



## Measuring the mechanical properties of carbon nanostructures using simple physics

Jim Hone

Columbia University Dept. of Mechanical Engineering Nanoscale Science and Engineering Center





#### Stiffness vs. Strength





Stiffness: how much does it deform?

Strength: when does it break?

Fig. 1.1 : Stiffness and strength.







$$\sigma_{th} = \sqrt{\frac{E\gamma}{a_0}}$$
 Surface Energy  
Atomic Separation

 $a_0$  [m] E [GPa]  $\sigma_{th}$  [GPa]  $\sigma_b$  [MPa]  $\sigma_{th}/\sigma_b$ 

| glass            | $3*10^{-10}$ | 60  | 14 | 170   | 82   |
|------------------|--------------|-----|----|-------|------|
| steel            | $10^{-10}$   | 210 | 45 | 250   | 180  |
| silica fibers    | $10^{-10}$   | 100 | 31 | 25000 | 1.3  |
| iron whiskers    | $10^{-10}$   | 295 | 54 | 13000 | 4.2  |
| silicon whiskers | $10^{-10}$   | 165 | 41 | 6500  | 6.3  |
| alumina whiskers | $10^{-10}$   | 495 | 70 | 15000 | 4.7  |
| ausformed steel  | $10^{-10}$   | 200 | 45 | 3000  | 15   |
| piano wire       | $10^{-10}$   | 200 | 45 | 2750  | 16.4 |





Fig. 2.9 : Fracture strength of glass fibers in relation to their thickness.



#### Pull a string at the center with force F



What is F(y)?





Geometry: 
$$\Delta L = 2\sqrt{\left(\frac{L}{2}\right)^2 + y^2 - L} = \sqrt{L^2 + 4y^2} - L$$
  
 $= L\sqrt{1 + \frac{4y^2}{L^2}} - L \approx L\left(1 + \frac{2y^2}{L^2}\right) - L$   
 $= \frac{2y^2}{L}$ 



#### A Simple Physics Problem...







#### A Simple Physics Problem...







#### Carbon Nanotubes





#### Rolled up graphene...

# Should have similar mechanical properties

**Figure 1.** Mapping of the graphene sheet to form the [6,3] SWCNT with a couple of translational unit cells along the tube shown. The unit cell of the graphene lattice highlighted in gray is defined by the primitive lattice vectors  $\mathbf{R}_1$  and  $\mathbf{R}_2$ .







#### Rayleigh Scattering Spectroscopy





Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering Matthew Y. Sfeir, Feng Wang, Limin Huang, Chia-Chin Chuang, J. Hone, Stephen P. O'Brien, Tony F. Heinz, Louis E. Brus Science **306**, 1540-1543 (2004)





Y. Wu and M. Huang





### Mechanical Testing: Magnetic Displacement



L~100 µm, d~2 nm: model as string (no bending moment)



 $F = BIL \qquad B = 0.31T$  $F = 8A E \frac{\delta}{L} \cdot \max\left[0, \frac{8}{3}\left(\frac{\delta}{L}\right)^2 + \varepsilon_0\right]$ 





E = 1 TPa ± 16%

Knowing the nanotube structure lets us measure the stiffness precisely...

NSF



### Mechanical Testing of Graphene





Changgu Lee, Xiaoding Wei, J. Kysar, J. Hone, Science (2008)



## Mechanical Testing of Graphene





| e Edit Detectors Scan Beam Stage Tools Window Help<br>60 000x • 101.0 kV • 3.0 • • • • • • • • • • • • • • • • • • • | Pages        |
|----------------------------------------------------------------------------------------------------------------------|--------------|
| 60 000x • 1010 kV • 10 • • • • • • • • • • • • • • • • •                                                             | CHI 101 101  |
| Vacuum                                                                                                               | IRU 158      |
|                                                                                                                      |              |
|                                                                                                                      | Vent         |
| Mode                                                                                                                 |              |
| F. High Vacuum                                                                                                       |              |
| C Law Vacuum                                                                                                         | Natar ·      |
| C ESEM                                                                                                               | Noter 🛥      |
| Chamber Pressure                                                                                                     |              |
|                                                                                                                      | Tor - +      |
|                                                                                                                      |              |
| Sport Sport                                                                                                          |              |
| Bearn On 🕴 🕶                                                                                                         | 3.0 - +      |
| High Voltage                                                                                                         |              |
|                                                                                                                      | 0 XV - +     |
| Detectors                                                                                                            |              |
| Contract                                                                                                             | 04.1         |
|                                                                                                                      |              |
| Grightness                                                                                                           | -41.7        |
|                                                                                                                      |              |
| Manufation                                                                                                           | INCOME A     |
|                                                                                                                      | F I          |
|                                                                                                                      |              |
| Brem Brem                                                                                                            |              |
| Stigmator. Be                                                                                                        | am Shift     |
|                                                                                                                      |              |
|                                                                                                                      |              |
|                                                                                                                      |              |
| Turing                                                                                                               |              |
| Source Tilt La                                                                                                       | is Alignment |
|                                                                                                                      |              |
|                                                                                                                      |              |
|                                                                                                                      |              |
| Crossower L                                                                                                          | ens Align    |
| SEM-based nanoindentation (Julia Greer, Caltech)                                                                     |              |
| Chamber Pressure 82                                                                                                  | 7e-8 Torr    |
| Emparent 12                                                                                                          | ALL ALL      |
| Changey Lee Vigeding Wei T. Kuter T. Llang Colong (2008)                                                             | 20           |
| Changgu Lee, Aldoding Wei, J. Kysar, J. Hone, Science (2008)                                                         | e la         |



FEA modeling of indentation:

- low stress at clamping points
- most of deflection is away from tip (linear model, point loading)
- breakage will occur under tip (stress concentration)



#### Force - Displacement Data







#### AFM Nanoindentation





Avg. Young's modulus: 1.02 TPa



#### Breaking the membranes























#### Non-linear model



28









| Log In or Register |                                                  |                                                     | Follow SA                            | Follow SA                                   |        |  |  |
|--------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------------------------------|--------|--|--|
| SCI                | ENTI                                             | FIC                                                 | Winner of<br>National I<br>for Gener | the 2011<br>Magazine Award<br>al Excellence |        |  |  |
| AM                 | ERIC                                             | $\mathbf{AN}^{{}^{\scriptscriptstyle{\mathrm{M}}}}$ | Search S                             | ScientificAmerican.co                       | n Q    |  |  |
| Subscribe N        | ews & Features Blog                              | s Multimedia                                        | Education                            | Citizen Science                             | Topics |  |  |
| Home » Scientifi   | c American Magazine » N                          | ovember 2011                                        |                                      |                                             |        |  |  |
| Antigravity   More | Science                                          |                                                     | Т                                    | veet 9                                      | ike 31 |  |  |
|                    | Elephan                                          | t Illust                                            | rates                                | Import                                      | tant   |  |  |
| 1-1-               | Point                                            |                                                     |                                      |                                             |        |  |  |
| PREST<br>AMERICANS | A statement about a material raises heavy issues |                                                     |                                      |                                             |        |  |  |
| See Inside         | By Steve Mirsky   November 7, 2011   11          |                                                     |                                      |                                             |        |  |  |





The tweet, posted on September 1, 2011, by @qikipedia, read in its entirety: "It would take an elephant, balanced on a pencil to break through a sheet of graphene the thickness of cling film." Some detective work revealed that the statement originated with mechanical engineering professor James Hone of Columbia University, who said in 2008, "Our research establishes graphene as the strongest material ever measured, some 200 times stronger than structural steel. It would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap."







What is the pencil made of? You can't expect a regular old pencil to carry the weight of an elephant.

How do you get the elephant onto the pencil? Wait a second, back up. Is it an African elephant, weighing in at, say, 15,000 pounds, or is it the more diminutive Asian elephant, tipping the scales at a more manageable 10,000 pounds?

A baby Asian elephant is going to be the easiest choice to get onto the pencil. As it approaches the graphene, do the researchers play Henry Mancini's "Baby Elephant Walk"? If not, why not? These opportunities don't come along every day.



#### **Graphene Friction**





friction increases as the number of layers decreases...



#### Stick-slip friction loops











#### Friction in Layered Materials





Science 328, 76 (2010)













## Some applications....



## **Composite Materials**







Raffiee et al, ACS Nano (2009)



## Free-Standing Membranes





Tim J. Booth; Peter Blake; Rahul R. Nair; Da Jiang; Ernie W. Hill; Ursel Bangert; Andrew Bleloch; Mhairi Gass; Kostya S. Novoselov; M. I. Katsnelson; A. K. Geim; *Nano Lett.* **2008**, 8, 2442-2446.

TEM-compatible membranes: direct imaging of graphene lattice and defects / grains



Jannik C. Meyer; C. Kisielowski; R. Erni; Marta D. Rossell; M. F. Crommie; A. Zettl; Nano Lett. **2008**, 8, 3582-3586





McEuen group, in press





## Free-Standing Membranes



#### TEM imaging of proteins / biomolecules

Neil R. Wilson; Priyanka A. Pandey; Richard Beanland; Robert J. Young; Ian A. Kinloch; Lei Gong; Zheng Liu; Kazu Suenaga; Jonathan P. Rourke; Stephen J. York; Jeremy Sloan; *ACS Nano* **2009**, 3, 2547-2556.







Meyer and Zettl, Nature 2008

TEM imaging of single hydrogens!



## Gas Trapping and Separation





Appl. Phys. Lett. 93, 193107 (2008)



De-en Jiang; Valentino R. Cooper; Sheng Dai; Nano Lett. 2009, 9, 4019-4024.



## Graphene 'Bubbles'





J. Scott Bunch; Scott S. Verbridge; Jonathan S. Alden; Arend M. van der Zande; Jeevak M. Parpia; Harold G. Craighead; Paul L. McEuen; *Nano Lett.* **2008**, 8, 2458-2462. E. Stolyarova; D. Stolyarov; K. Bolotin; S. Ryu; L. Liu; K. T. Rim; M. Klima; M. Hybertsen; I. Pogorelsky; I. Pavlishin; K. Kusche; J. Hone; P. Kim; H. L. Stormer; V. Yakimenko; G. Flynn; Nano Lett. **2009**, 9, 332-337.



## Nanopores: DNA sequencing





Peterman; John Bartel; Michael D. Fischbein; Kimberly Venta; Zhengtang Luo; A. T. Charlie Johnson; Marija Drndić; *Nano Lett.* **2010**, 10, 2915-2921.

Grégory F. Schneider; Stefan W. Kowalczyk; Victor E. Calado; Grégory Pandraud; Henny W. Zandbergen; Lieven M. K. Vandersypen; Cees Dekker; Nano Lett. **2010**, 10, 3163-3167.



Golovchenko et al, Nature 2010



#### Suspended Graphene



#### Ideal material for NEMS (NanoElectroMechanical Systems)

5.0kV 17.1mm x40.0k SE(M)





5.0kV 10.8mm x35.0k 11/10/2010

1.00um



#### Graphene Mechanical Resonators























#### R. Ruoff, UT

B.H. Hong, SKKU (Korea)

At 1000 °C, methane (CH<sub>4</sub>) becomes graphene on surface of copper