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Advantages of tetrad versus metric

• The tetrad metric, and therefore the raising and lowering 
of indices, is trivial.  There are many fewer terms in the 
equations, with a more consistent structure.

• Fewer connection coefficients (24 versus 40 in 4D, 9 
versus 18 in 3D).

• Variables are more closely related to physical/geometric 
quantities.

• Tetrad gauge conditions (the evolution of the acceleration 
and angular velocity of the tetrad frames) can be 
formulated in a coordinate-independent way.

• Most of the variables are coordinate scalars, so Lie 
derivatives in time derivative operators do not involve 
derivatives of the shift vector.

Potential disadvantages of tetrad formalism

• Need gauge conditions to evolve both tetrad frames and 
coordinates.

• Frames may not have any fixed orientation relative to the 
constant time hypersurfaces on which the numerical 
evolution is defined, so the “spatial” tetrad directional 
derivatives may contain coordinate time derivatives and 
also may not coincide with spatial coordinate axes.

• Commutation of tetrad directional derivatives is non-trivial.
• There are more tetrad vector components to evolve than 

coordinate metric components (9 versus 6 in 3D).
• May be harder to develop asymptotically stationary gauge 

conditions.
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Threading approaches (1 + 3)

Tetrad congruence world lines not forced to be orthogonal 
to constant-time hypersurfaces.  We consider three 
types of tetrad evolution gauges consistent with 
symmetric hyperbolicity of a “Christoffel” system.

• Fixed acceleration and angular velocity of tetrad frames.

• “Lorentz” gauge of van Putten and Eardley.

• “Nester” gauge of Estabrook, et al.

Hypersurface-orthogonal frames (3 + 1)

Tetrad congruence worldlines are forced to be orthogonal to 
the constant-time hypersurfaces.  A dynamic equation for 
the lapse evolves the hypersurfaces and the tetrad 
acceleration.  I consider two basic types of evolution 
systems:

• An “Einstein-Christoffel” system, based on first-order 
equations connecting the connection coefficients.

• An “Einstein-Bianchi” system (Choquet-Bruhat and York) 
which uses the Bianchi identities to evolve the Riemann 
tensor.

Both systems are simplified to use the minimum number of 
variables, while maintaining symmetric hyperbolicity.
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Reduction to practice

• Relate tetrad variables and directional derivatives to 
coordinates and coordinate derivatives required for 
numerical calculation.  Derive eigenvectors of 
characteristic matrix for arbitrary directions of 
propagation.

1D test applications:
• colliding plane waves, with general polarization

• spherical symmetry (Schwarzschild geometry)
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εΩ ≡

Twist vector, vanishes iff tetrad is hypersurface orthogonal,
antisymmetric part of :
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Antisymmetric part of , only part which transforms 
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Identities for evolution and constraints
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0

0

Equations for the tetrad vectors, derived from the 
commutators of the tetrad vectors expressed in terms
of the connection coefficients.
Evolution:
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              Pseudo-hyperbolic and hyperbolic systems
If one pretends that the  are purely spatial directional derivatives,
the evolution equations in the fixed, Lorentz, and Nester gauges have
a very

aD

 simple symmetric hyperbolic structure, with all propagation at 
light speed and variables coupled in pairs to form eigenvectors along 
each tetrad direction.  However, the  will not stay zero, so theaA

0

 true
hyperbolic structure includes the time derivatives hidden in the .
A system of equations of the form
                             ( ) ,
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ly
            ( ) ( ) .
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by the index , ( , , , , , , , ).  The tc cc c c c c cc N N N a K K K ω

T

rue hyperbolic 

system is still symmetric hyperbolic, with  as the symmetrizing
matrix, as long as 1.
Care must be taken in the choice of the lapse in order that 
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                               Spherical Symmetry
Need a  set of tetrad vectors to avoid singular twisting
at the polar axis.
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          Hypersurface orthogonal gauge with dynamic lapse
Force congruence to be orthogonal to constant-t hypersurfaces.  This

implies 0, , , and ln .  I adopt a 

Bona-Masso 
a a a ab ba b bA D K K a D α 
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a form consistent with a symmetric hyperbolic system.  The gauge
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             Hypersurface orthogonal hyperbolic system

The symmetry of  can be enforced, reducing the number of 

variables by 3.  Replace  and  by / 2.  If  is 

rescaled to 

ab

ab ba ab ba b

b

K

K K K K a

a a

 
   

+

≡
�

/ , the characteristic matrix is explicitly

1symmetric.  The wave speeds are 0, , , and 1.
2

In spherical symmetry the wave speeds are  and 1.

b f

ff

f

+± ± ±

± ±

                              Einstein-Bianchi system
The several Einstein-Bianchi systems in the literature general involve
large numbers of redundant variables, since not all symmetries of the
Riemann tensor are enforced.  The motivation for this is to ensure that
all wave propagate at light speed.
However, there is no physical reason why waves other than the physical
transverse-traceless modes should propagate at light speed.  I argue
that the number of extra variables and constraints should be minimized,
since unenforced constraints mean more constraint-violating modes
with the potential of being unstable.  Starting from Choquet-Bruhat and
York, I enforce all Riemann tensor symmetries and the Einstein
equations to reduce the number of Riemann tensor variables to 10,
corresponding to the number of 

0 0

degrees of freedom in the 5 complex
scalars in the null tetrad decomposition of the Weyl tensor.  The
variables are the symmetrized electric and magnetic parts of the
of the Riemann tensor,  andab a bE R= 0 .ab acd cd bB Rε=
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The Bianchi identities evolve the Riemann tensor.  The antisymmetric
part of  is zero and the antisymmetic part of  is determined from

the momentum constraint equations.  The trace of  is given
ab ab

ab

E B

E  by the

energy constraint, and the trace of  is zero, leaving 5 degrees of

freedom in each.
Only the four physical transverse-traceless modes have wave speeds
of 1.  There are four mixed transverse-lo

ab
B

± ngitudinal modes with speeds
1/2, and two longitudinal modes with speed zero.

The evolution equations for the connection coefficents are just the 
standard expressions for the  and  Riemann tensorab ab
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0 0 0 0 0

0

 components.
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                           Spherical Einstein-Bianchi
There is only one independent Riemann tensor component, , say,
which propagates at zero speed, 3 , 2 / .
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oror
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R
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 and  propagate at zero speed.  This seems to make the evolution

more stable, and constraint errors level out for stationary initial
2.8125conditions, ( )
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An important advantage of an approximately hyperbolic hypersurface
and mostly zero-speed wave propagation
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 is that almost all modes, 
and all the constraint-violating modes are outgoing at both boundaries.
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Conclusions

• The tetrad formalisms have a formal relative simplicity, particularly in 
the nonlinear source terms.  Almost everything can be derived by
hand with a reasonable effort.

• The threading gauges are problematic, particularly in attempts to 
attain long time evolution in black hole contexts.

• The simplified Bianchi system with a hypersurface-orthogonal gauge 
and a dynamic lapse shows promise, but needs to be tested in 3D 
calculations.

• Much more work needs to be done on exploring various dynamic 
lapse conditions, and particularly dynamic shift conditions, to find 
conditions compatible with the tetrad framework which keep 
coordinates well behaved over long times in the vicinity of black hole 
horizons.


