattern with a period of
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BA
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Confinement mechanism?
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