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Motivation

Numerical relativity is based essentially on the following procedure:

e Set up geometric differential equations
e Split into evolution equations and constraints
e Verify that constraints propagate

e Discretise evolution equations and constraints

e Solve constraints to provide initial data

e Choose gauges (coordinates, etc.)

e Evolve

e Check constraints to control the quality of solution
e Extract physical (invariant) information



Problems

discretisation after split

iIndependent discretisation of evolution equations and constraints
discrete versions are in general not compatible

discrete constraints are not propagated by the discrete evolution
— severe violation of constraints during simulations

Einstein equations are invariant under diffeomorphisms
— simulations are coordinate dependent
invariant information has to be determined after the simulation

geometric character (vector, tensor) of the variables plays no role

finite element methods are largely ignored



Discrete Differential Forms

continuous

p-dimensional submanifold Sp:
(0) point, (1) curve, (2) surface

p-form;
W: Sy / weR
Sp
exterior derivative d:
/ dw= W
Sp 0Sp

Stokes’ theorem

discrete

p-simplices Gp:
(0) node, (1) edge, (2) face

discrete p-form:
w:Gp— wWGp eR

Definition:
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continuous

Grassmann (wedge) product:

0od  PHg

graded algebra

aAB=(-1)MBAa,

derivation:

d(aAB) =daAB+ (—1)PaAdp.

deRham cohomology

discrete

discrete Grassmann product:

p q p+q 3
(,8) > aAB A
. 1
Example: 5
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1
(aAB)123 = 5 [0( 12B13+ 023B21 + 031332

— B12013 — B230021 — [3310(32]

discrete d is derivation

singular cohomology



Einstein equation as differential ideal

Variables:

e (covariant) tetrad: 6
e s0(1,3) connection form: 'y

In addition:
e space-time ‘metric’: Nik = (+,—,—, —)
Cartan’s structure equation:
do' + w' A 6K =0,
do' + &' Aw = Q')

Bianchi identity:
ink+(Di| AQlk—(DIkA Qi| = 0.



. 1 i
Nester-Witten form: Li = S€iju wkag

2
identity: dLi= § + E
o2 ~Cap
Sparling: d§ =0 < G4 =0.
exterior system for the variables ', w':
do' + w' A BK=0, (2-form)
dLi— S =0. (3-form)

gauge freedom: Lorentz rotations of the tetrad



Applications of the exterior system

Einstein’s energy balance

Landau-Lifshitz and Einstein pseudo-tensor

Bondi mass loss, light focussing

Positive mass theorem, Penrose inequality



Discrete formulation

1. Choose the topology of the time slices
2. Triangulate with 4-simplices
3. Replace continuous by discrete forms

Discrete variables: | |
values of 6' and w'y on edges: 0'le], W'\ [€]

Geometric meaning:

Q
/ .
P P

|[€]% = nik®'[e]6“[¢] R(€) = exp(wk€])

squared length holonomy



Choose gauge: Lorentz-rotations of the tetrad

Evaluate the discrete forms on 2- resp. 3- S|mpI|ces

— algebraic, non-linear system for {6'[¢], w',[e]}

Split into evolution equations and constraints
determined by the causal character of the simplices
Bianchi identity is satisfied also for discrete formulation
— essential for consistency of the equations

squared length of an edge e, holonomy along an edge €
coordinate independent description of space-time



Stepping in time

Triangulation consists of tetrahedra

Each tetrahedron determines a unique point in the future
‘dual’ triangulation in the next time slice, staggering
edges will connect null separated points

CFL condition built in

can be used to fix the Lorentz gauge



Outlook

Implementation in simple cases (1 + 1-systems)
— spherical symmetry
— pp-waves

Investigation of the properties of the equations
— propagation
— hyperbolic character

tetrad gauge?

boundary conditions?

methods of solution?



