‘ new BBHs?



Introduction

* In a series of recent papers a group at IAS have claimed
7 new BBH mergers on open LIGO data

« This is performed using a new, independently
developed search algorithms

* Can we reproduce these results?

arXiv:1904.07214
Phys.Rev. D99 (2019) no.12, 123022

arXiv:1902.10341

arxXiv:1902.10331



A little bit of a recap



Searching for colliding black holes:
What do we know about the signal?



How well do we know the signal?

+ Wait tfor Alessandra’s talk tomorrow



How well do we know the signal?
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Searching for colliding black holes:
What do we know about the noise?



LIGO noise: Gomplex noise curve
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Angle-averaged range [Mpc]

LIGO noise: Non-stationary

100 Binary neutron star inspiral range
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[.IGO noise: Non-Gaussian
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Searching for colliding black holes:

How do we actually search for them?



Matched filtering
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Large parameter space - lots of waveforms
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An ad-hoc chi-squared test
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Calculating a significance (how many sigmas?)

Zero-lag
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Calculating a significance (how many sigmas?)
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Calculating a significance (how many sigmas?)
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Non-stationarity

« Basic idea to cope with non-stationarity is to keep re-
measuring the power-spectral density

* Don’t want signals in the data to appear in the
measured power-spectral density!

« Use Welch’s method every 512s

« If the noise curve changes on timescales less than 512s it
will impact sensitivity, but will not affect the validity of
a significance measurement.
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Number of events

Putting 1t all together
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How do we validate the analysis?

Simulate lots
of signals!
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How does the [AS analysis compare

« I could largely have used these slides to describe the IAS methods
* When digging into technical points things differ:

* Construction of bank is different

* Methods for distinguishing instrumental artefacts differ

* A new method is used for identifying times of non-stationarity
(and correcting for it)

“ The general philosophy is different. LIGO/ Virgo probably
already saw anything loud, so go after the real quiet things

2



And one IMPORTAN'T technical difference
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And one IMPORTAN'T technical difference
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And one IMPORTAN'T technical difference
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QUESTION:

Can | take the "PyCBC” search
pipeline, take the same philosophy

and reproduce the results of IAS



Changes to PyCBC Search

* Juse the IAS template regions (just 3 and 4), but our
template placement codes

* Include single detector events with SNR as low as 4
* | change a number of our cuts to be very aggressive

* Tuse Laura’s (+ Simone’s) non-stationarity monitor, and
aggressively remove times where this is bad

“ No “p-astro”s. The main search result is the rate of false
triggers, and that is more easily comparable




Results (so far O2 only)

TRIGGER NAME

GW170121 (BIN 3)

GW170304 (BIN 4)

GW170727 (BIN 4)

GW170425 (BIN 4)
GW170202 (BIN 3)

GW170403 (BIN 4)

IAS False Alarm Rate

1 every 1000 years

1 every 120 years

1 every 120 years

1 every 5 years
1 every 2 years

1 every 1.5 years

New False Alarm Rate



Results (so far O2 only)

TRIGGER NAME IAS False Alarm Rate New False Alarm Rate

GW170121 (BIN 3) 1 every 1000 years

1 every 10000 years

I everms ) vcains

GW170304 (BIN 4) 1 every 120 years (*1 every 16 years)

GW170727 (BIN 4) 1 every 120 years 1 every 26 years™™

GW170425 (BIN 4) 1 every 5 years 1 every 1 year***
GW170202 (BIN 3) 1 every 2 years 1 every 4 years
GW170403 (BIN 4) 1 every 1.5 years 10 every year™***

* Number obtained after cutting template bank to a total mass of 100 solar masses
** Background estimate here is polluted by loud L1 single events
*** This event doesn’t quite seem consistent in the two detectors

**** This looks like a quiet “blip glitch” in H1



GWI170121
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GW170504

[zH] Aousnbai4
ABJisu3 pazijew.oN

[zH] Aousnbaiy

[zH] Aouanbai4
ABisu3 paziewloN

[zH] Aouanbaiy

wn o uwn (-
N N ~— — un
o) = -
—_
—_
wn o Tp) o
Y N -~ ~— n
-
S e T

o

ok

0.2 03 04 0

0.1

-0.3 -0.2 -041

0.4

o)
]

o

v
S

-04 -03 =02 =01 0.1 0.2 0.3 0.4
Time [seconds]

-0.5

Time [seconds]



GWI170727
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GW170425
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GW170202

[zH] Aousnba.y
ABJisu3 pazijewioN

0.2 03 04

0.1

-0.2 =01
Time [seconds]

-0.3

-0.4

_N_.__ Aousnbai4

—0.5

[zH] Aousanba.4
ABJisug pazijewloN

-0.3 =02 -0.1 0.1 0.2 0.3 0.4 0.5
Time [seconds]

-0.4

HN_.__ Aousnbai4

—0.5



GW170405
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Some NEW interesting one-detector events

L1:GDS-CALIB_STRAIN,reduced at 1175205128.590 with Q of 5.0
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What is the sensitivity increase of the new search?

+ Richard asked me this



What is the sensitivity increase of the new search?

+ Richard asked me this

* The correct answer is “I don’t know yet”



What is the sensitivity increase of the new search?

+ Richard asked me this
* The correct answer is “I don’t know yet”
+ But there’s no LIGO internal review in sight, so let’s get out the envelope:

+ ROUGHLY, the network SNR needed to reach a false alarm rate of 1
every 10 years drops from 9.1 to 8.3 (old to new)

& (91 / 83)**3 =137
* 32% increase in sensitivity

+ I've ignored a few things here, but the number seems the same for
both regions “3” and “4”



Conclusion (almost)

* ] am able to largely reproduce the IAS results

# The improvement in sensitivity largely comes from a significant reduction in
search space (IMO) ... Also the aggressive cuts help, but would reduce
sensitivity to some systems.

+ More work to do here on our side!

« | think TAS is still better at very high masses

* From inspection of the loudest background events, we are still seeing some
events that are clearly not real (and some events that may very well *be*
real)

» A targeted low-amplitude BBH/BNS search alongside our existing broad-
parameter space search seems like a smart move
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http://LIGO.org

