Discrete Differential Forms
 IN Numerical General Relativity

- Motivation
- Discrete differential forms
- Einstein equations as differential ideal
- Discrete formulation
- Outlook
J. Frauendiener, Institut für Astronomie und Astrophysik, Universität Tübingen

SFB 382: Methods and Algorithms to simulate physical processes on high performance computers

Motivation

Numerical relativity is based essentially on the following procedure:

- Set up geometric differential equations
- Split into evolution equations and constraints
- Verify that constraints propagate
- Discretise evolution equations and constraints
- Solve constraints to provide initial data
- Choose gauges (coordinates, etc.)
- Evolve
- Check constraints to control the quality of solution
- Extract physical (invariant) information

Problems

- discretisation after split
- independent discretisation of evolution equations and constraints
- discrete versions are in general not compatible
- discrete constraints are not propagated by the discrete evolution
\rightarrow severe violation of constraints during simulations
- Einstein equations are invariant under diffeomorphisms
\rightarrow simulations are coordinate dependent
- invariant information has to be determined after the simulation
- geometric character (vector, tensor) of the variables plays no role
- finite element methods are largely ignored

Discrete Differential Forms

p-dimensional submanifold S_{p} :
(0) point, (1) curve, (2) surface p-form:

$$
\omega: S_{p} \mapsto \int_{S_{p}} \omega \in \mathbb{R}
$$

exterior derivative d:

$$
\int_{S_{p}} \mathbf{d} \omega=\int_{\partial S_{p}} \omega
$$

Stokes' theorem
discrete

p-simplices \mathfrak{S}_{p} :
(0) node, (1) edge, (2) face
discrete p-form:

$$
\omega: \mathfrak{S}_{p} \mapsto \omega\left[\mathfrak{S}_{p}\right] \in \mathbb{R}
$$

Definition:

$$
\mathbf{d} \omega\left[\mathfrak{S}_{p}\right]=\omega\left[\partial \mathfrak{S}_{p}\right]
$$

Example:

$$
\mathbf{d} \omega_{123}=\omega_{12}+\omega_{23}+\omega_{31}
$$

continuous

Grassmann (wedge) product:

$$
\left(\begin{array}{c}
p \stackrel{q}{\beta}) \mapsto \stackrel{p+q}{\alpha} \wedge,
\end{array}\right.
$$

graded algebra

$$
\alpha \wedge \beta=(-1)^{p q} \beta \wedge \alpha,
$$

derivation:

$$
\mathbf{d}(\alpha \wedge \beta)=\mathbf{d} \alpha \wedge \beta+(-1)^{p} \alpha \wedge \mathbf{d} \beta .
$$

deRham cohomology

discrete

discrete Grassmann product:

$$
\left(\begin{array}{cc}
p & q+q \\
(\alpha, \beta) \mapsto
\end{array}\right) \stackrel{\alpha}{\alpha} \wedge \beta
$$

Example:

$(\stackrel{1}{\alpha} \wedge \stackrel{1}{\beta})_{123}=\frac{1}{2}\left[\alpha_{12} \beta_{13}+\alpha_{23} \beta_{21}+\alpha_{31} \beta_{32}\right.$

$$
\left.-\beta_{12} \alpha_{13}-\beta_{23} \alpha_{21}-\beta_{31} \alpha_{32}\right]
$$

discrete \mathbf{d} is derivation
singular cohomology

Einstein equation as differential ideal

Variables:

- (covariant) tetrad: θ^{i}
- $\operatorname{so}(1,3)$ connection form: $\omega^{i}{ }_{k}$

In addition:

- space-time 'metric': $\quad \eta_{i k}=(+,-,-,-)$

Cartan's structure equation:

$$
\begin{gathered}
\mathbf{d} \theta^{i}+\omega^{i}{ }_{k} \wedge \theta^{k}=0, \\
\mathbf{d} \omega^{i}{ }_{k}+\omega^{i}{ }_{l} \wedge \omega^{l}{ }_{k}=\Omega^{i}{ }_{k}
\end{gathered}
$$

Bianchi identity:

$$
\mathbf{d} \Omega^{i}{ }_{k}+\omega^{i}{ }_{l} \wedge \Omega^{l}{ }_{k}-\omega^{l}{ }_{k} \wedge \Omega^{i}{ }_{l}=0 .
$$

Nester-Witten form:

$$
\begin{array}{r}
L_{i}=\frac{1}{2} \varepsilon_{i j k l} \omega^{j k} \wedge \theta^{l} \\
\mathbf{d} L_{i}=\underbrace{S_{i}}_{\sim \omega^{2}}+\underbrace{E_{i}}_{\sim G_{a b}}
\end{array}
$$

Sparling:

$$
\mathbf{d} S_{i}=0 \Longleftrightarrow G_{a b}=0
$$

exterior system for the variables $\theta^{i}, \omega^{i}{ }_{k}$:

$$
\begin{array}{r}
\mathbf{d} \theta^{i}+\omega^{i}{ }_{k} \wedge \theta^{k}=0, \\
\mathbf{d} L_{i}-S_{i}=0 .
\end{array}
$$

(2-form)
(3-form)
gauge freedom: Lorentz rotations of the tetrad

Applications of the exterior system

- Einstein's energy balance
- Landau-Lifshitz and Einstein pseudo-tensor
- Bondi mass loss, light focussing
- Positive mass theorem, Penrose inequality

Discrete formulation

1. Choose the topology of the time slices
2. Triangulate with 4 -simplices
3. Replace continuous by discrete forms

Discrete variables:
values of θ^{i} and $\omega^{i}{ }_{k}$ on edges: $\quad \theta^{i}[e], \omega_{k}{ }_{k}[e]$

Geometric meaning:

$$
l[e]^{2}=\eta_{i k} \theta^{i}[e] \theta^{k}[e]
$$

squared length

$R^{i}{ }_{k}(e)=\exp \left(\omega^{i}{ }_{k}[e]\right)$
holonomy

- Choose gauge: Lorentz-rotations of the tetrad
- Evaluate the discrete forms on 2- resp. 3-simplices
\rightarrow algebraic, non-linear system for $\left\{\theta^{i}[e], \omega^{i}{ }_{k}[e]\right\}$
- Split into evolution equations and constraints determined by the causal character of the simplices
- Bianchi identity is satisfied also for discrete formulation
\rightarrow essential for consistency of the equations
- squared length of an edge e, holonomy along an edge e :
coordinate independent description of space-time

Stepping in time

- Triangulation consists of tetrahedra
- Each tetrahedron determines a unique point in the future 'dual' triangulation in the next time slice, staggering
- edges will connect null separated points
- CFL condition built in
- can be used to fix the Lorentz gauge

Outlook

- Implementation in simple cases ($1+1$-systems)
- spherical symmetry
- pp-waves
- Investigation of the properties of the equations
- propagation
- hyperbolic character
- tetrad gauge?
- boundary conditions?
- methods of solution?

