Twisted graphene bilayers

KITP - Graphene 2012

Pablo San José IEM-CSIC (Madrid)

Collaborators

Jose González IEM-CSIC (Madrid) Paco Guinea ICMM-CSIC (Madrid)

Modeling twisted bilayers

AA bilayer

Monolayer

AB bilayer

AA bilayer

Monolayer

AB bilayer

Twisted bilayer

$$L = \frac{a}{2\sin\frac{\theta}{2}}$$

 θ

Gray: Top layer White: Bottom layer *Pink: AA stacking Red: AB/BA stacking*

Twisted bilayer

White: Bottom layer

Pink: AA stacking Red: AB/BA stacking

Brillouin zone

Two different classes, depending on the microscopic stacking

SE-even (gapped)

SE-odd (parabolic)

E. J. Mele. Phys. Rev. B 81, 161405 (2010) E. J. Mele. arXiv:1112.2620 (2011)

Tunable gaps?? Let's see...

- Tight-binding model for SE-even and SE-odd lattices
- Overlap for two π orbitals separated by r=r₁-r₂

$$V(\mathbf{r}) = \gamma_0 \frac{x^2 + y^2}{|\mathbf{r}|^2} e^{-\lambda(|\mathbf{r}| - a_{cc})}$$
$$+ \gamma_1 \frac{z^2}{|\mathbf{r}|^2} e^{-\lambda(|\mathbf{r}| - d)}$$

Range and number of neighbors are unconstrained

Tunable gaps?? Let's see...

- Tight-binding model for SE-even and SE-odd lattices
- Overlap for two π orbitals separated by r=r₁-r₂

$$V(\mathbf{r}) = \gamma_0 \frac{x^2 + y^2}{|\mathbf{r}|^2} e^{-\lambda(|\mathbf{r}| - a_{cc})}$$
$$+ \gamma_1 \frac{z^2}{|\mathbf{r}|^2} e^{-\lambda(|\mathbf{r}| - d)}$$

Range and number of neighbors are unconstrained

But... No gaps to be seen, anywhere!

Tunable gaps?? Let's see...

- Tight-binding model for SE-even and SE-odd lattices
- Overlap for two π orbitals separated by r=r₁-r₂

$$V(\mathbf{r}) = \gamma_0 \frac{x^2 + y^2}{|\mathbf{r}|^2} e^{-\lambda(|\mathbf{r}| - a_{cc})}$$
$$+ \gamma_1 \frac{z^2}{|\mathbf{r}|^2} e^{-\lambda(|\mathbf{r}| - d)}$$

Range and number of neighbors are unconstrained

Valley-decoupled!

Tight-binding calculation

$V_{nm} \equiv \langle k + nG_1 + mG_2 | V | k \rangle$

SE-odd

Tight-binding calculation

$V_{nm} \equiv \langle k + nG_1 + mG_2 | V | k \rangle$

SE-even

Tight-binding calculation

$V_{nm} \equiv \langle k + nG_1 + mG_2 | V | k \rangle$

SE-even

Crystallography versus Moiré

Universality of the continuum limit

Both SE-even and SE-odd have the same low angle physics

$$H = v_F \begin{pmatrix} 0 & \Pi_{+}^{\dagger} & V_{AA}(\mathbf{r}) & V_{AB}(\mathbf{r}) \\ \Pi_{+} & 0 & V_{BA}(\mathbf{r}) & V_{AA}(\mathbf{r}) \\ V_{AA}^{\star}(\mathbf{r}) & V_{BA}^{\star}(\mathbf{r}) & 0 & \Pi_{-}^{\dagger} \\ V_{AB}^{\star}(\mathbf{r}) & V_{AA}^{\star}(\mathbf{r}) & \Pi_{-} & 0 \end{pmatrix}$$

Valley-decoupled

J. M. B. Lopes dos Santos, N. M. R. Peres and A. H. Castro Neto. arXiv:1202.1088

Mele in tight-binding models

Electronic structure

$$H = v_F \begin{pmatrix} 0 & \Pi_+^{\dagger} & V_{AA}(\mathbf{r}) & V_{AB}(\mathbf{r}) \\ \Pi_+ & 0 & V_{BA}(\mathbf{r}) & V_{AA}(\mathbf{r}) \\ V_{AA}^{\star}(\mathbf{r}) & V_{BA}^{\star}(\mathbf{r}) & 0 & \Pi_-^{\dagger} \\ V_{AB}^{\star}(\mathbf{r}) & V_{AA}^{\star}(\mathbf{r}) & \Pi_- & 0 \end{pmatrix}$$
$$\Pi_{\pm} = -i\partial_x + \partial_y \mp i\frac{\Delta K}{2} \quad ; \quad \Delta K = 2K\sin\frac{\theta}{2}$$

