

Gaseous Dynamical Friction in Presence of BH Radiative Feedback

Cole Miller and Tamara Bogdanović

MBHs transported by dynamical friction Separation (1000 -> 1) pc Time scale: Million - Billion years

$$F_{\rm DF} = -I \times 4\pi (GM_p)^2 \rho_0 / V^2$$

(Chandrasekhar 43, Ostriker 99, image from Semelin & Combes 02)

MBHs transported by dynamical friction Separation (1000 -> 1) pc Time scale: Million - Billion years

$$F_{\rm DF} = -I \times 4\pi (GM_p)^2 \rho_0 / V^2$$

(Chandrasekhar 43, Ostriker 99, image from Semelin & Combes 02)

Wake evacuation by MBH feedback

(figures from Sijacki+ 11; Souza-Lima+ 17)

Wake evacuation by accreting BHs (big and small)

 $M_{bh} = 100 M_{\odot}$ BH, immersed in $T_{\infty} = 10^4$ K gas w/ $n_{\infty} = 10^5$ cm⁻³

Density of the shell increases as $\propto \mathcal{M}^2 \Rightarrow$ accretion rate is suppressed

Radiation mediated accretion (1 < M < 4)

A) Wake evacuation is prevented for fast perturbers

B) Wake evacuation is prevented for super-Eddington accretors

Spherically symmetric accretion flows transition to unimpeded hyper-Eddington accretion when $R_{HII} < R_B$ (Park+ 14; figure from Inayoshi+ 16)

10

Efficiency of Gas Dynamical Friction in Presence of Radiative Feedback

2D RHD simulations of 10⁶ M_o MBH moving through a uniform, neutral background medium - KwangHo Park & TB 17, 19 (the latter in prep.) -

wake evacuated when

MBH Acceleration as a Function of the Mach Number

Conclusions

- Ionizing radiation from MBHs gives rise to negative gas DF for a range of physical scenarios. Stellar DF may still operate unaffected but would have to work harder.
- The effect is more severe at the low mass end of BH spectrum => BHs with masses <10⁷ M_{\odot} have fewer means to reach the centers of merged galaxies.

$$\mathcal{M} < 4$$
 and $(1 + \mathcal{M}^2) M_{
m BH} n_\infty < 10^9 M_\odot \ {
m cm^{-3}}$

- Prescription for sub-resolution model of gas DF for large-scale simulations.
- Not taken into account: gas inhomogeneities, anisotropic outflows, curved BH trajectories, other sources of shocks / radiation, magnetic fields, etc.