Fermi velocity suppression

J. M. B. Lopes dos Santos et al. Phys. Rev. Lett., 99, 256802 (2007) A. Luican et al. Phys. Rev. Lett., 106, 126802, (2011)

Recurrent zero energy modes

Magical angles θⁿ_c with vanishing velocity at irregular intervals

R. Bistritzer and A. MacDonald. PNAS 108, 12233 (2011)

Recurrent zero energy modes

Magical angles θⁿ_c with vanishing velocity at irregular intervals
 Almost flat band at θ=θⁿ_c

R. Bistritzer and A. MacDonald. PNAS 108, 12233 (2011)

Localized zero energy state

Localized zero energy state

Localized zero energy state

P. San-Jose, J. González and F. Guinea, arxiv:1110.2883 A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei. Phys. Rev. Lett., 106 (2011).

Why do zero-energy states arise?

Why do zero-energy states arise?

Why do zero-energy states arise?

Dirac Hamiltonian

$$H = v_F \vec{\boldsymbol{\sigma}} \cdot \left[\tau_0 \vec{\mathbf{k}} - \hat{\vec{\mathbf{A}}}(\mathbf{r}) \right] + v_F \hat{\Phi}(\mathbf{r})$$

Why do zero-energy states arise?

 \hat{A}_x

 \hat{A}_y

Dirac Hamiltonian

$$H = v_F \vec{\sigma} \cdot \left[\tau_0 \vec{\mathbf{k}} - \hat{\vec{\mathbf{A}}}(\mathbf{r}) \right] + v_F \hat{\Phi}(\mathbf{r})$$

$$= - \begin{pmatrix} 0 & \tilde{V}_{AB} + \tilde{V}_{BA} \\ \tilde{V}_{AB}^{\star} + \tilde{V}_{BA}^{\star} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & i\tilde{V}_{AB}^{\star} - i\tilde{V}_{BA}^{\star} \\ -i\tilde{V}_{AB} + i\tilde{V}_{BA} & 0 \end{pmatrix}$$

$$\hat{\Phi} = \begin{pmatrix} 0 & \tilde{V}_{AA} \\ \tilde{V}_{AA}^{\star} & 0 \end{pmatrix}$$

Why do zero-energy states arise?

Dirac Hamiltonian

$$H = v_F \vec{\sigma} \cdot \left[\tau_0 \vec{\mathbf{k}} - \hat{\vec{\mathbf{A}}}(\mathbf{r}) \right] + v_F \hat{\Phi}(\mathbf{r})$$

$$= - \begin{pmatrix} 0 & \tilde{V}_{AB} + \tilde{V}_{BA} \\ \tilde{V}_{AB}^{\star} + \tilde{V}_{BA}^{\star} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & i\tilde{V}_{AB}^{\star} - i\tilde{V}_{BA}^{\star} \\ -i\tilde{V}_{AB} + i\tilde{V}_{BA} & 0 \end{pmatrix}$$

$$\hat{\Phi} = \begin{pmatrix} 0 & \tilde{V}_A \\ \tilde{V}_{AA}^{\star} & 0 \end{pmatrix}$$

Non-Abelian gauge field

 \hat{A}_y

Non-Abelian scalar field

Why do zero-energy states arise?

Dirac Hamiltonian

$$H = v_F \vec{\sigma} \cdot \left[\tau_0 \vec{k} - \hat{\vec{A}}(\mathbf{r}) \right] + v_F \hat{\Phi}(\mathbf{r})$$

$$= - \begin{pmatrix} 0 & \tilde{V}_{AB} + \tilde{V}_{BA} \\ \tilde{V}_{AB}^{\star} + \tilde{V}_{BA}^{\star} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & i\tilde{V}_{AB}^{\star} - i\tilde{V}_{BA} \\ -i\tilde{V}_{AB} + i\tilde{V}_{BA} & 0 \end{pmatrix}$$

$$\hat{\Phi} = \begin{pmatrix} 0 & \tilde{V}_{AA} \\ \tilde{V}_{AA}^{\star} & 0 \end{pmatrix}$$

Non-Abelian gauge field

 \hat{A}_y

Non-Abelian scalar field

Confinement mechanism?

J. M. B. Lopes dos Santos, N. M. R. Peres and A. H. Castro Neto. arXiv:1202.1088